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Abstract

These are the evolving lecture notes for the course MATH 442/842 – Algebraic
Topology in the Winter 2025 semester. We are following Hatcher as main reference.
The notes provide additional details and examples.
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1 Spheres and disks

Definition 1.1. For n ≥ 0, the standard n-sphere is

Sn = {x ∈ Rn+1 | ∥x∥ = 1}

and the standard n-disk is
Dn = {x ∈ Rn | ∥x∥ ≤ 1}.

The boundary of the disk is a sphere of dimension one less:

∂Dn = Sn−1.

Remark 1.2. Both Sn and Dn are closed and bounded subsets of Euclidean space, hence are
compact, by the Heine–Borel theorem.

Problem 1.3. Show that a closed interval with its endpoints identified is homeomorphic to
a circle: [0, 1]/0 ∼ 1 ∼= S1.

Solution. Consider the winding map

p : R ↠ S1

p(t) = (cos(2πt), sin(2πt))

which is continuous and surjective. Since [0, 1] is compact and S1 is Hausdorff, p is a quotient
map. The equivalence relation induced by p identifies the endpoints:

p(s) = p(t) ⇐⇒ s = t or s, t ∈ {0, 1}.

Therefore p induces a homeomorphism p : [0, 1]/0 ∼ 1
∼=−→ S1, as illustrated in the diagram

[0, 1]
p

//

quotient ��
��

S1

[0, 1]/0 ∼ 1

p

∼=
::

Exercise 1.4. Show that the n-disk with its boundary collapsed to a point is homeomorphic
to the n-sphere Sn:

Dn/∂Dn ∼= Sn.

Problem 1.5. Show that there is a homeomorphism

(Dn ⨿Dn)/∼ ∼= Sn

where the two disks are glued along their boundaries, i.e., the equivalence relation ∼ is
generated by x(1) ∼ x(2) for all x ∈ Dn with ∥x∥ = 1. Here the superscript denotes that
x(1) ∈ Dn ⨿Dn lives in the first summand while x(2) lives in the second summand.
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Solution. Writing Rn+1 ∼= Rn × R, consider the map fU : D
n → Sn sending the disk to the

upper hemisphere:
fU(x) = (x,

√
1− ∥x∥2).

Then fU is continuous since its n+ 1 components are continuous, and in fact fU is a home-
omorphism onto the upper hemisphere, with inverse the projection pRn : Snupper → Dn onto
the first n coordinates. Indeed, a point (x1, . . . , xn, xn+1) = (x, xn+1), where x denotes
(x1, . . . , xn), is in the upper hemisphere Snupper if and only if it satisfies{

x21 + . . .+ x2n + x2n+1 = 1 = ∥x∥2 + x2n+1

xn+1 ≥ 0

so that it is of the form (x,
√

1− ∥x∥2) for some x ∈ Dn.

Likewise, consider the map fL : D
n → Sn sending the disc homeomorphically onto the lower

hemisphere:
fL(x) = (x,−

√
1− ∥x∥2).

Consider the map f : Dn ⨿ Dn → Sn whose restrictions to the first and second summands
are fU and fL respectively. Then f is continuous, since its restriction to each summand is
continuous. Moreover, f is surjective, because of Sn = Snupper ∪ Snlower.
However, f is not injective. Because the restrictions fU and fL are injective, non-injectivity
can only happen when taking inputs from different summands:

f(x(1)) = f(y(2)) ⇐⇒ fU(x) = fL(y)

⇐⇒
(
x,
√

1− ∥x∥2
)
=
(
y,−

√
1− ∥y∥2

)
⇐⇒ x = y and ∥x∥ = ∥y∥ = 1

⇐⇒ x(1) ∼ y(2).

Therefore, f induces a continuous map from the quotient

f : (Dn ⨿Dn)/∼ ∼= Sn

which is surjective (because f is) and injective (because of the implication f(x) = f(x′) =⇒
x ∼ x′).

Since the disc Dn ⊂ Rn is closed and bounded, it is compact. Therefore the finite union
Dn ⨿ Dn is compact, and so is its quotient (Dn ⨿ Dn)/∼. Since Sn is a metric space, it is
Hausdorff. Now f is a continuous bijection from a compact space to a Hausdorff space, and
is therefore a homeomorphism.
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Problem 1.6. Show that the punctured sphere Sn \ {p} is homeomorphic to Rn.

Solution. Consider Rn ∼= Rn × {0} ⊂ Rn+1 as the hyperplane xn+1 = 0 inside Rn+1. Take
the “North pole” p = (0, . . . , 0, 1) ∈ Sn ⊂ Rn+1. We will produce a homeomorphism f : Rn →
Sn \ {p} using “stereographic projection”. Define the maps

f : Rn → Sn \ {p}

where f(x) is the unique point of Sn \ {p} which lies on the straight line through x and p
and

g : Sn \ {p} → Rn

where g(y) is the unique point of Rn which lies on the straight line through y and p.

For all x ∈ Rn, g(f(x)) is the unique point of Rn which lies on the straight line through f(x)
and p. By definition of f , x is a point of Rn which lies on the straight line through f(x) and
p. This proves g(f(x)) = x.

For all y ∈ Sn \ {p}, f(g(y)) is the unique point of Sn \ {p} which lies on the straight line
through g(y) and p. By definition of g, y is a point of Sn \ {p} which lies on the straight line
through g(y) and p. This proves f(g(y)) = y.

It remains to show that f and g are both continuous.

A straightforward calculation yields

f(x) =
1

∥x∥2 + 1

[
2x+ (∥x∥2 − 1)p

]
which is a continuous function of x. Indeed, the norm ∥x∥ is continuous in x, and the
denominator satisfies ∥x∥2 + 1 > 0 for all x ∈ Rn.

Another straightforward calculation yields

g(y) =
1

1− yn+1

[y − yn+1p]

which is a continuous function of y. Indeed, the projection Rn+1 ↠ R onto each coordinate
is continuous (so that yn+1 is a continuous function of y), and the denominator satisfies
1− yn+1 > 0 for all y ∈ Sn \ {p}.

Remark 1.7. Problem 1.6 shows that the one-point compactification (also called Alexandroff
compactification) of Rn is an n-sphere: (Rn)+ ∼= Sn.

Definition. The (unreduced) cone on a space X is the space obtained by collapsing the
“top” of the cylinder on X:

CX := (X × I)/(X × {1}).
Let ι : X ↪→ CX denote the “inclusion of the base of the cone”, that is, the composite

X
(idX ,0)

// X × I
quotient

// // CX.

Exercise 1.8. Show that the cone on a sphere is homeomorphic to a disk: C(Sn) ∼= Dn+1,
for n ≥ 0. See Homework 1 Problem 1.
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2 Homotopy

2.1 Definitions and properties

Definition 2.1. Let f, g : X → Y be (continuous) maps between spaces. A homotopy from
f to g is a continuous map

H : X × [0, 1] → Y

satisfying: {
H(x, 0) = f(x)

H(x, 1) = g(x)

for all x ∈ X.

We then say that f is homotopic to g, denoted f ≃ g.

In other words, a homotopy is a continuous deformation of f into g. We think of t ∈ [0, 1] as
a “time parameter” or “deformation parameter”. Denote by ht : X → Y the map “at time
t”, i.e.

ht(x) = H(x, t).

A homotopy from f to g can be displayed as a commutative diagram:

X

inc0
��

f

��

X × I
H
// Y

X

inc1

OO

g

FF

where I = [0, 1] denotes the unit interval.

Definition 2.2. The cylinder on a space X is the space Cyl(X) := X × I.

Exercise 2.3. Show that being homotopic f ≃ g is an equivalence relation on the set

C(X, Y ) = {f : X → Y | f is continuous}.

Denote the homotopy class of f by [f ].

To justify continuity of a concatenation of homotopies (at double speed), use the following
“gluing lemma” from general topology.

Lemma 2.4. Let f : X → Y be a function between spaces, and A,B ⊆ X closed subsets with
A ∪B = X. If the restrictions {

f |A : A→ Y

f |B : B → Y

are continuous, then f : X → Y is continuous.
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Example 2.5. Any two maps f, g : X → Rn are homotopic via the linear homotopy

H(x, t) = (1− t)f(x) + tg(x).

This works more generally for maps f, g : X → C where C ⊆ Rn is a convex subset.

Proposition 2.6. Homotopy is compatible with composition, i.e., given homotopic maps
f, f ′ : X → Y and homotopic maps g, g′ : Y → Z, the composites X → Z are also homotopic:{

f ≃ f ′

g ≃ g′
=⇒ g ◦ f ≃ g′ ◦ f ′.

Proof sketch. Given homotopies F : f ⇒ f ′ andG : g ⇒ g′, take the homotopyH : X×I → Z
given by

ht = gt ◦ ft.

The argument can be displayed in a 2-cell diagram:

X Y Z.

f

f ′

g

g′

F G

Upshot: We can compose homotopy classes of maps, i.e., the formula

[g] ◦ [f ] := [g ◦ f ]

is well-defined.

Definition 2.7. The (naive) homotopy category of topological spaces Ho(Top) has as
objects topological spaces and as morphisms homotopy classes of continuous maps

[f ] : X → Y.

Denote the hom sets by

[X, Y ] := {homotopy classes of maps [f ] : X → Y }

= HomHo(Top)(X, Y )

= HomTop(X, Y )/ ≃ .

Example 2.8. For any space X, the set [∗, X] = π0(X) consists of the path components of
X.
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2.2 Homotopy equivalence

Definition 2.9. A map f : X → Y is a homotopy equivalence if there is a map g : Y → X
satisfying {

g ◦ f ≃ idX

f ◦ g ≃ idY .

Such a map g is called a homotopy inverse of f . We then say that X and Y are homotopy
equivalent, denoted X ≃ Y .

When a homotopy inverse g : Y → X exists, it need not be unique, but it is unique up to
homotopy.

Exercise 2.10. Show that a composite of homotopy equivalences is a homotopy equivalence.

Deduce that “is homotopy equivalent to” X ≃ Y is an equivalence relation among spaces.

Exercise 2.11. Show that a map f : X → Y is a homotopy equivalence if and only if it

becomes an isomorphism [f ] : X
∼=−→ Y in the homotopy category Ho(Top).

Example 2.12. Euclidean space is homotopy equivalent to a point: Rn ≃ ∗. The unique map
f : Rn → ∗ is a homotopy equivalence, with homotopy inverse (for instance) g = c0 : ∗ → Rn.
The linear homotopy

H(x, t) = (1− t)x

provides a homotopy from idRn to c0 : Rn → Rn, the constant map sending everything to 0.

The example illustrates the following notion.

Definition 2.13. A space X is contractible if it is homotopy equivalent to a point, i.e.,
X ≃ ∗.
A homotopy from idX to a constant map cx0 : X → X is called a contraction of X.

See Homework 1 Problem 2 for different characterizations of contractible spaces.

Definition 2.14. A map f : X → Y is null-homotopic if it is homotopic to a constant
map cy : X → Y .

Exercise 2.15. Show that a map f : X → Y is null-homotopic if and only if it extends to
the cone on X, as illustrated in the diagram

CX

!!
X

ι

OO

f

// Y.

See Homework 1 Problem 1.
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Example 2.16. The n-disk Dn is contractible, also using the linear homotopy H(x, t) =
(1− t)x.

More generally, any convex subset C ⊆ Rn is contractible.

Yet more generally, any star-shaped subset S ⊆ Rn is contractible. Star-shaped means
that there exists a point x0 ∈ S such that for all x ∈ S, the line segment joining x0 and x is
contained in S.

Example 2.17. The circle S1 is not contractible. We will learn shortly that the circle has a
non-trivial fundamental group π1(S

1) ∼= Z ̸= 0, hence cannot be contractible.

Remark 2.18. Given homotopy equivalent spaces X ≃ Y , if X is contractible, then so is Y :

Y ≃ X ≃ ∗.
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2.3 Deformation retracts

Definition 2.19. A subspace A ⊆ X is called a (strong) deformation retract of X if
there is a homotopy H : X × I → X satisfying:

H(x, 0) = x for all x ∈ X

H(x, 1) ∈ A for all x ∈ X

H(a, t) = a for all a ∈ A and t ∈ I.

Such a homotopy H is called a deformation retraction of X onto A.

We say weak deformation retract if the last condition is only required for t = 1.

Warning 2.20. We follow the terminology of Hatcher [Hat02, §0], where a deformation retract
is strong by default. Some authors use the term “deformation retract” to mean weak by
default.

Example 2.21. For any n ≥ 0, the origin {0} ⊆ Rn is a deformation retract of Euclidean
space Rn, via the deformation retraction

H : Rn × I → Rn

H(x, t) = (1− t)x.

Similarly, the center {0} ⊂ Dn is a deformation retract of the unit disk Dn.

Example 2.22. Any space X is a deformation retract of its cylinder Cyl(X), viewing X as
the bottom of the cylinder X × {0}, via the deformation retraction

H : Cyl(X)× I → Cyl(X)

H ((x, s), t) = (x, (1− t)s).

Example 2.23. For any n ≥ 1, the unit sphere Sn−1 ⊂ Rn is a deformation retract of the
punctured Euclidean space Rn \ {0}, via the deformation retraction

H : (Rn \ {0})× I → Rn \ {0}

H(x, t) = (1− t)x+ t
x

∥x∥
.

Exercise: Check that the formula is well-defined, i.e., never takes the value 0 ∈ Rn.

Definition 2.24. Given maps f, g : X → Y , a homotopy H : X × I → Y is relative to a
subspace A ⊆ X if it is stationary on A, i.e., satisfies

H(a, t) = H(a, 0) = f(a) for all a ∈ A and t ∈ I.

We write f ≃ g relA.

In particular, this forces the maps f and g to have the same restriction to A, i.e., f |A =
g|A : A→ Y .
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With this terminology, we can revisit Definition 2.19. A subspace A ⊆ X with inclusion map
i : A ↪→ X is:

� a retract of X if the inclusion map admits a retraction r : X → A, i.e., a map satisfying
r ◦ i = idA.

� a weak deformation retract of X if moreover i ◦ r ≃ idX holds.

� a (strong) deformation retract of X if moreover i ◦ r ≃ idX relA holds.

Remark 2.25. 1. If A is a weak deformation retract of X, then in particular the inclusion
i : A ↪→ X is a homotopy equivalence with homotopy inverse the retraction r : X → A.

2. If A is merely a retract of X, their homotopy types can be very different. For instance,
the one-point space ∗ is a retract of every (non-empty) space X.

©2025 Martin Frankland All Rights Reserved 11
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3 Connected components as a homotopy invariant

Definition 3.1. Let X be a topological space. A path in X from x to y is a continuous
map γ : [0, 1] → X satisfying γ(0) = x and γ(1) = y.

The relation “there is a path from x to y” is an equivalence relation on X, whose equivalence
classes are called the path components of X. Let π0(X) denote the set of path components
of X.

Problem 3.2. Let f : X → Y be a map between spaces. Define an induced function on path
components

f∗ : π0(X) → π0(Y ),

sometimes denoted π0(f), by the formula f∗[x] := [f(x)], where [x] denotes the path compo-
nent of a point x ∈ X.

(a) Show that the function f∗ is well-defined.

(b) Show that the induced function makes π0 : Top → Set into a functor.

(c) Show that π0 is a homotopy functor in the following sense: homotopic maps
f ≃ g : X → Y induce the same function

f∗ = g∗ : π0(X) → π0(Y ).

(d) Let X ≃ Y be homotopy equivalent spaces. Show that the sets of path components
π0(X) and π0(Y ) are in bijection.

In particular, X is path-connected if and only if Y is.

Solution. See Homework 1 Problem 3.

Problem 3.3. Let Conn(X) denote the set of connected components of a space X.

Let f : X → Y be a (continuous) map between spaces. Define an induced function on
connected components

f∗ : Conn(X) → Conn(Y ),

sometimes denoted Conn(f), by the formula f∗[x] := [f(x)], where [x] denotes the connected
component of x ∈ X.

(a) Show that the function f∗ is well-defined.

(b) Show that the induced function makes Conn: Top → Set into a functor.

(c) Show that Conn is homotopy invariant in the following sense: homotopic maps
f ≃ g : X → Y induce the same function

f∗ = g∗ : Conn(X) → Conn(Y ).
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(d) LetX ≃ Y be homotopy equivalent spaces. Show that the sets of connected components
Conn(X) and Conn(Y ) are in bijection.

In particular, X is connected if and only if Y is.

Solution. Similar to Problem 3.2. For part (a), use the fact that the continuous image of a
connected space is connected. For (c), use the fact that if there is a path between y and y′,
then y and y′ lie in the same connected component.
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Problem 3.4. (a) Denote by ηX : π0(X) → Conn(X) the function that assigns to a path
component C the connected component that contains C. Show that η is a natural
transformation.

Solution. Naturality means that for every map f : X → Y , the following diagram of sets
commutes:

π0(X)

π0(f)
��

ηX
// Conn(X)

Conn(f)
��

π0(Y )
ηY
// Conn(Y ).

Let [x]c denote the connected component of x ∈ X and let [x]pc denote the path component
of x. Then the function ηX is defined by the equation

ηX([x]pc) = [x]c.

For every [x]pc ∈ π0(X), the following equations hold in Conn(Y ):

Conn(f)ηX([x]pc) = Conn(f)[x]c

= [f(x)]c

ηY π0(f)([x]pc) = ηY [f(x)]pc

= [f(x)]c.

(b) Let X ≃ Y be homotopy equivalent spaces, where X satisfies the following condition:
the path components of X coincide with its connected components. Show that Y also
satisfies that condition.

Solution. The path components of X coincide with its connected components if and only
if the surjection ηX : π0(X) → Conn(X) is a bijection. Now let f : X

≃−→ Y be a homotopy
equivalence. By part (a), the following diagram commutes:

π0(X)

π0(f) ∼=
��

ηX
// Conn(X)

Conn(f)∼=
��

π0(Y )
ηY
// Conn(Y ),

where the downward maps are bijections, by Problems 3.2 and 3.3. Therefore, the top map
ηX is bijective if and only if the bottom map ηY is bijective.

Remark 3.5. The topologist’s sine curve

S = {(x, sin 1

x
) | x ∈ (0, 1]} ∪ ({0} × [−1, 1]) ⊂ R2

does not satisfy said condition. To wit, S is connected, but it has two path components.
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4 The fundamental group

Definition 4.1. Let X be a topological space. The fundamental group of X based at a
point x0 ∈ X consists of the homotopy classes of loops based at x0:

π1(X, x0) = {γ : I → X | γ(0) = γ(1) = x0}/ ≃ .

The group structure is given by concatenation of loops.

Problem 4.2. Let (X, x0) be a pointed space.

(a) Show that two loops α, β : S1 → X based at x0 are unpointed homotopic (also called
freely homotopic) if and only if their pointed homotopy classes [α] and [β] are conjugate
in the fundamental group π1(X, x0).

Solution. ( =⇒ ) Let H : S1 × I → X be an (unpointed) homotopy from α to β. Keeping
track of where the basepoint v ∈ S1 is sent throughout the homotopy

γ(t) := H(v, t)

yields a loop γ : I → X based at x0. Via the homeomorphism S1 ∼= I/∂I, we can view H as
a map H : I × I → X that satisfies

H(0, t) = H(1, t) = γ(t)

for all t ∈ I. Hence, H restricts to the four edges of the square I × I as indicated in this
picture:

x0

x0

x0.

x0

α

β

γ γ

(1)

Since the square I2 is contractible, it is in particular simply-connected, so that any two paths
in I2 with the same endpoints are homotopic (by Homework 2 Problem 2). Denote the path
that goes along the bottom edge

ℓbottom := (id, 0) : I → I2

and likewise for the remaining three edges. There is a homotopy of paths in I2

ℓbottom ≃ ℓleft · ℓtop · ℓright.

Applying H : I2 → X then yields a homotopy of paths in X

α ≃ γ · β · γ

and hence the equality in π1(X, x0)

[α] = [γ · β · γ] = [γ][β][γ]−1.
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( ⇐= ) Let [α], [β] ∈ π1(X, x0) be conjugate elements, satisfying

[α] = [γ][β][γ]−1

for some [γ] ∈ π1(X, x0). Pick representative loops α, β, and γ based at x0 ∈ X. The
equation

[α][γ] = [γ][β]

in π1(X, x0) means that there is a path homotopy α·γ ≃ γ·β. Therefore, the map h : ∂I2 → X
with values indicated in the picture (1), viewed as two different paths from the corner (0, 0)
to (1, 1), admits an extension to the square H : I2 → X. This map H provides an unpointed
homotopy from α to β.

Alternate solution for ( =⇒ ). Let v ∈ S1 denote the basepoint. The unpointed homo-
topy H : S1× I → X from α to β yields an equation between their induced homomorphisms:

π1(S
1, v)

β∗ ((

α∗
// π1(X,α(v)) = π1(X, x0)

π1(X, β(v)) = π1(X, x0)

βγ∼=

OO

where the unfortunate notation βγ means the change-of-basepoint isomorphism induced by
the path γ : I → X. Applying this equation to the generator [id] ∈ π1(S

1, v) yields:

α∗([id]) = βγβ∗([id])

⇐⇒ [α] = βγ([β])

⇐⇒ [α] = [γ][β][γ]−1.
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(b) Show that a loop α : S1 → X based at x0 is unpointed homotopic to the constant loop
cx0 if and only if α is pointed homotopic to cx0 .

Solution. ( ⇐= ) A pointed homotopy is a special kind of unpointed homotopy.

( =⇒ ) Assume that the loop α : S1 → X is unpointed homotopic to the constant loop cx0 .
By part (a), their homotopy classes are conjugate in π1(X, x0):

[α] = [γ][cx0 ][γ]
−1

= [γ]1[γ]−1

= 1

= [cx0 ].

Alternate solution not using (a). By Homework 1 Problem 1, the null-homotopic map
α : S1 → X admits an extension to the disk α̃ : D2 → X. Since the disk D2 is contractible, it
is in particular simply-connected, so that the boundary inclusion ι : S1 ↪→ D2 is pointed ho-
motopic to the constant loop cv : S

1 → D2. Postcomposing with α̃ yields a pointed homotopy
from

α̃ ◦ ι = α̃|S1 = α

to
α̃ ◦ cv = cα̃(v) = cα(v) = cx0 .
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5 Topology of CW complexes

Problem 5.1. Let X be a space and X = ⊔αUα a disjoint union of open subsets Uα ⊆ X.
Show that X is the coproduct of the Uα, that is, the inclusions Uα ↪→ X together induce a
homeomorphism X ∼=

∐
α Uα.

Solution. Let A ⊆ X be an open subset. For each index α, A ∩ Uα is open in Uα, so that
A ⊆ ⊔αUα is open in the coproduct topology. (This direction holds automatically.)

Conversely, let A ⊆
⊔
α Uα be an open subset in the coproduct topology. This means that A

is a disjoint union of the form

A =
⊔
α

Aα,

where Aα ⊆ Uα is open in Uα for each index α. Since Uα ⊆ X is open in X, Aα ⊆ X is also
open in X. Therefore A ⊆ X is open in X, being the union of the open subsets Aα.

Problem 5.2. Show that the following conditions on a space X are equivalent.

1. X is the coproduct of its path components.

2. Each path component of X is open in X.

3. Every point x ∈ X has a path-connected neighborhood.

Solution. (3) =⇒ (2) Let x0 ∈ X and let C ⊆ X denote the path component of x0. We
want to show that C is open in X.

Let x ∈ C and let x ∈ Ux be a path-connected neighborhood of x. Then there is a path
between x0 and x, and between x and any point y ∈ Ux, hence also between x0 and y. This
shows the inclusion Ux ⊆ C, so that C is open in X.

(2) =⇒ (1) Since X is the disjoint union of its path components, this implication follows
from Problem 5.1.

(1) =⇒ (2) In a coproduct X =
∐

αXα, each summand Xα ⊆ X is open.

(2) =⇒ (3) Every point x ∈ X lies in its path component Cx ⊆ X, which by assumption
is open in X. Hence, Cx is a path-connected open neighborhood of x.

Remark 5.3. A CW complex satisfies the equivalent conditions in Problem 5.2 and in fact
much more: every point x ∈ X admits an arbitrarily small contractible open neighborhood.
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Problem 5.4. (a) Show that the conditions from Problem 5.2 imply the following condi-
tion: the path components of X coincide with its connected components.

Solution. Let X =
∐

C∈π0(X)C be the decomposition of X as coproduct of its path compo-
nents. Let Z ⊆ X be a connected component of X. Since Z is connected, it must lie entirely
within one summand C ⊆ X, i.e., the inclusion Z ⊆ C holds. Since Z is itself a disjoint
union of certain path components of X, the equality Z = C holds.

(b) Disprove the converse to part (a). In other words: Find a space X whose path compo-
nents coincide with its connected components, but X is not the coproduct of its path
components.

Solution. Consider the space

X = { 1
n
| n ∈ N} ∪ {0}

as a subspace X ⊂ R, illustrated in Figure 1. Then each point {x} ⊂ X is a connected
component of X, hence also a path component.

However, the point {0} ⊂ X is not open in X, since every neighborhood of 0 contains
infinitely many points of X. Therefore, X is not the coproduct

∐
x∈X{x}. (This coproduct

is a discrete space.)

0

Figure 1: The space X ⊂ R.
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Problem 5.5. Show that the following spaces are not CW complexes.

(a) X = { 1
n
| n ∈ N} ∪ {0} as a subspace X ⊂ R.

Solution. As shown in Problem 5.4(b), X is not the coproduct of its path components,
hence not a CW complex.

(b) The topologist’s sine curve:

X = {(t, sin 1

t
) | t ∈ (0, 1]} ∪ ({0} × [−1, 1])

as a subspace X ⊂ R2, illustrated in Figure 2.

Solution. The space X consists of two path components but only one connected component.
By Problem 5.4(a), X is not a CW complex.

Figure 2: The topologist’s sine curve.
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(c) The Hawaiian earring

X =
⋃
n∈N

Cn ⊂ R2 (2)

where Cn ⊂ R2 denotes the circle centered at ( 1
n
, 0) with radius 1

n
. See Figure 3.

C1

C2

C3

Figure 3: The Hawaiian earring.

Solution. The point (0, 0) ∈ X has no simply-connected neighborhood, by Lemma 5.7. In
a CW complex, every point has arbitrarily small contractible neighborhoods, in particular at
least one simply-connected neighborhood.

(d) The “comb”

X = [0, 1]×
(
{ 1
n
| n ∈ N} ∪ {0}

)
∪ ({0} × [0, 1])

as a subspace X ⊂ R2, illustrated in Figure 4.

Solution. Consider the open ball V = B
(
(1
2
, 0), 0.4

)
and a neighborhood U of (1

2
, 0) satis-

fying U ⊆ V . Then U is not path-connected. In a CW complex, every point has arbitrarily
small contractible neighborhoods, in particular arbitrarily small path-connected neighbor-
hoods.

©2025 Martin Frankland All Rights Reserved 21



University of Regina MATH 442/842 – Algebraic Topology

(1
2
, 0)

Figure 4: The comb.

Remark 5.6. The spaces in examples (a), (b), and (c) are not even homotopy equivalent to
a CW complex. Proofs of those facts can be found in [MSE13]. However, the “comb” in
example (d) is homotopy equivalent to a CW complex since it is contractible.

Lemma 5.7. Let X ⊂ R2 denote the Hawaiian earring as in Equation (2). Let U ⊆ X be a
neighborhood of the point (0, 0) ∈ X. Then the fundamental group π1(U, (0, 0)) is non-trivial.

Proof. For each n ∈ N, the inclusion of the circle Cn ↪→ X admits a retraction rn : X ↠ Cn,
namely the map given by rn(Ci) = {(0, 0)} for all i ̸= n. That is, rn maps all the other circles
Ci to the basepoint (0, 0).

Since U contains an open ball centered at (0, 0), the inclusion Cm ⊆ U holds for m large
enough. Then the inclusion Cm ↪→ U also admits a retraction, namely the restriction
rm|U : U → Cm, as illustrated in this diagram:

Cm � p

  

idCm

  
� � // X

rm
// Cm

U.
?�

OO

rm|U

>>

Since π1(Cm, (0, 0)) ∼= π1(S
1) ∼= Z is non-trivial and is a retract of π1(U, (0, 0)), the latter

cannot be trivial.
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Problem 5.8. Let X be a CW complex, with a given CW structure. Show that the following
statements are equivalent.

1. X has (at least) a cell of dimension d ≥ n.

2. There is an embedding Dn ↪→ X.

3. There is an embedding Rn ↪→ X.

In particular, the dimension of X as a CW complex

dim(X) = sup{n | enα is a cell of X}

does not depend on the CW structure, but only on the underlying space X.

Solution. The equivalence (2) ⇐⇒ (3) has nothing to do with CW complexes, but only
with the fact that Dn and Rn embed into each other.

One embedding comes from the definition: the n-disk Dn ⊂ Rn is a subspace of Rn. Now let

Bn = B(0, 1) = Dn \ ∂Dn = {x ∈ Rn | ∥x∥ < 1}

denote the open unit ball in Rn. Let h : Rn
∼=−→ Bn be a homeomorphism, for instance the

scaling

h(x) =
x

1 + ∥x∥
.

Then the composite

Rn
h

∼=
// Bn � �

inc
// Dn

is an embedding Rn ↪→ Dn.

(2) =⇒ (3) Let f : Dn ↪→ X be an embedding. Then the composite Rn ↪→ Dn f−→ X is
an embedding.

(3) =⇒ (2) Let g : Rn ↪→ X be an embedding. Then the composite Dn ↪→ Rn g−→ X is an
embedding.

(1) =⇒ (3) Let edα be a d-cell of X with characteristic map Φα : D
d → Xd. The restriction

Bd � �
Φα|Bd

// Xd

is an embedding into the d-skeleton Xd, with image Φα(B
d) = edα ⊆ Xd. Composing with the

inclusion Xd ⊆ X yields an embedding Bd ↪→ X. The inequality d ≥ n guarantees that there
is an embedding Bn ↪→ Bd, which yields an embedding Bn ↪→ Bd ↪→ X by composition.
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(2) =⇒ (1) Let f : Dn ↪→ X be an embedding. By compactness of the disk Dn, the image
f(Dn) ⊆ X is also compact and thus lies in a finite subcomplex K ⊆ X. In other words, the
map f : Dn ↪→ X factors through the inclusion K ⊆ X, as illustrated in this diagram:

Dn

f !!

f
// X

K.
?�

OO

Let emα be a cell of K of maximal dimension m <∞. Then the “open” cell emα ⊆ Km is open
in Km = K. Therefore, its preimage f−1(emα ) ⊆ Dn is open in Dn (and non-empty, without

loss of generality), so that f−1(emα ) contains a small open ball B̃n ⊆ f−1(emα ). By restriction,
we obtain an embedding

B̃n � �
f |

B̃n

// emα
∼= Bm.

This is only possible if the dimensions satisfy n ≤ m, by the Brouwer invariance of domain
theorem [Hat02, Theorem 2B.3].
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6 Surfaces

Definition 6.1. The Möbius stripM is the quotient space of the square I2/∼ with respect
to the relation (0, t) ∼ (1, 1− t) for all t ∈ I. In other words, we identity two opposite sides
as illustrated in this picture:

a a.

The boundary of M is the subspace ∂M ⊂M given by

∂M = {q(s, t) | t = 0 or t = 1} = q ([0, 1]× {0, 1}) ,
where q : I2 ↠M denotes the quotient map.

Problem 6.2. Show that the boundary of the Möbius strip is homeomorphic to a circle:
∂M ∼= S1.

Solution. The quotient map q : I2 ↠M is a closed map, by Lemma 6.3. Thus its restriction
to the closed subspace [0, 1]×{0, 1} ⊂ I2 is also closed. Therefore, the continuous surjection

[0, 1]× {0, 1}
q|[0,1]×{0,1}

// q([0, 1]× {0, 1}) = ∂M

is also closed, hence a quotient map (of topological spaces). This yields the homeomorphisms

∂M = q([0, 1]× {0, 1})
∼= [0, 1]× {0, 1}/(0, 0) ∼ (1, 1) and (0, 1) ∼ (1, 0)

∼= [0, 2]/0 ∼ 2

∼= S1.

Lemma 6.3. The quotient map q : I2 ↠M is a closed map.

Proof. Consider the homeomorphism

φ : {0, 1} × I
∼=−→ {0, 1} × I

φ(x, y) = (1− x, 1− y).

By definition, the Möbius strip is the quotient space

M = I2/(x, y) ∼ φ(x, y) for all (x, y) ∈ {0, 1} × I.

For any subset A ⊆ I2, the following equality holds:

q−1q(A) = A ∪ φ(A ∩ ({0, 1} × I)).

If A ⊆ I2 is closed, then A∩ ({0, 1}×I) and φ(A∩ ({0, 1}×I)) are also closed, as is q−1q(A),
as a finite union of closed subsets. Therefore, the subset q(A) ⊆ I2/∼ is closed, by definition
of the quotient topology.
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Problem 6.4. Let ι : ∂M ↪→M denote the inclusion of the boundary of the Möbius strip.

(a) Compute the induced homomorphism

ι∗ : π1(∂M) → π1(M).

Solution. The projection onto the first coordinate

p : M
≃−→ [0, 1]/0 ∼ 1 ∼= S1

is a homotopy equivalence. As generator of π1(∂M) ∼= π1(S
1) ∼= Z, we choose the homotopy

class [α] of the path α : I → ∂M given by

α(s) =

{
(2s, 0) for 0 ≤ s ≤ 1

2

(2s− 1, 1) for 1
2
≤ s ≤ 1.

For π1([0, 1]/0 ∼ 1) ∼= π1(S
1) ∼= Z, we choose the usual generator, namely the homotopy

class [β] of the path β : I → [0, 1]/0 ∼ 1 given by

β(s) = s.

Using those formulas, we compute the effect of the inclusion ι : ∂M ↪→ M on fundamental
groups:

p∗ι∗([α]) = [pια] = [β] · [β] = 2[β] ∈ π1(S
1).

In other words, the following diagram of groups commutes:

π1(∂M)

∼=

(pι)∗ $$

ι∗
// π1(M)

∼=p∗
��

π1(S
1)

∼=

Z
2

// Z.
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Remark 6.5. The “equator” in the Möbius strip

Z := q

(
[0, 1]× {1

2
}
)

⊂M

is homeomorphic to a circle:
Z ∼= [0, 1]/0 ∼ 1 ∼= S1.

The inclusion Z ↪→ M is homotopy inverse to the projection p : M → S1 ∼= Z. This yields
an explicit generator of π1(M) ∼= Z, namely the homotopy class [β′] of the path β′ : I → M
given by

β′(s) = q(s,
1

2
),

as illustrated in Figure 5.

α[0, 1
2
]

β′

α[ 1
2
,1]

a a

p

β

Figure 5: The projection p : M → S1.
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(b) Show that ∂M is not a retract of M .

Solution. The induced homomorphism

ι∗ : π1(∂M) → π1(M)

admits no retraction. Indeed, there is no group homomorphism r : Z → Z that satisfies the
equation

r ◦ 2 = 1: Z → Z

since (r ◦ 2)(1) = r(2) = 2r(1) ∈ Z is even, in particular (r ◦ 2)(1) ̸= 1.

Therefore, the map ι : ∂M →M itself admits no retraction.
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Problem 6.6. Let φ : S1
∼=−→ ∂M ↪→M be the composite of a homeomorphism S1 ∼= ∂M and

the inclusion ∂M ↪→M . Show that the pushout M ∪φD2 is homeomorphic to the projective
plane RP 2.

The space M ∪φ D2 is obtained from M by attaching a 2-cell along φ : S1 →M .

Solution. The projective plane is given (up to homeomorphism) by

RP 2 = D2/x ∼ −x for x ∈ ∂D2.

Let B ⊂ D2 be a small open ball inside the disk, for instance the metric ball B = B(0, 1
2
).

We can view B as subspace of RP 2 since the composite

B �
� ι

// D2
q
// // D2/∼ = RP 2

is an embedding. The space RP 2 \B has a boundary ∂(RP 2 \B) ∼= S1. By attaching a 2-cell
along the boundary, we obtain the projective plane again:

(RP 2 \B) ∪∂(RP 2\B) D
2 ∼= RP 2.

Hence, it suffices to show that RP 2 \ B is homeomorphic to the Möbius strip M . We will
construct such a homeomorphism RP 2 \B ∼= M in steps as a composite of homeomorphisms.

a a

Figure 6: The Möbius strip M .

a1

a2 a1

a2
c

Figure 7: Relabeling.
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a1

a2 a1

a2

c

c

Figure 8: Cutting along c.

a1 a1a2

c c

Figure 9: Pasting along a2.

a1

c c

Figure 10: Pasting along a1.

The last step yields the space RP 2 \B.
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Problem 6.7. Show that the pushout M ∪∂M M is homeomorphic to the Klein bottle K.

This pushout is obtained by gluing two Möbius strips along their boundaries.

Solution. We will construct such a homeomorphism M ∪∂MM ∼= K in steps as a composite
of homeomorphisms.

a a

b

b

Figure 11: The Klein bottle K.

a a

b1 b2

b1b2

c1
c2

Figure 12: Relabeling.

a a

b1 b2

b1b2

c1c1 c2 c2

Figure 13: Cutting along c1 and c2.
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a

b1 b2

b1 b2

c1 c1c2 c2

Figure 14: Pasting along a.

The two spaces in Figure 14 are homeomorphic to the Möbius strip M . Their boundaries
are both parametrized by the loop c1 · c2. Therefore, the displayed identification yields the
space M ∪∂M M .
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Problem 6.8. Let Mg denote the orientable surface of genus g ≥ 0. For instance, M1
∼= T 2

is the torus. Note that its fundamental group π1(T
2) = Z× Z is abelian.

Show that for all g ≥ 2, the fundamental group π1(Mg) is not abelian.

Solution. The fundamental group π1(Mg) has the following presentation with 2g generators
and one relation:

π1(Mg) ∼= ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]⟩.

That group admits as a quotient group

π1(Mg)/⟨b1, . . . , bg⟩normal
∼= ⟨a1, . . . , ag | 1⟩ = ⟨a1, . . . , ag⟩,

a free group Fg on g generators. For g ≥ 2, the free group Fg is not abelian, which implies
that π1(Mg) itself is not abelian.
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7 Chain complexes and homology

This note is an introduction to chain complexes. More information can be found in [Hat02,
§2.1], [May99, §12], [Wei94, §1.1], [Bre97, §IV.5], and of course Wikipedia.

7.1 Chain complexes

Definition 7.1. A chain complex C is a graded abelian group {Cn}n∈Z together with maps
∂ : Cn → Cn−1 for all n ∈ Z called boundary maps satisfying ∂2 = 0.

A chain complex C is non-negatively graded if it satisfies Cn = 0 for all n < 0.

A chain complex looks like this:

· · · // Cn+1

∂
// Cn

∂
// Cn−1

// · · ·

A non-negatively graded chain complex looks like this:

· · · // C2

∂
// C1

∂
// C0

// 0.

When working with non-negatively graded chain complexes, it is customary to stop in degree 0
and omit the group 0 in degree −1.

Definition 7.2. Let C be a chain complex.

� An element of Cn is called an n-chain.

� An element of Zn(C) := ker(Cn
∂−→ Cn−1) is called an n-cycle.

� An element of Bn(C) := im(Cn+1
∂−→ Cn) is called an n-boundary.

� The nth homology group of C is the quotient

Hn(C) := Zn(C)/Bn(C),

that is, cycles modulo boundaries.

� Two cycles α, β ∈ Zn(C) are homologous if their difference α− β is a boundary, i.e.,
they represent the same homology class [α] = [β] ∈ Hn(C).

Remark 7.3. The condition ∂2 = 0 is equivalent to im(∂) ⊆ ker(∂). Thus an exact sequence is
a special kind of chain complex: one with trivial homology, also called acyclic. The homology
groups H∗(C) measure the failure of exactness of the chain complex C.
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Example 7.4. For an integer n ≥ 1, consider the chain complex C displayed here:

degree 2 1 0 −1

· · · // 0 // Z
n
// Z // 0.

The homology of C is

H∗(C) =

{
Z/n, ∗ = 0

0, ∗ ̸= 0.

Example 7.5. Consider the chain complex C displayed here:

degree 3 2 1 0 −1

· · · // 0 // Z/4
2
// Z/4

2
// Z/4 // 0.

Note that the composite
2 ◦ 2 = 4: Z/4 → Z/4

is 0, so that C is indeed a chain complex. The homology of C is

H∗(C) =


Z/2, ∗ = 0

0, ∗ = 1

Z/2, ∗ = 2

0, ∗ ≥ 3.

The generator of H0(C) ∼= Z/2 is represented by the 0-cycle 1 ∈ Z/4. The generator of
H2(C) ∼= Z/2 is represented by the 2-cycle 2 ∈ Z/4.
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7.2 Chain maps

Definition 7.6. Let C and D be chain complexes. A chain map φ : C → D is a family of
group homomorphisms φn : Cn → Dn that commute with the boundary operators:

Cn

∂
��

φn
// Dn

∂
��

Cn−1

φn−1
// Dn−1

for all n ∈ Z.

Notation 7.7. Let Ch(Z) denote the category of chain complexes of abelian groups and let
Ch≥0(Z) denote the full subcategory of non-negatively graded chain complexes.

For a commutative ring R, let Ch(R) denote the category of chain complexes of R-modules.

Exercise 7.8. Show that a chain map φ : C → D sends cycles to cycles

Zn(C) → Zn(D)

and boundaries to boundaries
Bn(C) → Bn(D)

for each degree n ∈ Z. Deduce that a chain map induces a map on homology

Hn(φ) : Hn(C) → Hn(D),

also denoted φ∗. Check that this assignment makes homology into a functor from chain
complexes to abelian groups

Hn : Ch(Z) → Ab.

Exercise 7.9. Consider the chain map φ : C → D displayed in the diagram

degree
...

��

...

��

2 0

��

// 0

��

1 Z

q

��

1
// Z

q

��

0 Z/4
q
// Z/2

where q denotes the various quotient maps. Here C is the left column and D is the right
column.
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(a) Compute the homology groups H∗(C) and H∗(D).

(b) Compute the map induced on homology

φ∗ : Hn(C) → Hn(D)

in all degrees n.
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8 Chain homotopy

More information about chain homotopy can be found in [Hat02, §2.1], [May99, §12], [Wei94,
§1.4], [Bre97, §IV.15], and of course Wikipedia.

8.1 Chain homotopy

Definition 8.1. Let C and D be chain complexes with boundary morphisms denoted d, and
let φ, ψ : C → D be chain maps. A chain homotopy from φ to ψ is a sequence of group
homomorphisms

hn : Cn → Dn+1

satisfying
ψ − φ = dh+ hd .

That is, in degree n we have

ψn − φn = dDn+1hn + hn−1d
C
n . (3)

The chain map φ is null-homotopic if it is chain homotopic to 0, i.e.:

φ = dh+ hd.

A chain homotopy looks like this:

...

d

��

...

d

��

Cn+1

d

��

φn+1
//

ψn+1

//

hn+1

==

Dn+1

d

��

Cn

d

��

φn
//

ψn

//

hn

<<

Dn

d

��

Cn−1

d
��

φn−1
//

ψn−1

//

hn−1

<<

Dn−1

d
��

...

hn−2

==

...

Warning: The diagram does not commute! The chain homotopy equation (3) says that each
difference ψn − φn is built out of the two adjacent triangles forming a parallelogram.
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Exercise 8.2. Show that chain homotopic maps induce the same map on homology:

φ ≃ ψ =⇒ Hn(φ) = Hn(ψ) : Hn(C) → Hn(D)

for all n ∈ Z.

Proposition 8.3. Chain homotopy between chain maps C → D:

1. is an equivalence relation.

2. is compatible with composition: Given chain maps φ, φ′ : C → D and ψ, ψ′ : D → E,
we have:

φ ≃ φ′ and ψ ≃ ψ′ =⇒ ψ ◦ φ ≃ ψ′ ◦ φ′.

3. is compatible with addition: Given chain maps φ1, φ
′
1, φ2, φ

′
2 : C → D, we have:

φ1 ≃ φ′
1 and φ2 ≃ φ′

2 =⇒ φ1 + φ2 ≃ φ′
1 + φ′

2.

Proof. Exercise. For part (3), it suffices to show that the null-homotopic chain maps C → D
form a subgroup of HomCh(Z)(C,D).

Exercise 8.4. Let Z[n] denote the chain complex with Z concentrated in degree n:

degree n+ 1 n n− 1

Z[n] = · · · // 0 // Z // 0 // · · ·

(a) Show that a chain map from Z[n] picks out an n-cycle, i.e., there is a natural isomor-
phism of abelian groups

HomCh(Z)(Z[n], C) ∼= Zn(C).

(b) Show that two such chain maps z, z′ : Z[n] → C are chain homotopic if and only if they
pick out homologous cycles, i.e., there is a natural isomorphism of abelian groups

HomCh(Z)(Z[n], C)/ ≃ ∼= Hn(C).

Here the left-hand side denotes the homotopy classes of chain maps Z[n] → C.
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8.2 Chain homotopy equivalence

If you like homotopy equivalences between spaces, you’ll love chain homotopy equivalences
between chain complexes.

Definition 8.5. A chain map φ : C → D is a chain homotopy equivalence if there is a
chain map ψ : D → C satisfying {

ψ ◦ φ ≃ idC

φ ◦ ψ ≃ idD.

Such a chain map ψ : D → C is called a chain homotopy inverse of φ. The chain complexes
C and D are said to be chain homotopy equivalent, denoted C ≃ D.

Exercise 8.6. Show that a chain homotopy equivalence φ : C
≃−→ D induces isomorphisms

on homology:

Hn(φ) : Hn(C)
∼=−→ Hn(D)

for all n ∈ Z.

Definition 8.7. A chain complex C is contractible if it is chain homotopy equivalent to
the zero complex: C ≃ 0.

Equivalently, the identity of C is null-homotopic: idC ≃ 0.

Example 8.8. Recall that a chain complex is acyclic if it has trivial homology. Every
contractible chain complex is acyclic, but the converse does not hold:

C ≃ 0 +3 H∗(C) = 0.

×
\d

Example 8.9. Let α : A
∼=−→ B be an isomorphism of abelian groups. Let C be the chain

complex displayed here:

degree 2 1 0 −1

C = · · · // 0 // A
α

∼=
// B // 0.

Then C is contractible. A null-homotopy of idC is given by

hn =

{
α−1, n = 0

0, n ̸= 0
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as displayed in this diagram:

degree
...

��

...

��

2 0

��

//

@@

0

��

1 A

α

��

idA
//

>>

A

α

��

0 B

��

idB
//

α−1

??

B

��

−1 0

��

//

??

0

��

...

@@

...

Example 8.10. The chain complex:

degree 3 2 1 0 −1

C = · · · // 0 // Z/2
2
// Z/4

q
// // Z/2 // 0

is acyclic but not contractible. Here q : Z/4 ↠ Z/2 denotes the quotient map.

Likewise, the chain complex:

degree 3 2 1 0 −1

C = · · · // 0 // Z
n
// Z

q
// // Z/n // 0

is acyclic but not contractible.
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9 Exact sequences and homology

Throughout these notes, we work with modules over a commutative ring R. In the case
R = Z, we are dealing with abelian groups, i.e., Z-modules.

9.1 Exact sequences

Definition 9.1. A sequence of R-modules

· · · // An+1

fn+1
// An

fn
// An−1

// · · · (4)

is exact at An if the image of the previous map is the kernel of the next map:

im(fn+1) = ker(fn).

The sequence is called exact if it is exact at every position.

Remark 9.2. The inclusion im(fn+1) ⊆ ker(fn) says that two consecutive maps compose to
zero:

fn ◦ fn+1 = 0.

Thus an exact sequence is a special kind of chain complex, one whose homology is trivial:
H∗(A) = 0.

Example 9.3. 1. The sequence

0 // A // 0

is exact if and only if A = 0 holds.

2. The sequence

0 // A
f
// B

is exact if and only if f is a monomorphism, i.e., an injective map.

Note that exactness of the sequence means exactness at A, because that is the only
position where exactness makes sense. Exactness at B is not defined since the sequence
does not have a map out of B.

3. The sequence

B
g
// C // 0

is exact if and only if g is an epimorphism, i.e., a surjective map.

As before, exactness of the sequence means exactness at C, because that is the only
position where exactness makes sense. Exactness at B is not defined since the sequence
does not have a map into B.
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4. The sequence

0 // A
f
// B // 0

is exact if and only if f is an isomorphism.

Warning 9.4. When saying that the sequence

A
f
// B

g
// C

is exact, we (and most authors) mean exact at B, because that is the only position where
exactness makes sense, cf. Example 9.3.

Definition 9.5. A short exact sequence is an exact sequence of the form

0 // A
f
// B

g
// C // 0. (5)

More explicitly:

� Exactness at A says that f : A ↪→ B is injective.

� Exactness at C says that g : B ↠ C is surjective.

� Exactness at B says that the two maps are related by im(f) = ker(g).

Remark 9.6. A sequence that extends infinitely in both directions as in Equation (4) is called
a long exact sequence.

Example 9.7. 1. Any monomorphism of R-modules f : A ↪→ B extends to a short exact
sequence

0 // A �
� f

// B
q
// // coker(f) // 0.

Here q : B ↠ B/ im(f) = coker(f) denotes the quotient map.

2. Any epimorphism of R-modules g : B ↠ C extends to a short exact sequence

0 // ker(g) �
� inc // B

g
// // C // 0.

3. Since the maps appearing in a short exact sequence are of a special form, an arbitrary
map of R-modules f : A → B need not appear in a short exact sequence. The next
best thing is this: f extends to a 4-term exact sequence

0 // ker(f) �
� inc // A

f
// B

q
// // coker(f) // 0.

Note that this construction generalizes the previous two parts.
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9.2 The splitting lemma

Example 9.8. Given any R-modules A and C, the sequence

0 // A �
� incA // A⊕ C

projC
// // C // 0 (6)

is a short exact sequence. Here incA denotes the inclusion of the summand A and projC
denotes the projection onto the factor C.

Definition 9.9. A short exact sequence (5) is called split if it is isomorphic to one of the

form (6), i.e., there is an isomorphism φ : B
∼=−→ A⊕C making the following diagram commute:

0 // A � q

incA ""

f
// B

φ∼=
��

g
// C // 0.

A⊕ C

projC

<< <<

Proposition 9.10 (Splitting lemma). Given a short exact sequence (5), the following con-
ditions are equivalent.

1. The sequence is split.

2. The map f : A ↪→ B admits a retraction, i.e., a map r : B → A satisfying r ◦ f = idA,
as illustrated here:

0 // A
f
// B

r

^^

g
// C // 0.

3. The map g : B ↠ C admits a section, i.e., a map s : C → B satisfying g ◦ s = idC, as
illustrated here:

0 // A
f
// B

g
// C

s

__
// 0.

Proof. See [Hat02, §2.2.Split Exact Sequences] or [DF04, §10.5 Propositions 25, 26].

Example 9.11. Let n ≥ 2 be an integer.

1. The sequence of abelian groups

0 // Z
n
// Z

q
// // Z/n // 0

is a short exact sequence, where q : Z ↠ Z/n denotes the quotient map.
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2. The sequence of abelian groups

0 // Z/n
n
// Z/n2

q
// // Z/n // 0

is also a short exact sequence.

Neither of those two short exact sequences is split.
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9.3 Exact sequences of homology groups

Proposition 9.12 (Snake lemma). Consider a morphism of short exact sequences of R-modules,
i.e., a commutative diagram

0 // A1

α

��

f1
// B1

β
��

g1
// C1

γ

��

// 0

0 // A0

f0
// B0

g0
// C0

// 0

where the rows are exact. There is an induced 6-term exact sequence

0 // ker(α)
H1(f)

// ker(β)
H1(g)

// ker(γ)

δ

ww

coker(α)
H0(f)

// coker(β)
H0(g)

// coker(γ) // 0

where:

� The maps H1(f) and H1(g) are the restrictions of f and g to the kernels;

� The maps H0(f) and H0(g) are the maps induced on cokernels by f0 and g0;

� The connecting homomorphism δ : ker(γ) → coker(α) is defined as follows.

Given an element x ∈ ker(γ), pick a preimage of x under g1, apply β, then pick a (unique)
preimage under f0, then take the equivalence class modulo im(α). The formula is illustrated
schematically here:

x̃
_

β
��

x
g−1
1

oo

x
_

q

��

β(x̃)
(f0)−1

oo

q(x) = δ(x) ∈ coker(α).

Proof. Do it! It’s a fun diagram chase.

By mathematical law, I am obligated to refer you to the following explanation:

https://www.youtube.com/watch?v=aXBNPjrvx-I
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Example 9.13. Consider the diagram of abelian groups with exact rows

0 // 0

��

// Z

[−1
1 ]��

1
// Z //

��

0

0 // Z2
id
// Z2 // 0 // 0.

The middle map β = [ −1
1 ] : Z → Z2 has kernel 0 and cokernel

Z2/⟨
[
−1
1

]
⟩ ∼= Z

generated by the equivalence classes [e1] = [e2]. In this case, the 6-term exact sequence from
the snake lemma

0 // ker(α) // ker(β) // ker(γ)
δ
// coker(α) // coker(β) // coker(γ) // 0

(7)
becomes

0 // 0 // 0 // Z
δ=[−1

1 ]
// Z2

[ 1 1 ]
// Z // 0 // 0.

Example 9.14. Consider the diagram of abelian groups with exact rows

0 // Z

2

��

4
// Z

1

��

q
// // Z/4 //

q

��

0

0 // Z
2
// Z

q
// // Z/2 // 0

The left map 2: Z → Z is injective with cokernel Z/2. The middle map 1: Z → Z is an
isomorphism. The right map q : Z/4 → Z/2 is surjective with kernel ⟨2⟩ ∼= Z/2. The 6-term
exact sequence (7) becomes

0 // 0 // 0 // Z/2
δ=1
// Z/2 // 0 // 0 // 0.

In this case, exactness of the sequence forces δ = 1. Nevertheless, we can compute the
connecting homomorphism δ explicitly using the formula. It is given on the generator 2 ∈
ker(Z/4 q−→ Z/2) by δ(2) = 1, as illustrated schematically here:

2
_

1
��

2
q−1

oo

1
_

q
��

2
2−1

oo

1 = δ(x) ∈ coker(Z 2−→ Z) = Z/2.
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Proposition 9.15. For any short exact sequence of chain complexes

0 // C
f
// D

g
// E // 0

there is a natural long exact sequence of homology groups

· · · // Hn(C)
f∗
// Hn(D)

g∗
// Hn(E)

δ
// Hn−1(C) // · · ·

Proof. Similar diagram chase. See [Hat02, Theorem 2.16].

Remark 9.16. The snake lemma (Proposition 9.12) is a special case of Proposition 9.15, where
the three chain complexes A, B, and C are concentrated in degrees 0 and 1. Indeed, the
homology groups of such a chain complex A are:

H1(A) = Z1(A)/B1(A) = Z1(A) = ker(α)

H0(A) = Z0(A)/B0(A) = A0/ im(α) = coker(α).

The notation in Proposition 9.12 was chosen for that reason.
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10 Cellular homology with coefficients

Given a CW-complex X, we know that its cellular chain complex CCW
∗ (X) and singular chain

complex C∗(X) have isomorphic homology HCW
∗ (X) ∼= H∗(X). We want to generalize this

statement to homology with coefficients. Along the way, we discuss some related material
from homological algebra.

10.1 Direct approach

Proposition 10.1. Let X be a CW-complex and G an abelian group. Then there is an
isomorphism of homology with coefficients HCW

∗ (X;G) ∼= H∗(X;G). Moreover, this isomor-
phism is natural with respect to cellular maps X → Y and with respect to G (and all group
homomorphisms).

Proof. Recall that the isomorphism HCW
n (X) ∼= Hn(X) was obtained by showing that the

two surjections illustrated in the diagram

Hn(Xn)

yyyy $$ $$

HCW
n (X) Hn(X)

have the same kernel. This was a consequence of the long exact sequences of the pairs
(Xk, Xk−1), and the fact that the relative homology H∗(Xk, Xk−1) is concentrated in degree
k. Homology with coefficients also has a (natural) long exact sequence associated to any
pair, and the relative homology groups

Hi(Xk, Xk−1;G) ∼= H̃i(Xk/Xk−1;G)

∼= H̃i(
∨
k-cells

Sk;G)

∼=
⊕
k-cells

H̃i(S
k;G)

∼=

{⊕
k-cellsG if i = k

0 if i ̸= k

are also concentrated in degree k. Therefore, the proof for the case G = Z works here as
well.

The naturality statements follow from naturality of the diagram

Hn(Xn;G)

wwww && &&

HCW
n (X;G) Hn(X;G)
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with respect to cellular maps X → Y , and with respect to group homomorphisms G →
G′.
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10.2 Approach using chain homotopy

Proposition 10.2. Let C∗ be a (possibly unbounded) chain complex of free abelian groups.
Then C∗ is quasi-isomorphic to its homology, in fact via a quasi-isomorphism C∗

∼−→ H∗(C∗)
(as opposed to a zig-zag).

Proof. Consider1 the short exact sequence

0 // Zn // Cn
d
// Bn−1

// 0

which is split, since Bn−1 is a free abelian group, being a subgroup of the free abelian group
Cn−1. Choosing a splitting Cn ∼= Zn ⊕ Bn−1 for each n ∈ Z, the chain complex C∗ is
isomorphic (though not naturally) to the chain complex illustrated here:

...

��

degree

Zn+1 ⊕Bn

��

n+ 1

Zn ⊕Bn−1

��

n

Zn−1 ⊕Bn−2

��

n− 1

...

where the differential dn is given by the inclusion Bn−1 ↪→ Zn−1. Hence, there is an isomor-

phism of chain complexes C∗ ∼=
⊕

n∈ZC
(n)
∗ where C

(n)
∗ denotes the tiny chain complex

0

��

Bn
� _

��

n+ 1

Zn

��

n

0

1Credit to Tyler Lawson for this explanation:
http://mathoverflow.net/questions/10974/does-homology-detect-chain-homotopy-equivalence
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concentrated in degrees n and n + 1. Consider Hn(C∗) as a chain complex concentrated in

degree n. The map φn : C
(n)
∗ → Hn(C∗) given by the quotient map Zn ↠ Hn(C∗) = Zn/Bn

in degree n is a chain map which is moreover a quasi-isomorphism. These maps assemble
into a quasi-isomorphism⊕

n∈Z

φn :
⊕
n∈Z

C(n)
∗

∼−→
⊕
n∈Z

Hn(C∗) = H∗(C∗).

as claimed.

Recall the following fact from homological algebra.

Theorem 10.3 (Comparison theorem for projective resolutions). Let A be an abelian cat-
egory, and let M be an object of A, viewed as a chain complex concentrated in degree 0.
Let P∗ be a (non-negatively graded) chain complex of projective objects, with a chain map
f : P∗ → M , and let D∗ a (non-negatively graded) chain complex with a quasi-isomorphism
w : D∗

∼−→M . Then f admits a lift as in the diagram

D∗

∼ w

��

P∗
f

//

f̃ >>

M

which is unique up to chain homotopy.

Proof. [Wei94, Theorem 2.2.6].

Example 10.4. In the category A = Ab of abelian groups, an object is projective if and
only if it is a free abelian group.

Proposition 10.5. Let C∗ and D∗ be (possibly unbounded) chain complexes of free abelian
groups.

1. If C∗ and D∗ have isomorphic homology H∗(C∗) ∼= H∗(D∗), then they are chain homo-
topy equivalent: C∗ ≃ D∗.

2. If f : C∗
∼−→ D∗ is a quasi-isomorphism, then f is a chain homotopy equivalence.

Proof. 1. Consider decompositions C∗ ∼=
⊕

n∈ZC
(n)
∗ and D∗ ∼=

⊕
n∈ZD

(n)
∗ as in the proof of

Proposition 10.2. For each n ∈ Z, consider the diagram of chain complexes

D
(n)
∗

∼ ψn

��

C
(n)
∗

φn

∼
//

φ̃n

88

Hn(C∗) ∼= Hn(D∗)
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where a lift φ̃n : C
(n)
∗ → D

(n)
∗ exists, by Theorem 10.3. Reversing the roles of C∗ and D∗,

there also exists a lift ψ̃n : D
(n)
∗ → C

(n)
∗ . Uniqueness of lifts up to chain homotopy shows that

ψ̃n is chain homotopy inverse to φ̃n. Therefore, the chain map⊕
n∈Z

φ̃n :
⊕
n∈Z

C(n)
∗

≃−→
⊕
n∈Z

D(n)
∗

is a chain homotopy equivalence, with chain homotopy inverse
⊕

n∈Z ψ̃n.

2. For each n ∈ Z, consider the diagram of chain complexes

D
(n)
∗

∼
��

ψn
// C

(n)
∗

∼
��

Hn(D∗)
Hn(f)−1

∼=
// Hn(C∗)

where there exists a lift ψn : D
(n)
∗ → C

(n)
∗ (unique up to chain homotopy), by Theorem 10.3.

These chain maps define a chain map ψ : D∗ → C∗ via the diagram

⊕
n∈ZD

(n)
∗

∼=

⊕
n∈Z ψn

//
⊕

n∈ZC
(n)
∗

∼=

D∗ //
ψ

// C∗.

One readily checks that the restriction f |
C

(n)
∗

: C
(n)
∗ → D∗ is chain homotopic to the composite

C
(n)
∗

f |
C
(n)
∗
// D∗

proj
// // D

(n)
∗
� �

inc
// D∗

and that ψ : D∗ → C∗ is chain homotopy inverse to f : C∗ → D∗.

Proposition 10.6. The relation of chain homotopy is compatible with the tensor product of
chain complexes. In other words, if the chain maps φ, ψ : C∗ → D∗ are chain homotopic and
φ′, ψ′ : C ′

∗ → D′
∗ are chain homotopic, then the chain maps

φ⊗ φ′, ψ ⊗ ψ′ : C∗ ⊗ C ′
∗ → D∗ ⊗D′

∗

are chain homotopic.
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Proof. Using the factorizations illustrated in the diagram

D∗ ⊗ C ′
∗

idD∗⊗φ′

%%

C∗ ⊗ C ′
∗

φ⊗idC′∗
99

idC∗⊗φ′ %%

φ⊗φ′

// D∗ ⊗D′
∗

C∗ ⊗D′
∗

φ⊗idD′∗

99

it suffices to show that φ ⊗ idC′
∗ is chain homotopic to ψ ⊗ idC′

∗ . Let h : Cn → Dn+1 be a
chain homotopy from φ to ψ, i.e., such that the equation ψ − φ = dh+ hd holds.

Let us check that h⊗ idC′
∗ : (C∗ ⊗ C ′

∗)n → (D∗ ⊗ C ′
∗)n+1 is a chain homotopy from φ⊗ idC′

∗

to ψ ⊗ idC′
∗ . For any xi ∈ Ci and x

′
j ∈ C ′

j, with i+ j = n, we have

d(h⊗ idC′
∗)(xi ⊗ x′j) + (h⊗ idC′

∗)d(xi ⊗ x′j)

= d
(
hxi ⊗ x′j

)
+ (h⊗ idC′

∗)
(
dxi ⊗ x′j + (−1)|xi|xi ⊗ dx′j

)
= dhxi ⊗ x′j + (−1)|hxi|hxi ⊗ dx′j + hdxi ⊗ x′j + (−1)|xi|hxi ⊗ dx′j

= dhxi ⊗ x′j + (−1)i+1hxi ⊗ dx′j + hdxi ⊗ x′j + (−1)ihxi ⊗ dx′j

= dhxi ⊗ x′j + hdxi ⊗ x′j

= (dh+ hd)xi ⊗ x′j

= (ψ − φ)xi ⊗ x′j

= ψxi ⊗ x′j − φxi ⊗ x′j.

Therefore the equation

d(h⊗ idC′
∗) + (h⊗ idC′

∗)d = ψ ⊗ idC′
∗ − φ⊗ idC′

∗

holds.

Corollary 10.7. If φ : C∗
≃−→ D∗ and φ′ : C ′

∗
≃−→ D′

∗ are chain homotopy equivalences, then
their tensor product

φ⊗ φ′ : C∗ ⊗ C ′
∗

≃−→ D∗ ⊗D′
∗

is a chain homotopy equivalence.

Proof. Let α : D∗ → C∗ and α
′ : D′

∗ → C ′
∗ be chain homotopy inverses of φ and φ′ respectively.

Then
α⊗ α′ : D∗ ⊗D′

∗ → C∗ ⊗ C ′
∗

is a chain homotopy inverse of φ⊗ φ′.
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The following proposition says that “any chain complex of free abelian groups will do”, as
long as it has the correct homology (with coefficients in Z).

Proposition 10.8. Let X be a space and C∗ a chain complex of free abelian groups whose
homology is isomorphic to the singular homology of X, i.e., Hn(C∗) ∼= Hn(X) holds for all n.
Then for any abelian group G and any n, there are isomorphisms Hn(C∗ ⊗G) ∼= Hn(X;G).

Proof. The assumption is that the homology C∗ is isomorphic to the homology of the singular
chain complex C∗(X). By Proposition 10.5, there is a chain homotopy equivalence φ : C∗

≃−→
C∗(X). By Corollary 10.7, the chain map

φ⊗ idG : C∗ ⊗G
≃−→ C∗(X)⊗G

is a chain homotopy equivalence, in particular a quasi-isomorphism.

Example 10.9. Let X be a ∆-complex, and C∆
∗ (X) the associated simplicial chain complex.

Then there are isomorphisms H∆
n (X;G) ∼= Hn(X;G). Naturality with respect to ∆-maps

X → Y does not follow directly from the first part of Proposition 10.8.

However, recall that the isomorphism H∆
n (X) ∼= Hn(X) is induced at the chain level by a

quasi-isomorphism θ : C∆
∗ (X)

∼−→ C∗(X), which is natural with respect to ∆-maps X → Y .
By the second part of Proposition 10.5, θ is in fact a chain homotopy equivalence. By
Corollary 10.7, the chain map θ ⊗ idG : C

∆
∗ (X) ⊗ G

≃−→ C∗(X) ⊗ G is also a chain homo-
topy equivalence, and in particular induces isomorphisms H∆

n (X;G) ∼= Hn(X;G). These
isomorphisms are natural with respect to ∆-maps X → Y , since the chain map θ is.

Example 10.10. Let X be a CW-complex, and CCW
∗ (X) the associated cellular chain com-

plex. Then there are isomorphisms HCW
n (X;G) ∼= Hn(X;G). Naturality with respect to

cellular maps X → Y does not follow from Proposition 10.8.

©2025 Martin Frankland All Rights Reserved 55



University of Regina MATH 442/842 – Algebraic Topology

10.3 Approach using the universal coefficient theorem

Recall the following fact.

Theorem 10.11 (Universal coefficient theorem). Let C∗ be a chain complex of free abelian
groups, and G an abelian group. Then for each n ∈ Z, there is a short exact sequence

0 // Hn(C∗)⊗G
×
// Hn(C∗ ⊗G) // Tor (Hn−1(C∗), G) // 0

which is natural in C∗ and G. Moreover, the sequence is split, though the splitting is not
natural.

Here, the map × : Hn(C∗) ⊗ G → Hn(C∗ ⊗ G) sends [α] ⊗ g to the homology class [α ⊗ g].
The functor Tor denotes TorZ1 , just like our tensor product ⊗ denotes the tensor product ⊗Z
over the integers.

Corollary 10.12. If f : C∗
∼−→ D∗ is a quasi-isomorphism between chain complexes of free

abelian groups, then the map f ⊗ idG : C∗ ⊗G→ D∗ ⊗G is a quasi-isomorphism.

Proof. By the universal coefficient theorem, for each n ∈ Z, f induces a commutative diagram

0 // Hn(C∗)⊗G

Hn(f)⊗G ∼=
��

×
// Hn(C∗ ⊗G)

Hn(f⊗idG) ∴∼=
��

// Tor (Hn−1(C∗), G)

Tor(Hn−1(f),idG) ∼=
��

// 0

0 // Hn(D∗)⊗G
×
// Hn(D∗ ⊗G) // Tor (Hn−1(D∗), G) // 0

where the rows are exact. By assumption, Hn(f) and Hn−1(f) are isomorphisms, thus so are
the downward maps Hn(f)⊗G and Tor (Hn−1(f), idG). By the 5-lemma, the downward map
in the middle Hn(f ⊗ idG) is also an isomorphism.

Example 10.13. Corollary 10.12 provides an alternate proof that the chain map

θ ⊗ idG : C
∆
∗ (X)⊗G

∼−→ C∗(X)⊗G

is a quasi-isomorphism, as discussed in Example 10.9.

What if an isomorphism in homology does not come from a chain map, as in the cellular
homology theorem? Then we can still argue as follows.

Proposition 10.14. If two (possibly unbounded) chain complexes of free abelian groups C∗
and D∗ have isomorphic homology H∗(C∗) ∼= H∗(D∗), then the chain complexes C∗ ⊗G and
D∗ ⊗G have isomorphic homology.

Proof. Using the splitting in the universal coefficient theorem, we have (non-natural) isomor-
phisms:

Hn(C∗ ⊗G) ∼= Hn(C∗)⊗G⊕ Tor (Hn−1(C∗), G)

∼= Hn(D∗)⊗G⊕ Tor (Hn−1(D∗), G)

∼= Hn(D∗ ⊗G).
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Alternate proof. By Proposition 10.5, there exists a quasi-isomorphism φ : C∗
∼−→ D∗ (which is

in fact a chain homotopy equivalence). By Corollary 10.12, the chain map φ⊗ idG : C∗⊗G
∼−→

D∗ ⊗G is also a quasi-isomorphism.

Remark 10.15. Section 10.3 is essentially doing the same thing as Section 10.2, from a more
computational perspective. A key step for proving the universal coefficient theorem is to
choose splittings of the short exact sequences

0 // Zn // Cn
d
// Bn−1

// 0

like we did in the proof of Proposition 10.2.
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A Categories and functors

These notes describe some basic category theory, focusing on examples of interest for algebraic
topology. Some good general references on category theory include [ML98], [Rie17], and
[Lei14].

A.1 Categories

Definition A.1. A category C consists of the following data:

1. A collection of objects Ob(C).

2. For all objects X and Y in C, a set C(X, Y ) of morphisms from X to Y .

3. For all objects X, Y , and Z in C, a composition operation

C(Y, Z)× C(X, Y )
◦
// C(X,Z).

The composition of a pair of morphisms (g, f) is denoted g ◦ f .

4. For all object X in C, an identity morphism 1X ∈ C(X,X).

The following conditions are required to hold:

� Composition is associative, that is, for all morphisms f ∈ C(W,X), g ∈ C(X, Y ), and
h ∈ C(Y, Z), the equation

(h ◦ g) ◦ f = h ◦ (g ◦ f)
holds in C(W,Z).

� Identity morphisms are two-sided units for composition, that is, for all f ∈ C(X, Y ),
the equations

1Y ◦ f = f = f ◦ 1X
hold in C(X, Y ).

Remark A.2. Here are some remarks about the terminology and notation.

1. The set of morphisms C(X, Y ) is also denoted HomC(X, Y ) and called the hom-set
from X to Y .

2. The identity morphism of X is also denoted idX .

3. The composition symbol ◦ is sometimes omitted, writing gf instead of g ◦ f .

4. A morphism f ∈ C(X, Y ) is often denoted f : X → Y and sometimes called an arrow
or a map. The object X is called the source (or domain) of f and Y is called the
target (or codomain) of f .
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5. The composition gf : X → Z of morphisms f : X → Y and g : Y → Z is also displayed
in a diagram:

X
f
// Y

g
// Z.

6. A diagram commutes if all compositions with the same source and target are equal.
For example, the following diagram commutes if and only if the equation φ = gf holds:

Y
g

  

X

f
>>

φ
// Z.

The following diagram commutes if and only if the equation gi = jf holds:

A

i
��

f
// B

j
��

X
g
// Y.

7. Diagrams are understood to be commutative unless otherwise noted. Drawing a non-
commutative diagram without explanation is misleading.

Example A.3. 1. Set denotes the category of sets and functions f : X → Y . Composi-
tion is the usual composition of functions, namely (g ◦ f)(x) = g(f(x)). The identity
1X : X → X is the usual identity function, 1X(x) = x.

2. Gp denotes the category of groups and group homomorphisms f : G→ H. Here again,
composition is the usual composition.

3. Ab denotes the category of abelian groups and group homomorphisms f : A→ B.

4. Let k be a field. Vectk denotes the category of k-vector spaces and k-linear maps
f : V →W .

5. Top denotes the category of topological spaces and continuous maps f : X → Y .

6. Set∗ denotes the category of pointed sets and pointed functions f : (X, x0) → (Y, y0),
that is, functions f : X → Y satisfying f(x0) = y0.

7. Top∗ denotes the category of pointed topological spaces and pointed continuous maps
f : (X, x0) → (Y, y0).

8. Ho(Top) denotes the homotopy category2 of spaces. Objects are topological spaces,
and morphisms are homotopy classes [f ] : X → Y of continuous maps.

2This category Ho(Top) is sometimes called the naive homotopy category of spaces. In the literature,
the term “homotopy category” of spaces sometimes refers to the category of CW complexes and homotopy
classes of continuous maps between them.
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9. Ho(Top∗) denotes the homotopy category of pointed spaces. Objects are pointed topo-
logical spaces, and morphisms are pointed homotopy classes [f ] : (X, x0) → (Y, y0) of
pointed continuous maps.

Definition A.4. A category is called small if the collection of objects is a set.

Remark A.5. 1. None of the categories listed in Example A.3 are small. For instance, the
category Set is not small, since there is no “set of all sets”, but rather a proper class
Ob(Set) of all sets.

2. Some authors use a more general definition of category that allows for a proper class
of morphisms C(X, Y ), calling a category locally small if all the collections C(X, Y ) are
sets.
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A.2 Isomorphisms

Definition A.6. A morphism f : X → Y is an isomorphism if it is invertible, i.e., there
exists a morphism g : Y → X satisfying gf = 1X and fg = 1Y .

Such a morphism g is called the inverse of f and is denoted g = f−1. The fact that f is an

isomorphism is sometimes denoted f : X
∼=−→ Y .

Objects X and Y are isomorphic if there exists an isomorphism between them. This is
often denoted X ∼= Y .

Example A.7. 1. In Set, the isomorphisms are the bijective functions.

2. Likewise in Gp, Ab, Vectk, and Set∗, a morphism f : X → Y is an isomorphism if
and only if it is bijective. The inverse f−1 : Y → X is then the inverse function, which
automatically preserves the given algebraic structure.

3. In Top, the isomorphisms are the homeomorphisms (by definition). Those are the
continuous bijections f : X → Y whose inverse f−1 : Y → X is also bijective. Not
every continuous bijection is a homeomorphism.

4. In Ho(Top), the isomorphisms are the homotopy equivalences (more precisely, the
homotopy classes of homotopy equivalences). Two spaces X and Y are isomorphic in
Ho(Top) if and only if they are homotopy equivalent.

Exercise A.8. Let f : X → Y be a morphism.

1. Let g : Y → X be a left inverse of f and h : Y → X a right inverse of f , i.e., the
equations gf = 1X and fh = 1Y hold. Show that g = h holds.

This shows in particular that the inverse f−1 (if it exists) is uniquely determined by f .

2. Let g, h : Y → X be morphisms such that gf : X → X and fh : Y → Y are isomor-
phisms. Show that f is an isomorphism.

Definition A.9. A groupoid is a category in which every morphism is an isomorphism.

Example A.10. A groupoid with one object is the same as a group.

Example A.11. The fundamental groupoid of a topological space X is the category
Π1(X) defined as follows. The objects of Π1(X) are the elements of X, i.e., the points in the
space. For x, y ∈ X, the morphisms in Π1(X) from x to y are the homotopy classes [γ] of
paths from x to y, that is, γ : I → X satisfying γ(0) = x and γ(1) = y.

Composition in Π1(X) is the concatenation of paths [α]• [β] = [α•β]. The identity of x ∈ X
is the homotopy class [cx] of the constant path cx : I → X.

The fundamental group π1(X, x0) based at a point x0 ∈ X is the automorphism group

π1(X, x0) = Π1(X)(x0, x0).

Invertibility of a morphism was defined by two conditions, which we now treat separately.
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Definition A.12. Let i : A → X and r : X → A be morphisms satisfying ri = 1A, as
illustrated in this diagram:

A

1A

;;

i
// X

r
// A.

Then r is called a retraction of i, and i is called a section of r. The object A is called a
retract of X.

In other words, a section is a morphism that has a left inverse. A section is also called a
split monomorphism. A retraction is a morphism that has a right inverse. A retraction is
also called a split epimorphism.

Example A.13. In Set, a function f : X → Y admits a section if and only if f is surjective.
This statement is equivalent to the axiom of choice.

A function f : X → Y admits a retraction if and only if f is injective. (This statement does
not rely on the axiom of choice.)

Example A.14. In Ab (and in Gp), every split epimorphism is surjective, but not every
surjective morphism f : A↠ B admits a section. For instance:

� The quotient map Z ↠ Z/n admits no section, since the only map from Z/n to Z is
the trivial map 0: Z/n→ Z.

� The quotient map Z/4 ↠ Z/2 does not admit a section.

Likewise, every split monomorphism is injective, but not every injective morphism f : A ↪→ B
admits a retraction. For instance:

� The map n : Z ↪→ Z (multiplication by n) admits no retraction.

� The non-trivial map Z/2 ↪→ Z/4 (multiplication by 2) admits no retraction.

Example A.15. In Vectk, every surjective morphism f : V ↠ W admits a section. Every
injective morphism f : V ↪→ W admits a retraction.

Example A.16. In Top, every split epimorphism is surjective, but not every surjective map
f : X ↠ Y admits a section. For instance:

1. The quotient map q : Dn ↠ Dn/∂Dn ∼= Sn admits no section.

2. The winding map p : R ↠ S1 admits no section. Recall that p is defined by the formula:

p(t) = (cos(2πt), sin(2πt)) ∈ S1.

3. The continuous bijection p|[0,1) : [0, 1) → S1 admits no section, since a section could
only be the inverse function S1 → [0, 1), which is not continuous.
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Example A.17. In Top, every split monomorphism i : A ↪→ X is an embedding, but not
every embedding admits a retraction. For instance:

1. The boundary of the disk Sn−1 = ∂Dn ↪→ Dn is not a retract of Dn.

2. The boundary of the Möbius strip ∂M ↪→M is not a retract of M .

3. The 1-skeleton of the torus S1 ∨ S1 ↪→ T 2 is not a retract of T 2.

Example A.18. Recall that a retract of a contractible space is contractible (§0 Exercise 9).
Also, every finite CW complex can be embedded into Euclidean space [Hat02, Corollary A.10].
Assuming that the CW complex X is not contractible, such an embedding i : X ↪→ RN

does not admit a retraction. How sad would topology be if all finite CW complexes were
contractible.

Example A.19. Here are examples of retracts in Top.

1. Let X be a space and x0 ∈ X. Then the point {x0} ↪→ X is a retract of X, with
retraction (necessarily) the constant map X → {x0}.

2. Let X and Y be (non-empty) spaces. We can view X and Y as retracts of the product
X × Y . If we pick a point y0 ∈ Y , the map

X
(1X ,y0)

// X × Y

admits a retraction, for instance the projection pX : X × Y → X.

3. If X and Y are pointed, then we can also view X and Y as retracts of the wedge sum
X ∨ Y . The inclusion X ↪→ X ∨ Y admits a retraction, for instance the pointed map
rX : X ∨ Y ↠ X with restrictions {

rX |X = 1X

rX |Y = x0,

where x0 ∈ X denotes the basepoint.
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A.3 Functors

Definition A.20. Let C and D be categories. A functor F : C → D from C to D consists
of the following data:

1. A function F : Ob(C) → Ob(D).

2. For all objects X and Y in C, a function

F : C(X, Y ) → D(F (X), F (Y )).

In other words, the functor F assigns to each morphism f : X → Y in C a morphism
F (f) : F (X) → F (Y ) in D.

The following conditions are required to hold:

� F preserves composition. That is, for all morphisms f : X → Y and g : Y → Z in C,
the equation

F (g ◦ f) = F (g) ◦ F (f)

holds in D(F (X), F (Z)).

� F preserves identity morphisms. That is, for all object X in C, the equation

F (1X) = 1F (X)

holds in D(F (X), F (X)).

Example A.21. 1. To a topological space (X, T ), we can assign the underlying set X.
This yields the forgetful functor U : Top → Set, which forgets the topology.

2. We can endow a set X with the discrete topology, where every subset A ⊆ X is open.
This yields a functor Dis : Set → Top.

3. Likewise, we can endow a set X with the indiscrete topology, where ∅ and X are the
only open subsets. This yields another functor Ind: Set → Top.

4. To a topological space X, we can assign the set Conn(X) of its connected components.
This yields a functor Conn: Top → Set; see the notes “Connected components as a
homotopy invariant” under January 18.

5. Likewise, we can assign to X the set π0(X) of its path components. This yields a
functor π0 : Top → Set; see Homework 1 Problem 3.

6. To a pointed set (X, x0), we can assign its underlying set X. This yields the forgetful
functor U : Set∗ → Set, which forgets the basepoint. The forgetful functor U : Top∗ →
Top is defined similarly.
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7. For a space X, consider the pointed space X+ := X ⨿ {∗}, with a disjoint basepoint
∗ ∈ X+. This yields a functor (−)+ : Top → Top∗. The functor (−)+ : Set → Set∗ is
defined similarly.

8. The fundamental group yields a functor π1 : Top∗ → Gp, which assigns to a pointed
space (X, x0) its fundamental group π1(X, x0) based at x0.

9. The functor Cyl : Top → Top assigns to a space X the cylinder on X, defined by
Cyl(X) := X × I.

10. By construction of the homotopy category, there is a quotient functor

q : Top → Ho(Top),

which identifies homotopic maps. More precisely, for all space X, we have q(X) = X,
and for all spaces X and Y , the function

Top(X, Y )
q
// Top(X, Y )/ ≃homotopy = Ho(Top)(X, Y )

is the canonical quotient function.

Remark A.22. In most of the examples, we only described the effect of the functor on objects.
The effect on morphisms is straightforward.

Remark A.23. The homotopy invariance of the functors Conn: Top → Set, π0 : Top → Set,
and π1 : Top∗ → Gp can be interpreted as follows. Each of these functors induces a functor
from the respective homotopy category:

Conn: Ho(Top) → Set

π0 : Ho(Top) → Set

π1 : Ho(Top∗) → Gp.

In contrast, the forgetful functor U : Top → Set is not homotopy invariant and hence
does not induce a functor Ho(Top) → Set. The underlying function of a homotopy class
[f ] : X → Y is not well-defined!

Here are a few examples from algebra.

Example A.24. 1. To a vector space (V,+, ·) over a field k, one can assign the underlying
abelian group (V,+). This yields a forgetful functor U : Vectk → Ab, which forgets
the scalar multiplication.

2. An abelian group A can be viewed in particular as a group. This defines a functor
ι : Ab → Gp, the inclusion of a subcategory.

3. Let G be a group and [G,G] ≤ G the subgroup generated by commutators. The
quotient group Gab := G/[G,G] is called the abelianization of G. This yields a
functor (−)ab : Gp → Ab.
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4. The free group F gp(S) on a set S yields a functor F gp : Set → Gp.

5. Similarly, the free abelian group on a set S

F ab(S) ∼=
⊕
s∈S

Z

yields a functor F ab : Set → Ab.

Exercise A.25. Let S be a set. Show that there is a natural isomorphism

(F gp(S))ab
∼= F ab(S).

In other words, the abelianization of the free group on S is the free abelian group on S.

Exercise A.26. Show that any functor preserves isomorphisms, sections, and retractions.
That is, if f : X → Y is an isomorphism (resp. a section, a retraction), then so is F (f) : F (X) →
F (Y ).

In particular, if A is a retract of X, then F (A) is a retract of F (X).

We have already used that trick. Using the functor π1 : Top∗ → Gp, we showed that the
boundary ∂D2 = S1 of the disk is not a retract of D2, and that the boundary ∂M of the
Möbius strip is not a retract of M .
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B Products and coproducts

B.1 Products

Definition B.1. Let X and Y be objects of a category C. A product of X and Y is an
object P together with morphisms pX : P → X and pY : P → Y that satisfies the following
(universal) property: For all object W with morphisms fX : W → X and fY : W → Y , there
exists a unique morphism

f : W → P

satisfying pXf = fX and pY f = fY , as illustrated in the diagram:

W

fX

��

∃! f
��

fY

��

X × Y

pX{{ pY ##
X Y.

The objects X and Y are called the factors of the product, and the morphism pX : P →
X the projection onto the factor X. A product is usually denoted X × Y , in view of
Lemma B.2. We denote f = (fX , fY ) : W → X × Y the morphism determined by the
morphisms fX : W → X and fY : W → Y . The morphisms fX and fY are sometimes called
the components or coordinates of the morphism f : W → X × Y .

Lemma B.2. The product is unique up to unique isomorphism. That is, if P ′ is another
product of X and Y with projections p′X : P ′ → X and p′Y : P

′ → Y , then there exists a unique

isomorphism φ : P
∼=−→ P ′ satisfying p′Xφ = pX and p′Y φ = pY , as illustrated in this diagram:

P

pX

''

pY

**

φ

∼=
// P ′

p′Y

tt

p′X

ww

Y

X.

Proof. Once in their lifetime, every person should solve this exercise, which is very satisfying.

Remark B.3. There are many isomorphisms P
∼=−→ P ′. Uniqueness is achieved if we require

compatibility with the projections pX , pY , p
′
X , p

′
Y . The projections are part of the structure

of a product.
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Remark B.4. The argument in the proof of Lemma B.2 holds more generally for any con-
struction that satisfies a universal property, for instance coproducts, pullbacks, pushouts, etc.
Such constructions are unique up to unique isomorphism.

The notion of product can be generalized to an arbitrary family of objects.

Definition B.5. Let {Xi}i∈I be a family of objects in a category C, where I denotes an
indexing set. A product of the family {Xi}i∈I is an object

∏
i∈I Xi together with a morphism

pi :
∏

j∈I Xj → Xi for each i ∈ I that satisfies the following (universal) property: For all
object W with a morphism fi : W → Xi for each i ∈ I, there exists a unique morphism

f : W →
∏
i∈I

Xi

satisfying pif = fi for each i ∈ I, as illustrated in the diagram:

W

fi ##

f
//
∏

j∈I Xj

pi

��

Xi.

In slogan form: “A morphism into a product is the same as a morphism into each factor.”

Definition B.6. An object Z in a category C is terminal if for all object X, there is a
unique morphism X → Z.

A terminal object is sometimes denoted ∗ or 1.

Example B.7. A terminal object is a product of the empty family of objects, that is, a
product of no objects. In particular, a terminal object (if it exists) is unique up to unique
isomorphism.

Example B.8. In Set, the product is the usual Cartesian product of sets
∏

i∈I Xi. Any
singleton {x} is terminal.

Likewise in Set∗, the product is the Cartesian product, with componentwise basepoint. That
is, the product

∏
i∈I(Xi, xi) in Set∗ is the pointed set

∏
i∈I

(Xi, xi) =

(∏
i∈I

Xi, (xi)i∈I

)
.

Example B.9. In Top, the product of spaces is the Cartesian product of the underlying
sets endowed with the product topology. Any one-point space {x} is terminal.

In Top∗, the product is as in Top, with componentwise basepoint.

Exercise B.10. Recall that the Cartesian product
∏

i∈I Xi of spaces also admits the box
topology, which has as a base the collection of all “open boxes”:

Bbox = {
∏
i∈I

Ui | Ui ⊆ Xi is open}.
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Now let {Xi}i∈I be a family of non-trivial topological spaces (trivial topology is a synonym
for indiscrete topology).

(a) Show that the box topology on
∏

i∈I Xi is strictly finer than the product topology, that
is, the inclusion of topologies Tprod ⊂ Tbox is strict.

(b) Show explicitly that
(∏

i∈I Xi, Tbox

)
together with the projections pi :

∏
j∈I Xj → Xi is

not a product of the spaces Xi in Top. In other words, this data does not satisfy the
universal property of a product.

Exercise B.11. Show that the product
∏

i∈I Xi in the homotopy category Ho(Top) is as in
Top.

Example B.12. In Gp, the product of a family of groups {Gi}i∈I is the Cartesian product∏
i∈I Gi with componentwise multiplication. The trivial group 0 is terminal.

The same description of the product holds in Ab. Likewise in Vectk, the product of a family
of vector spaces {Vi}i∈I is the Cartesian product

∏
i∈I Vi with componentwise addition and

scalar multiplication.
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B.2 Coproducts

Coproduct is the notion dual to the notion of product. Dual means that we reverse all the
arrows.

Definition B.13. Let X and Y be objects in a category C. A coproduct of X and Y is an
object C together with morphisms ιX : X → C and ιY : Y → C that satisfies the following
(universal) property: For all object Z with morphisms fX : X → Z and fY : Y → Z, there
exists a unique morphism

f : C → Z

satisfying fιX = fX and fιY = fY , as illustrated in the diagram:

X
ιX

  

fX

((

Y
ιY

~~

fY

ww

C

∃! f
��

Z.

The coproduct is sometimes called the sum. A coproduct is often denoted X⨿Y . The objects
X and Y are called the summands of the coproduct, and the morphism ιX : X → X ⨿ Y is
called the inclusion of the summand X.

The notion of coproduct can be generalized to an arbitrary family of objects.

Definition B.14. Let {Xi}i∈I be a family of objects in a category C, where I denotes an
indexing set. A coproduct of the family {Xi}i∈I is an object

∐
i∈I Xi together with a

morphism ιi : Xi →
∐

j∈I Xj for each i ∈ I that satisfies the following (universal) property:
For all obbject Z with a morphism fi : Xi → Z for each i ∈ I, there exists a unique morphism

f :
∐
i∈I

Xi → Z

satisfying fιi = fi for each i ∈ I, as illustrated in the diagram:

∐
j∈I Xj

f
// Z

Xi.

ιi

OO

fi

<<

In slogan form: “A morphism from a coproduct is the same as a morphism from each sum-
mand.”
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Definition B.15. An object A in a category C is initial if for all object X, there is a unique
morphism A→ X.

An initial object is sometimes denoted ∅ or 0.

Example B.16. An initial object is a coproduct of the empty family, that is, a coproduct
of no objects.

Definition B.17. An object in a category C is a zero object if it is both initial and terminal.

A zero object is sometimes denoted 0.

Exercise B.18. Show that a category C has a zero object if and only if C has an initial
object ∅, a terminal object ∗, and the unique morphism ∅ → ∗ is an isomorphism.

Example B.19. In Set, the coproduct is the usual disjoint union of sets
∐

i∈I Xi = ⊔i∈IXi.
The empty set ∅ is initial.

The category Set does not have a zero object, since the morphism ∅ → ∗ is not bijective,
hence not an isomorphism.

Example B.20. In Set∗, the coproduct of pointed sets is the wedge sum∐
i∈I

(Xi, xi) =
∨
i∈I

Xi

with the (well-defined) basepoint [xi] ∈
∨
i∈I Xi.

Any one-element pointed set {x} is initial and terminal, i.e., a zero object in Set∗.

Example B.21. In Top, the coproduct of spaces is the disjoint union of underlying sets
endowed with the coproduct topology. The empty space ∅ is initial. As in Set, there is no
zero object in Top.

Exercise B.22. (a) Find an example of spaceX decomposed as a disjoint unionX = A⊔B
where howeverX is not the coproduct A⨿B. Refer explicitly to the coproduct topology.

(b) Now show that X together with the inclusions A ↪→ X and B ↪→ X is not a coproduct
of A and B in Top. In other words, this data does not satisfy the universal property
of a coproduct.

Example B.23. In Top∗, the coproduct of pointed spaces is the wedge sum∐
i∈I

(Xi, xi) =
∨
i∈I

Xi

with the (well-defined) basepoint [xi] ∈
∨
i∈I Xi. Any one-point pointed space {x} is initial

and terminal, i.e., a zero object in Top∗.

Example B.24. In Ho(Top), the coproduct
∐

i∈I Xi is as in Top. This follows from the
natural homeomorphism in Top

(
∐
i∈I

Xi)× [0, 1] ∼=
∐
i∈I

(Xi × [0, 1]).
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Example B.25. In Gp, the coproduct is the free product of groups

G⨿H = G ∗H.

This also holds for the coproduct of an infinite family∐
i∈I

Gi = ∗
i∈I
Gi.

The trivial group 0 is initial and terminal, i.e., a zero object in Gp.

Example B.26. In Ab, the coproduct is the direct sum of abelian groups

A⨿B = A⊕B.

This also holds for the coproduct of an infinite family∐
i∈I

Ai =
⊕
i∈I

Ai.

The trivial group 0 is initial and terminal, i.e., a zero object in Ab.

Likewise in Vectk, the coproduct is the direct sum of vector spaces∐
i∈I

Vi =
⊕
i∈I

Vi.

Remark B.27. In Ab (and in Vectk), finite products and coproducts coincide, that is, the
canonical map

A⊕B
∼=−→ A×B

is an isomorphism. We call the direct sum in Ab a biproduct, since A ⊕ B is both the
coproduct and the product of A and B in Ab. However, this only holds for finite families.
For an infinite family of (non-trivial) abelian groups {Ai}i∈I , the canonical map⊕

i∈I

Ai →
∏
i∈I

Ai

is not an isomorphism, but rather an isomorphism onto the subgroup

{(xi)i∈I ∈
∏
i∈I

Ai | xi ̸= 0 for finitely many indices i ∈ I}.

Remark B.28. In Gp, coproducts and products are very different. Consider for instance the
cyclic group Z/2. The product

Z/2× Z/2

contains four elements, the so-called Klein four-group. On the other hand, the coproduct
(free product) Z/2 ∗ Z/2 contains infinitely many elements

1, a, b, ab, ba, aba, bab, abab, baba, . . . .
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More precisely, Z/2 ∗ Z/2 admits the presentation

Z/2 ∗ Z/2 = ⟨a, b | a2 = 1, b2 = 1⟩
∼= ⟨r, s | s2 = 1, srs = r−1⟩

with r = ab and s = a. This group is called the infinite dihedral group [Hat02, §1.2.Free
products of groups]. The canonical map

Z/2 ∗ Z/2 → Z/2× Z/2

has a huge kernel, namely all words with an even number of a’s and b’s, for instance baba.

Remark B.29. Remarks B.27 and B.28 also show that the notions of product and coproduct
depend crucially on the category. If we view Z/2 as an object in Gp, then the coproduct in
Gp

Z/2⨿ Z/2 = Z/2 ∗ Z/2

is the free product. If we view Z/2 instead as an object in Ab, then the coproduct in Ab

Z/2⨿ Z/2 = Z/2⊕ Z/2

is the direct sum.

Coproducts in Gp and in Ab are related as follows.

Exercise B.30. Let G andH be groups. Show that there is a natural isomorphism of abelian
groups

(G ∗H)ab ∼= Gab ⊕Hab.

More generally for any family of groups:

(∗
i∈I
Gi)ab ∼=

⊕
i∈I

(Gi)ab.

In other words, the abelianization functor (−)ab : Gp → Ab preserves coproducts.
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C Pullbacks and pushouts

C.1 Pullbacks

Definition C.1. Let g : X → Z and h : Y → Z be morphisms in a category C. A pullback
of g and h is an object P together with morphisms pX : P → X and pY : P → Y satisfying the
equation gpX = hpY and the following (universal) property: For all objectW with morphisms
fX : W → X and fY : W → Y satisfying gfX = hfY , there exists a unique morphism

f : W → P

satisfying pXf = fX and pY f = fY , as illustrated in the diagram

W

fX

((

∃! f

  

fY

��

P

pX
��

pY
// Y

h
��

X
g
// Z.

The pullback is denotedX×ZY . The morphism determined by fX : W → X and fY : W → Y
is denoted by f = (fX , fY ) : W → X ×Z Y . A pullback diagram is often denoted by a corner
symbol:

X ×Z Y

⌟
��

// Y

��

X // Z.

Example C.2. If Z = ∗ is a terminal object, then the pullback X ×∗ Y = X × Y is the
product of the objects X and Y .

Example C.3. In Set, the pullback

X ×Z Y

⌟pX
��

pY
// Y

h
��

X
g

// Z

can be described as follows:

X ×Z Y = {(x, y) ∈ X × Y | g(x) = h(y)},
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where pX : X ×Z Y → X and pY : X ×Z Y → Y are the usual projections:{
pX(x, y) = x

pY (x, y) = y.

Example C.4. Let X be a set and A,B ⊆ X subsets. Their pullback is the intersection
A ∩B. More precisely, the diagram of inclusions

A ∩B
⌟

��

// B

ιB
��

A
ιA

// X

is a pullback diagram in Set.

More generally, let p : E → X be an arbitrary function between sets. Then the diagram

p−1(A)

⌟p|p−1(A)

��

// E

p

��

A �
�

ιA

// X

is a pullback diagram. We can view this pullback as the “restriction of p over A”, or a
“restriction in the target”.

Example C.5. In Set∗, the pullback

X ×Z Y

⌟pX
��

pY
// Y

h
��

X
g

// Z

is as in Set, namely the set

X ×Z Y = {(x, y) ∈ X × Y | g(x) = h(y)},

with componentwise basepoint
(x0, y0) ∈ X ×Z Y.

Note that the maps g : (X, x0) → (Z, z0) and h : (Y, y0) → (Z, z0) are pointed, so that the
following equations hold:

g(x0) = z0 = h(y0).

This ensures that the point (x0, y0) ∈ X × Y lies in the subset

(x0, y0) ∈ {(x, y) ∈ X × Y | g(x) = h(y)}.
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Example C.6. In Gp and in Ab, the pullback

G×K H

⌟pX
��

pY
// H

ψ
��

G
φ

// K

is as in Set, namely the set

G×K H = {(g, h) ∈ G×H | φ(g) = ψ(h)}

with componentwise multiplication. In other words, we view G×KH ⊆ G×H as a subgroup.

For instance, the kernel of a homomorphism φ : G → K is obtained as the pullback in the
diagram

ker(φ)

⌟
� _

inclusion
��

// 0

��

G
φ

// K.

Example C.7. In Top, the pullback

X ×Z Y

⌟pX
��

pY
// Y

h
��

X
g

// Z

is as in Set, namely the set

X ×Z Y = {(x, y) ∈ X × Y | g(x) = h(y)}

viewed as a subspace X ×Z Y ⊆ X × Y .

Example C.8. Let p : E → X be a map in Set or in Top, and x ∈ X. The preimage

p−1(x) ⊆ E

is called the fiber of p over the point x ∈ X, sometimes denoted Ex := p−1(x). The fiber
can be obtained as a pullback:

p−1(x)

⌟
��

// E

p

��

∗
x

// X.
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Example C.9. Pullbacks also appear in the definition of a covering space p : X̃ → X. For
a subset U ⊆ X, consider the pullback diagram

p−1(U)

⌟p|p−1(U)

��

// X̃

p

��

U �
�

ιU

// X,

where ιU : U ↪→ X denotes the inclusion. An open neighborhood U ⊆ X is called a trivial-

izing neighborhood for p if there is a homeomorphism φ : p−1(U)
∼=−→
∐

α∈J U making the
following diagram commute:

p−1(U)

p|p−1(U)

��

∼=

φ
//
∐

α∈J U

∇yy
U.

Here, ∇ :
∐

α U → U denotes the fold map (a.k.a. the codiagonal), the morphism whose
restriction to each summand is the identity 1U : U → U . Such a homeomorphism φ is called
a local trivialization of p over U . Each summand U of

∐
α∈J U is called a sheet of p over

U . The set J is an indexing set for the sheets.

Remark C.10. The pullback is also called fiber product, for the following reason. Let p : E →
X and p′ : E ′ → X be arbitrary morphisms in Top or in Set. By construction, the pullback
E ×X E

′ comes with a map E ×X E
′ → X, namely the composite in the diagram

E ×X E
′

⌟
��

// E ′

p′

��

E
p

// X.

The fiber of this map E ×X E
′ → X over a point x ∈ X is

(E ×X E
′)x = {(e, e′) ∈ E ×X E

′ | p(e) = p′(e′) = x}

= {(e, e′) ∈ E ×X E
′ | p(e) = x and p′(e′) = x}

∼= {e ∈ E | p(e) = x} × {e′ ∈ E ′ | p′(e′) = x}

= Ex × E ′
x,

the product of the respective fibers Ex and E ′
x over x.
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Remark C.11. The homotopy category Ho(Top) is missing several pullbacks. That is, there
are diagrams

Y

h
��

X
g
// Z

in Ho(Top) that don’t admit a pullback. Proving this requires a bit more homotopy theory,
which goes beyond the scope of this course [Mat16].
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C.2 Pushouts

Pushouts provide a general way to build an object by “gluing different pieces together”.

Definition C.12. Let g : W → X and h : W → Y be morphisms in a category C. A pushout
of g and h is an object P together with morphisms ιX : X → P and ιY : Y → P satisfying the
equation ιXg = ιY h and the following (universal) property: For all object Z with morphisms
fX : X → Z and fY : Y → Z satisfying fXg = fY h, there exists a unique morphism

f : P → Z

satisfying fιX = fX and fιY = fY , as illustrated in the diagram

W

g

��

h
// Y

ιY
�� fY

��

X

fX
22

ιX

// P
∃! f

  

Z.

The pushout is denoted X ∪W Y . A pushout diagram is often denoted with a corner symbol:

W

⌜��

// Y

��

X // X ∪W Y.

Example C.13. If W = ∅ is an initial object, then the pushout X ∪∅ Y = X ⨿ Y is the
coproduct of the objects X and Y .

Example C.14. In Set, the pushout

W

⌜
g

��

h
// Y

ιY

��

X
ιX

// X ∪W Y

can be described as a quotient of the disjoint union:

X ∪W Y = (X ⊔ Y ) /g(w) ∼ h(w) for each w ∈ W.

Here, the morphisms ιX : X → X ∪W Y and ιY : Y → X ∪W Y are induced by the usual
inclusions: {

ιX(x) = [x]

ιY (y) = [y].
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Example C.15. Let X be a set and A,B ⊆ X subsets. Their union A∪B can be obtained
as a pushout:

A ∩B

⌜��

// B

��

A // A ∪B.

Note that the pullback diagram

A ∩B
⌟

��

// B

ιB
��

A
ιA

// X

is rarely a pushout, namely, if and only if A ∪B = X holds.

Example C.16. Let A ⊆ X be a subset. Then the diagram

A

⌜��

� �
ιA
// X

q��
��

∗ // X/A

is a pushout, where the quotient map q : X ↠ X/A collapses the subset A to a point.

Example C.17. In Set∗, the pushout

W

⌜
g

��

h
// Y

��

X // X ∪W Y

is as in Set. The basepoints x0 ∈ X and y0 ∈ Y automatically get identified, because of the
relation

x0 = g(w0) ∼ h(w0) = y0.

Example C.18. In Top, the pushout

W

⌜
g

��

h
// Y

ιY

��

X
ιX

// X ∪W Y
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is as in Set, namely the set

X ∪W Y = (X ⨿ Y ) / g(w) ∼ h(w) for each w ∈W

endowed with the quotient topology. Here X ⨿ Y denotes the disjoint union endowed with
the coproduct topology, i.e., the coproduct in Top.

Example C.19. Let X be a space and A,B ⊆ X subspaces. The pullback

A ∩B
⌟

��

// B

ιB
��

A
ιA

// X

(8)

is rarely a pushout. If A and B do not cover the space X, then the diagram (8) cannot be a
pushout, by the remark in Example C.15. And when A∪B = X holds, the diagram (8) is a
pushout in Set, but not automatically a pushout in Top.

Exercise C.20. Let X be a space with a cover X = A ∪B.

(a) If A,B ⊆ X are open in X, show that the diagram (8) is a pushout in Top.

(b) If A,B ⊆ X are closed in X, show that the diagram (8) is a pushout in Top.

(c) Find an example of cover X = A ∪ B such that the diagram (8) is not a pushout in
Top.

Example C.21. Attaching an n-cell along an attaching map φ : Sn−1 → X is the pushout

Sn−1

⌜

� _

��

φ
// X

��

Dn

Φ

// X ∪φ Dn.

More explicitly, attaching an n-cell yields the space

X ∪φ Dn = (X ⨿Dn) /w ∼ φ(w) for each w ∈ ∂Dn = Sn−1

endowed with the quotient topology. The pushout diagram also yields the characteristic map
of the cell Φ: Dn → X ∪φ Dn.

Example C.22. Let X be a CW complex with skeleta X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X. By
definition, the n-skeleton Xn is obtained from Xn−1 by attaching n-cells, i.e., Xn is the
pushout ∐

α∈Jn S
n−1

⌜
� _

��

(φα)
// Xn−1

��∐
α∈Jn D

n

(Φα)

// Xn.
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Here Jn denotes the indexing set of the n-cells of X. For each α ∈ Jn, φα : S
n−1 → Xn−1

denotes the attaching map of the corresponding n-cell enα. Those attaching maps together
define the map

(φα)α∈Jn :
∐
α∈Jn

Sn−1 → Xn−1

at the top of the diagram.

Remark C.23. The homotopy category Ho(Top) is missing several pushouts. That is, there
are diagrams

W

g
��

h
// Y

X

in Ho(Top) that do not admit a pushout; cf. Remark C.11.

Example C.24. In Gp, the pushout is the amalgamated product of groups:

K

⌜
φ

��

ψ
// H

��

G // G ∗K H.

More precisely, G ∗K H is the quotient group

G ∗K H = (G ∗H) /⟨{φ(k)ψ(k)−1 | k ∈ K}⟩normal

where ⟨S⟩normal denotes the normal subgroup generated by the subset S.

Example C.25. In Ab, the pushout is given as follows:

A

⌜
φ

��

ψ
// C

��

B // coker(φ,−ψ).

More precisely, the pushout is the quotient group

B ∪A C = (B ⊕ C) /⟨{(φ(a), 0)− (0, ψ(a)) | a ∈ A}⟩

= B ⊕ C/⟨{(φ(a),−ψ(a)) | a ∈ A}⟩

= B ⊕ C/ im(φ,−ψ)

= coker(φ,−ψ)
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where (φ,−ψ) : A→ B ⊕C denotes the map with components φ : A→ B and −ψ : A→ C.
In other words, a pushout in Ab can be viewed as an exact sequence:

A
(φ,−ψ)

// B ⊕ C // // coker(φ,−ψ) // 0.

Example C.26. The pushout of the diagram in Ab

A

��

φ
// B

0

is the following:

A

⌜��

φ
// B

��
��

0 // coker(φ)

where B ↠ coker(φ) = B/ im(φ) denotes the canonical quotient map.
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