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Abstract

These are collected worksheets from the course MATH 441/841 - General Topology
in the Fall 2021 semester. They contain practice problems to supplement the lectures
and the projects.
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1 Metrizability of countable products

Problem 1.1. Let (X, d) be a metric space. Consider the function ρ : X ×X → R defined
by

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

(a) Show that ρ is a metric on X.

(b) Show that the metric ρ from part (a) induces the same topology on X as the original
metric d.

Remark 1.2. We could also have used the formula ρ(x, y) = min{d(x, y), 1}. The goal was
just to find a metric ρ which is topologically equivalent to d and is bounded. With that other
metric ρ, Problem 1.1 is found in [Mun00, Theorem 20.1]; for our choice of metric ρ, it is
found in [Mun00, Exercise 20.11].

Problem 1.3. Let {(Xi, di)}i∈N be a countable family of metric spaces, where each metric
di is bounded by 1, that is:

di(xi, yi) ≤ 1 for all xi, yi ∈ Xi.

Write X :=
∏

i∈N Xi and consider the function d : X ×X → R defined by

d(x, y) :=
∞∑
i=1

1

2i
di(xi, yi).

(a) Show that d is a metric on X. (First check that d is a well-defined function.)

(b) Show that the metric d from part (a) induces the product topology on X =
∏

i∈N Xi.

Problem 1.3 can be found in [Mun00, Exercise 21.3(b)].

Together, Problems 1.1 and 1.3 show the following.

Theorem 1.4. Let {Xi}i∈N be a countable family of metrizable spaces. Then their product∏
i∈N Xi is metrizable.
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2 Locally compact spaces

Problem 2.1. Show that the space Q of rational numbers, with its standard topology, is
not locally compact.

Problem 2.2. Let X be a set. The particular point topology on X with “particular
point” p ∈ X is defined as

T = {S ⊆ X | p ∈ S or S = ∅}.

One readily checks that T is indeed a topology.

(a) Show that X (endowed with the particular point topology) is locally compact.

(b) Show that X is compact if and only if X is finite.

(c) Show that X is Lindelöf if and only if X is countable.

(d) Assuming X is uncountable, find a compact subspace K ⊆ X whose closure K is not
compact, in fact not even Lindelöf.
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3 Compact metric spaces

Problem 3.1. Let (X, d) be a metric space andA ⊆ X a subset. Define the ϵ-neighborhood
of A as the set

B(A, ϵ) := {x ∈ X | d(x,A) < ϵ}.

(a) Show that the ϵ-neighborhood of A is

B(A, ϵ) =
⋃
a∈A

B(a, ϵ)

i.e., the union of all open balls of radius ϵ around points a ∈ A.

(b) Assume that A is compact and let U ⊆ X be an open subset containing A. Show that
some ϵ-neighborhood of A is contained in U , that is, B(A, ϵ) ⊆ U for some ϵ > 0.

Problem 3.2. (a) Let (X, d) be a metric space which is totally bounded. Show that any
subspace A ⊆ X is also totally bounded. Explicitly: For every ϵ > 0, A can be covered
by finitely many balls of radius ϵ centered at points of A.

(b) Let (X, d) be a metric space and let A ⊆ X be a subspace which is totally bounded.
Show that its closure A ⊆ X is also totally bounded.

(c) Let (X, d) be a complete metric space. Show that a subspace A ⊆ X is compact if and
only if it is closed (in X) and totally bounded.

(d) Let (X, d) be a complete metric space. Show that a subspace A ⊆ X is totally bounded
if and only if its closure A ⊆ X is compact.

(This condition is called being relatively compact in X.)
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4 Completeness and uniform continuity

Throughout this worksheet, let f : X → Y be a uniformly continuous map between metric
spaces.

Problem 4.1. Show that f sends Cauchy sequences to Cauchy sequences. In other words,
if (xn)n∈N is a Cauchy sequence in X, show that (f(xn))n∈N is a Cauchy sequence in Y .

Problem 4.2. Assuming moreover that f is a homeomorphism and Y is complete, show
that X is complete.

Problem 4.3. Find an example where f is a homeomorphism and X is complete, but Y is
not complete. (Don’t forget to show that your example f is uniformly continuous.)

Remark 4.4. Problem 4.2 implies that if two metric spaces are uniformly isomorphic, then
one is complete if and only if the other is complete. In other words, completeness depends
on more than just the topology, but at most on the uniform type.
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5 The order topology

Definition 5.1. A totally ordered set is a partially ordered set (X,≤) where any two
elements are comparable: for all x, y ∈ X, we have either x ≤ y or y ≤ x.

Definition 5.2. Let (X,≤) be a totally ordered set. The order topology on X is the
topology generated by “open rays”

(a,∞) := {x ∈ X | x > a}

(−∞, a) := {x ∈ X | x < a}

for any a ∈ X.

Problem 5.3. Show that the order topology on a totally ordered set is always T1.

Problem 5.4. Show that the order topology on R with its usual order ≤ is the standard
(metric) topology on R.

Definition 5.5. An interval in a partially ordered set (X,≤) is a subset I ⊆ X such that
for all x, y ∈ I, the condition x ≤ z ≤ y implies z ∈ I.

Problem 5.6. Let (X,≤) be a totally ordered set endowed with the order topology. Show
that every connected subspace A ⊆ X is an interval in X.

Problem 5.7. Find an example of totally ordered set (X,≤), endowed with the order topol-
ogy, and an interval A ⊆ X which is not a connected subspace.
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6 The compact-open topology

On this worksheet, function spaces are endowed with the compact-open topology unless
otherwise noted.

Problem 6.1. Let X be a compact topological space, and (Y, d) a metric space. Consider
the uniform metric

d(f, g) := sup
x∈X

d (f(x), g(x))

on the set of continuous maps C(X, Y ).

Show that the topology on C(X, Y ) induced by the uniform metric is the compact-open
topology.

Problem 6.2. Let X and Y be topological spaces. Let f, g : X → Y be two continuous
maps. Show that a homotopy from f to g induces a (continuous) path from f to g in the
space of continuous maps C(X, Y ).

More precisely, let F (X, Y ) denote the set of all functions from X to Y . There is a natural
bijection of sets:

φ : F (X × [0, 1], Y )
∼=−→ F ([0, 1], F (X, Y ))

sending a function H : X × [0, 1] → Y to the function φ(H) : [0, 1] → F (X, Y ) defined by

φ(H)(t) = H(−, t) =: ht.

Your task is to show that if a function H : X × [0, 1] → Y is continuous, then the following
two conditions hold:

1. ht : X → Y is continuous for all t ∈ [0, 1];

2. The corresponding function φ(H) : [0, 1] → C(X, Y ) is continuous.

Remark 6.3. If X is locally compact Hausdorff, then the converse holds as well: the two
conditions guarantee that H : X × [0, 1] → Y is continuous. In that case, a homotopy from
f to g is really the same as a path from f to g in the function space C(X, Y ).

Problem 6.4. (a) Let X and Y be topological spaces, where Y is Hausdorff. Show that
C(X, Y ) is Hausdorff.

(b) Assume that there exists a topological space X such that C(X, Y ) is Hausdorff. Show
that Y is Hausdorff.

Problem 6.5. (a) Let X, Y , and Z be topological spaces. Let g : Y → Z be a continuous
map. Show that the induced map “postcomposition by g”

g∗ : C(X, Y ) → C(X,Z)

f 7→ g∗(f) = g ◦ f

is continuous.
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(b) Let W , X, and Y be topological spaces. Let d : W → X be a continuous map. Show
that the induced map “precomposition by d”

d∗ : C(X, Y ) → C(W,Y )

f 7→ d∗(f) = f ◦ d

is continuous.

Problem 6.6. Let X and Y be topological spaces, whereX is Hausdorff. Let S be a subbasis
for the topology of Y . Show that the collection

{V (K,S) | K ⊆ X compact, S ∈ S}

is a subbasis for the compact-open topology on C(X, Y ).

The notation above is V (K,S) = {f ∈ C(X, Y ) | f(K) ⊆ S}.

Problem 6.7. Consider the real line R and the rationals Q with their standard (metric)
topology. Consider the evaluation map

e : Q× C(Q,R) → R.

Let f : Q → R be a constant function (say, f ≡ 0), and let q ∈ Q. Show that the evaluation
map e is not continuous at (q, f) ∈ Q× C(Q,R).

Hint: You may want to use the fact that all compact subsets of Q have empty interior, and
the fact that Q is completely regular (since it is normal).
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7 Compactness in function spaces

On this worksheet, function spaces are endowed with the compact-open topology unless
otherwise noted.

Problem 7.1. Let X be a topological space and (Y, d) a metric space. For each compact
subset K ⊆ X, consider the pseudometric on C(X, Y ) defined by

dK(f, g) = sup
x∈K

d (f(x), g(x))

and its associated open balls BK(f, ϵ) = {g ∈ C(X, Y ) | dK(f, g) < ϵ}.
Show that the collection of all open balls

B = {BK(f, ϵ) | K ⊆ X compact, f ∈ C(X, Y ), ϵ > 0}

forms a basis for a topology on C(X, Y ). More explicitly:

1. B covers C(X, Y );

2. Finite intersections of members of B are unions of members of B.

The following proposition will be relevant to Problem 7.4. No need to prove the proposition
in your write-up.

Proposition 7.2. 1. Given a pseudometric d on a set X, there is a topologically equiva-
lent pseudometric ρ on X which is bounded above by 1.

For example, the formulas ρ(x, y) = d(x,y)
1+d(x,y)

or ρ(x, y) = min{d(x, y), 1} work.

2. Given a countable family of pseudometrics {dn}n∈N on X which are bounded above by
1, the formula

d(x, y) :=
∞∑
n=1

1

2n
dn(x, y) (1)

defines a pseudometric d on X.

3. The topology Td on X induced by d is the topology generated by
⋃

n∈N Tdn. More explic-
itly, this is the topology generated by the collection of all open balls

{Bn(x, ϵ) | n ∈ N, x ∈ X, ϵ > 0}

where we used the notation Bn(x, ϵ) := {y ∈ X | dn(x, y) < ϵ}.

Definition 7.3. A family of pseudometrics {dα}α∈A on a set X is separating if the following
implication holds:

dα(x, y) = 0 for all α ∈ A =⇒ x = y.

In other words, for any distinct points x ̸= y, there is an index α ∈ A satisfying dα(x, y) > 0.
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Problem 7.4. Let X be a set and {dn}n∈N a countable family of pseudometrics on X which
are bounded above by 1. Let d be the pseudometric on X defined by the formula (1) as in
the proposition above.

Show that d is a metric if and only if the family of pseudometrics {dn}n∈N is separating.

Problem 7.5. Let (Y, d) be a metric space and consider the mapping space C(R, Y ). For
all n ∈ N, consider the compact interval [−n, n] ⊂ R and the associated pseudometric

dn(f, g) = sup
x∈[−n,n]

d (f(x), g(x)) .

(a) Show that the family of pseudometrics {dn}n∈N on C(R, Y ) is separating.

(b) Show that the topology T on C(R, Y ) generated by
⋃

n∈N Tdn is the topology of compact
convergence.

Problem 7.6. Let X and Y be topological spaces, where Y is Hausdorff.

(a) Consider the set Y X of all functions from X to Y , endowed with the topology of point-
wise convergence. Recall that via the correspondence Y X ∼=

∏
x∈X Y , this corresponds

to the product topology.

Show that a collection of functions F ⊆ Y X is compact if and only if the following two
conditions hold:

1. F is closed in Y X .

2. For all x ∈ X, the projection px(F) = {f(x) | f ∈ F} ⊆ Y has compact closure
in Y .

(b) Let C(X, Y ) be endowed with the compact-open topology, and let F ⊆ C(X, Y ) be a
compact subspace. Show that F satisfies the conditions 1. and 2. listed in part (a),
that is:

1. F viewed as a subset of Y X is closedwith respect to the topology of pointwise
convergence.

2. For all x ∈ X, the projection px(F) = {f(x) | f ∈ F} ⊆ Y has compact closure
in Y .

Problem 7.7 (Munkres Exercise 47.1). For each of the following subsets F ⊂ C(R,R), say
if F is equicontinuous of not, and prove your answer.

(a) F = {fn | n ∈ N} where fn(x) = x+ sinnx.

(b) F = {gn | n ∈ N} where gn(x) = n+ sinx.

(c) F = {hn | n ∈ N} where hn(x) = |x| 1n .

(d) F = {kn | n ∈ N} where kn(x) = n sin
(
x
n

)
.
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8 The Baire category theorem

Problem 8.1. Let X be a topological space.

(a) Show that the following properties of a subset A ⊆ X are equivalent.

1. The closure of A in X has empty interior: int(A) = ∅.
2. For all non-empty open subset U ⊆ X, there is a non-empty open subset V ⊆ U

satisfying V ∩ A = ∅.

A subset A ⊆ X satisfying these equivalent properties is called nowhere dense in X.

(b) Show that the following properties of the space X are equivalent.

1. Any countable intersection of open dense subsets is dense. In other words, if each
Un ⊆ X is open and dense in X, then

⋂∞
n=1 Un is dense in X.

2. Any countable union of closed subsets with empty interior has empty interior. In
other words, if each Cn ⊆ X is closed in X and satisfies int(Cn) = ∅, then their
union satisfies int (

⋃∞
n=1Cn) = ∅.

A space X satisfying these equivalent properties is called a Baire space.

Problem 8.2. Show that a topological space X is of second category in itself if and only if
any countable intersection of open dense subsets of X is non-empty.

Problem 8.3 (Uniform boundedness principle). Let X be a Baire space and S ⊆ C(X,R)
a collection of real-valued continuous functions on X which is pointwise bounded: for each
x ∈ X, there is a bound Mx ∈ R satisfying

|f(x)| ≤ Mx for all f ∈ S.

Show that there is a non-empty open subset U ⊆ X on which the collection S is uniformly
bounded: there is a bound M ∈ R satisfying

|f(x)| ≤ M for all x ∈ U and all f ∈ S.
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9 Connected components as a homotopy invariant

Definition 9.1. Let X be a topological space. A path in X from x to y is a continuous
map γ : [0, 1] → X with γ(0) = x and γ(1) = y.

The relation “there is a path from x to y” is an equivalence relation on X, whose equivalence
classes are called the path components of X. Let π0(X) denote the set of path components
of X.

Problem 9.2. Let f : X → Y be a (continuous) map between spaces. Define an induced
function on path components

f∗ : π0(X) → π0(Y ),

sometimes denoted π0(f), by the formula f∗[x] := [f(x)], where [x] denotes the path compo-
nent of a point x ∈ X.

(a) Show that the function f∗ is well-defined.

(b) Show that the function f∗ is compatible with composition and identities. In other
words, the equation

(gf)∗ = g∗f∗

holds for all maps f : X → Y and g : Y → Z, and the equation

(idX)∗ = idπ0(X)

holds for every space X.

(c) Show that π0 is homotopy invariant in the following sense: homotopic maps f ≃
g : X → Y induce the same function

f∗ = g∗ : π0(X) → π0(Y ).

(d) Let X ≃ Y be homotopy equivalent spaces. Show that the sets of path components
π0(X) and π0(Y ) are in bijection.

In particular, X is path-connected if and only if Y is.

Problem 9.3. Let Conn(X) denote the set of connected components of a space X.

Let f : X → Y be a (continuous) map between spaces. Define an induced function on
connected components

f∗ : Conn(X) → Conn(Y ),

sometimes denoted Conn(f), by the formula f∗[x] := [f(x)], where [x] denotes the connected
component of x ∈ X.

(a) Show that the function f∗ is well-defined.
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(b) Show that the function f∗ is compatible with composition and identities. In other
words, the equation

(gf)∗ = g∗f∗

holds for all maps f : X → Y and g : Y → Z, and the equation

(idX)∗ = idπ0(X)

holds for every space X.

(c) Show that Conn is homotopy invariant in the following sense: homotopic maps f ≃
g : X → Y induce the same function

f∗ = g∗ : Conn(X) → Conn(Y ).

(d) LetX ≃ Y be homotopy equivalent spaces. Show that the sets of connected components
Conn(X) and Conn(Y ) are in bijection.

In particular, X is connected if and only if Y is.

Problem 9.4. (a) Denote by ηX : π0(X) → Conn(X) the function that assigns to a path
component C the connected component that contains C. Show that η is natural in the
following sense: for every map f : X → Y , the following diagram of sets commutes:

π0(X)

π0(f)

��

ηX
// Conn(X)

Conn(f)

��

π0(Y )
ηY
// Conn(Y ).

(b) Let X ≃ Y be homotopy equivalent spaces, where X satisfies the following condition:
the path components of X coincide with its connected components. Show that Y also
satisfies that condition.

Remark 9.5. The topologist’s sine curve

S = {(x, sin 1

x
) | x ∈ (0, 1]} ∪ ({0} × [−1, 1]) ⊂ R2

does not satisfy said condition. To wit, S is connected, but it has two path components.
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