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Abstract

These are the lecture notes for the course MATH 441/841 - General Topology in the
Fall 2021 semester. We were following Munkres as main reference. The notes provide
more details and examples.
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1 Generating a topology

1.1 Bases and subbases

Definition 1.1. Let (X, T ) be a topological space. A base (or basis) for the topology T of
X is a collection B of subsets of X satisfying

T =

{⋃
α

Bα | Bα ∈ B

}
.

That is, open sets are precisely unions of members of B.
Example 1.2. Let (X, d) be a metric space. Then the collection of open balls

B = {B(x, r) | x ∈ X, r > 0}
is a base for the metric topology. See Homework 1 Problem 1(b).

Exercise 1.3. Let X be a topological space and B a collection of open subsets of X. Show
that B is a base of the topology if and only if for every open subset U ⊆ X and x ∈ U , there
exists a basic open B ∈ B satisfying x ∈ B ⊆ U .

Example 1.4. Let (X, d) be a metric space. The collection of open balls with rational radius

{B(x, r) | x ∈ X, r > 0, r ∈ Q}
is a base for the metric topology. The collection of open balls

{B(x,
1

n
) | x ∈ X,n ∈ N}

is also a base for the metric topology.

In particular, a given topology can have many different bases.

Exercise 1.5. Let X be a set. Show that a collection B of subsets of X is a base for some
topology on X if and only if B satisfies the following conditions:

1. B covers X, that is,
⋃

B∈B B = X.

2. Finite intersections are unions: For any B,B′ ∈ B, we have B ∩ B′ =
⋃

α Bα for some
family {Bα} of members of B.

Definition 1.6. Let (X, T ) be a topological space. A subbase for the topology T of X is
a collection S of subsets of X satisfying

T =

{⋃
α

nα⋂
i=1

Sα,i | Sα,i ∈ S

}
.

That is, finite intersections of members of S form a base for the topology.

Remark 1.7. The number nα of members in the finite intersection is allowed to be zero. The
intersection of an empty family of subsets of X is X.

Likewise, the arbitrary union is allowed to be the union of an empty family, with the index
α running over an empty indexing set. The union of an empty family of subsets of X is the
empty subset ∅ ⊆ X.
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1.2 Comparing topologies

For a given set X, topologies on X can be partially ordered by inclusion.

Definition 1.8. Let X be a set, and T1 and T2 two topologies on X. We say T1 is smaller
than T2, denoted T1 ≤ T2, if the inclusion T1 ⊆ T2 holds, viewed as subsets of the power set
P(X). In other words, every T1-open is also T2-open.

One can also say that T2 is larger than T1.

Some references say that T1 is coarser than T2, while T2 is finer than T1.

Remark 1.9. The indiscrete topology Tind = {∅, X} is the least element in that partial order,
whereas the discrete topology Tdis = P(X) is the greatest element. In other words, the
inequalities

Tind ≤ T ≤ Tdis

hold for any topology T on X.

Remark 1.10. By definition, the inequality T1 ≤ T2 holds if and only if the identity function

id : (X, T2) → (X, T1)

is continuous. Note the reversal, mapping “from fine to coarse”.

The poset of topologies onX has arbitrary meets (infima), described explicitly in the following
proposition.

Proposition 1.11. Let {Tβ} be a family of topologies on X. Then the intersection
⋂

β Tβ is
a topology on X, and therefore the infimum of the family {Tβ}.

Proof. Exercise.

Remark 1.12. If we consider an empty family of topologies, then their intersection is⋂
β

Tβ = P(X) = Tdis,

which is a topology on X. Thus, the proposition also holds in that case.

Definition 1.13. Let X be a set and S be a collection of subsets of X. The topology
generated by S (if it exists) is the smallest topology TS containing S. In other words, it
satisfies S ⊆ TS and for any other topology T ′ containing S, we have TS ≤ T ′.

Note that this universal property makes TS unique, if it exists.

Proposition 1.14. For any collection of subsets S, the topology TS exists.

Proof. The topology

TS =
⋂

topologies T
with S⊆T

T

has the required properties.
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The following proposition provides an explicit description of TS .

Proposition 1.15. The topology generated by S is

TS =

{⋃
α

nα⋂
i=1

Sα,i | Sα,i ∈ S

}
,

i.e., the topology for which S is a subbase.

Proof. Homework 2 Graduate Problem 3.
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2 Infinite products and coproducts

2.1 Infinite products

Definition 2.1. Let {Xα}α∈I be a family of topological spaces. The product topology
Tprod on the Cartesian product

∏
α Xα is the smallest topology making all projection maps

pβ :
∏

α Xα → Xβ continuous.

In other words, the product topology is generated by subsets of the form p−1
β (Uβ) for Uβ ⊆ Xβ

open.

Those generating open subsets are “large strips” p−1
β (Uβ) =

∏
α Uα with

Uα =

{
Uβ if α = β

Xα if α ̸= β.

A base for the product topology Tprod is the collection of “large boxes”{∏
α

Uα | Uα ⊆ Xα is open, and Uα = Xα except for at most finitely many α

}
.

Proposition 2.2. The topological space (
∏

α Xα, Tprod) along with the projections
pβ :

∏
α Xα → Xβ satisfies the universal property of a product.

Explicitly: Given a space Z and continuous maps fα : Z → Xα for all α ∈ I, there exists a
unique continuous map f : Z →

∏
α Xα satisfying pα ◦ f = fα for all α.

Proof. The continuous maps fα : Z → Xα are in particular functions, so that there is a unique
function f : Z →

∏
αXα whose components are pα ◦ f = fα. In other words, f is given by

f(z) = (fα(z))α∈A .

It remains to check that f is continuous. The product topology is generated by subsets of
the form p−1

β (Uβ) for Uβ ⊆ Xβ open. Its preimage under f is

f−1
(
p−1
β (Uβ)

)
= (pβ ◦ f)−1(Uβ)

= f−1
β (Uβ)

which is open in Z since fβ : Z → Xβ is continuous.

Definition 2.3. The box topology Tbox on the Cartesian product
∏

αXα is the topology
for which the collection of all “boxes”

{
∏
α

Uα | Uα ⊆ Xα is open}

is a base.
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Note that we always have Tprod ≤ Tbox, and equality holds for finite products. For an infinite
product, the inequality is usually strict.

Exercise 2.4. Let {Xα} be a family of discrete spaces, where each Xα contains at least two
points.

(a) Show that the box topology on
∏

α Xα is discrete.

(b) Show that the product topology on
∏

α Xα is not discrete.

Definition 2.5. A map between topological spaces f : X → Y is called an open map if for
every open subset U ⊆ X, its image f(U) ⊆ Y is open in Y .

Exercise 2.6. Show that the projection maps pβ :
∏

α Xα → Xβ are open maps in the box
topology (and therefore also in the product topology).
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2.2 Disjoint unions

In this section, we describe a construction which is dual to the product. The discussion
will be eerily similar to that of products, because the ideas are the same, and because of
copy-paste. We first review disjoint unions of sets.

Let X and Y be sets. The disjoint union of X and Y is the set

X ⨿ Y = {w | w ∈ X or w ∈ Y }.
It comes equipped with the inclusion maps iX : X → X ⨿ Y and iY : Y → X ⨿ Y from each
summand. This explicit description of X ⨿ Y is made more meaningful by the following
proposition.

Proposition 2.7. The disjoint union of sets X ⨿ Y along with inclusion maps iX and iY
is the coproduct of sets, i.e., it satisfies the following universal property. For any set Z
along with maps fX : X → Z and fY : Y → Z, there is a unique map f : X ⨿ Y → Z whose
restrictions are f ◦ iX = fX and f ◦ iY = fY , in other words making the following diagram
commute:

X

fX

++

iX ##

Y

fY

ss

iY{{

X ⨿ Y

∃!f
��

Z.

Proof. Given fX and fY , define f : X ⨿ Y → Z by

f(w) :=

{
fX(w) if w ∈ X

fY (w) if w ∈ Y,

which satisfies f ◦ iX = fX and f ◦ iY = fY .

To prove uniqueness, note that any element w ∈ X ⨿ Y is in one of the summands:

w =

{
iX(w) if w ∈ X

iY (w) if w ∈ Y.

Therefore, any function g : X ⨿ Y → Z can be written as

g(w) =

{
g(iX(w)) = (g ◦ iX)(w) if w ∈ X

g(iY (w)) = (g ◦ iY )(w) if w ∈ Y

so that g is determined by its restrictions g ◦ iX and g ◦ iY .

In slogans: “A map out of X ⨿ Y is the same data as a map out of X and a map out of Y ”.

Yet another slogan: “X ⨿ Y is the closest set equipped with a map from X and a map from
Y .”

As usual with universal properties, this characterizes X ⨿ Y up to unique isomorphism.
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2.3 Coproduct topology

The next goal is to define the coproduct X ⨿ Y of topological spaces X and Y such that it
satisfies the analogous universal property in the category of topological spaces.

In other words, we want to find a topology on the disjoint union X⊔Y such that the inclusion
maps {

iX : X → X ⨿ Y

iY : Y → X ⨿ Y

are continuous, and such that for any topological space Z along with continuous maps
fX : X → Z and fY : Y → Z, there is a unique continuous map f : X ⨿ Y → Z whose
restrictions are f ◦ iX = fX and f ◦ iY = fY .

Definition 2.8. LetX and Y be topological spaces. The coproduct topology is the largest
topology on X ⨿ Y making the inclusions iX : X → X ⨿ Y and iY : Y → X ⨿ Y continuous.

This means that a subset U ⊆ X ⨿ Y is open if and only if i−1
X (U) is open in X and i−1

Y (U)
is open in Y . More concretely, noting i−1

X (U) = U ∩ X and i−1
Y (U) = U ∩ Y , open subsets

can be described as

Tcoprod = {U = UX ⊔ UY | UX ⊆ X is open and UY ⊆ Y is open} .

This definition works for an infinite disjoint union as well.

Definition 2.9. Let {Xα}α∈I be a family of topological spaces. The coproduct topology
Tcoprod on the disjoint union

⊔
α Xα is the largest topology making all inclusion maps iβ : Xβ →∐

α Xα continuous.

This means that a subset U ⊆
∐

α Xα is open if and only if i−1
α (U) is open in Xα for all α ∈ A

More concretely, noting i−1
α (U) = U ∩Xα, open subsets can be described as

Tcoprod =

{
U =

⊔
α

Uα | Uα ⊆ Xα is open for all α

}
.

That is, open subsets are disjoint unions of open subsets from each of the summands.

Proposition 2.10. The topological space (
∐

α Xα, Tcoprod) along with the inclusions
iβ : Xβ →

∐
α Xα is a coproduct of topological spaces.

Explicitly: Given a space Z and continuous maps fα : Xα → Z for all α ∈ I, there exists a
unique continuous map f :

∐
αXα → Z satisfying f ◦ iα = fα for all α.

Proof. The continuous maps fα : Xα → Z are in particular functions, so that there is a unique
function from the disjoint union f :

⊔
αXα → Z whose restrictions are f ◦ iα = fα. In other

words, f is given by
f(w) = f(iα(w)) = fα(w)

where α is the unique index for which w ∈ Xα.
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It remains to check that f is continuous. Let U ⊆ Z be open and consider its preimage
f−1(U) ⊆

∐
α Xα. To show that this subset is open, it suffices to check that its restriction to

each summand is open:

i−1
α

(
f−1(U)

)
= (f ◦ iα)−1(U)

= f−1
α (U)

is indeed open in Xα since fα : Xα → Z is continuous.

Upshot: A map f :
∐

αXα → Z is continuous if and only if its restriction f ◦ iα : Xα → Z
to each summand is continuous.

Proposition 2.11. Each summand Xβ ⊆
∐

α Xα is open in the coproduct topology.

Proof. Write Xβ =
∐

α Uα where

Uα =

{
Xβ if α = β

∅ if α ̸= β

is open in Xα for all α.

More generally, the same proof shows that each inclusion map iβ : Xβ →
∐

α Xα is an open
map. In fact, this characterizes the coproduct topology.

Exercise 2.12. Show that a topology on the disjoint union
⊔

αXα is the coproduct topology
if and only if it makes all the inclusion maps iβ : Xβ →

∐
αXα continuous and open.

We can reinterpret the backward implication ( ⇐= ) as follows. If a space X is a disjoint
union X =

⊔
α Uα of open subsets Uα ⊆ X, then X is the coproduct X =

∐
α Uα, where each

Uα ⊆ X has the subspace topology.

Exercise 2.13. (a) Consider the subset X = {0} ∪ { 1
n
| n ∈ N} ⊂ R viewed as a subspace

of the real line R. As a set, X is the disjoint union of the singletons {0} and { 1
n
} for all

n ∈ N. However, show that X does not have the coproduct topology on {0}⨿
∐

n∈N{
1
n
}.

(b) Consider the subset X = R \ Z ⊂ R viewed as a subspace of the real line R. As a
set, X is the disjoint union of intervals (n, n + 1) for all n ∈ Z. Show that X has the
coproduct topology

X =
∐
n∈Z

(n, n+ 1).

Exercise 2.14. Let X be a space and let J be a set, viewed as a discrete space. Show that
the canonical bijection

X × J ∼=
∐
j∈J

X

is a homeomorphism, where X × J has the product topology and
∐

j∈J X has the coproduct
topology.
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3 Quotient spaces

3.1 Quotient topology

Definition 3.1. Let X be a topological space and ∼ an equivalence relation on X, along
with the canonical projection π : X ↠ X/∼. The quotient topology on X/∼ is the largest
topology making π continuous.

Explicitly, a subset U ⊆ X/∼ is open if and only if its preimage π−1(U) ⊆ X is open in X.

Proposition 3.2. With the quotient topology on X/∼, a map g : X/∼ → Z is continuous if
and only if the composite g ◦ π : X → Z is continuous.

Proof. Exercise.

Proposition 3.3. The space X/∼ endowed with the quotient topology satisfies the universal
property of a quotient. More precisely, the projection π : X ↠ X/∼ is continuous, and for
any continuous map f : X → Z which is constant on equivalence classes, there is a unique
continuous map f : X/∼ → Z satisfying f = f ◦ π, i.e., making the diagram

X

π ��
��

f
// Z

X/∼
∃!f

==

commute.

Proof. By the universal property of the projection map in sets, there is a unique function
f : X/∼ → Z such that f = f ◦ π. It remains to check that f is continuous. By Proposi-
tion 3.2, the fact that f ◦ π is continuous guarantees that f is continuous.

Exercise 3.4. Show that the interval with its endpoints identified [0, 1]/0 ∼ 1 is homeomor-
phic to the circle S1.

Exercise 3.5. Consider the quotient group R/Z, where the equivalence relation on R is
x ∼ x′ ⇐⇒ x− x′ ∈ Z. Show that the quotient space is homeomorphic to the circle:

R/Z ∼= S1.

Definition 3.6. For n ≥ 0, the standard n-sphere is

Sn = {x ∈ Rn+1 | ∥x∥ = 1}

and the standard n-disk is
Dn = {x ∈ Rn | ∥x∥ ≤ 1}.

The boundary of the disk is a sphere of dimension one less:

∂Dn = Sn−1.
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Exercise 3.7. Show that the n-disk with its boundary collapsed to a point is homeomorphic
to the n-sphere Sn:

Dn/∂Dn ∼= Sn.

©2024 Martin Frankland All Rights Reserved 12
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3.2 Quotient maps

Definition 3.8. Let X and Y be topological spaces. A map q : X → Y is called a quotient
map or identification map if it is, up to homeomorphism, of the form π : X ↠ X/∼ where
X/∼ is endowed with the quotient topology. More precisely, q is a quotient map if there

exists an equivalence relation ∼ on X and a homeomorphism φ : X/∼
∼=−→ Y making the

diagram

X

π !! !!

q
// Y

X/∼

φ ∼=

OO

commute.

The definition implies that q must be continuous and surjective, and that the equivalence
relation ∼ on X must be the one induced by q, namely x ∼ x′ if and only if q(x) = q(x′).

How to recognize quotient maps? In sets, a quotient map is the same as a surjection. However,
in topological spaces, being continuous and surjective is not enough to be a quotient map.
The crucial property of a quotient map is that open sets U ⊆ X/∼ can be “detected” by
looking at their preimage π−1(U) ⊆ X.

Proposition 3.9. Let q : X ↠ Y be a surjective continuous map satisfying that U ⊆ Y is
open if and only if its preimage q−1(U) ⊆ X is open. Then q is a quotient map.

Proof. Let ∼ be the equivalence relation on X induced by q, that is, x ∼ x′ if and only if
q(x) = q(x′). By definition, q : X → Y is constant on equivalence classes. By the universal
property of the quotient spaceX/∼, there is a unique continuous map q : X/∼ → Y satisfying
q ◦ π = q, i.e., making the diagram

X

π ��
��

q
// // Y

X/∼
∃!q

==

commute. By construction, q is now bijective. To prove that it is a homeomorphism, it
remains to show that it is an open map.

Let U ⊆ X/∼ be open. We want to show that q(U) ⊆ Y is open. By assumption, q has
the property of “detecting” open subsets of Y , i.e., it suffices to check that the preimage
q−1(q(U)) ⊆ X is open. This preimage is

q−1(q(U)) = (q ◦ π)−1(q(U))

= π−1q−1(q(U))

= π−1(U) since q is injective

©2024 Martin Frankland All Rights Reserved 13
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which is open in X since π : X ↠ X/∼ is continuous.

Example 3.10. Let f : X → Y be a continuous bijection. If f is a quotient map, then it
must be a homeomorphism.

As discussed on September 7, a continuous bijection need not be a homeomorphism. Hence
those examples were also examples of continuous surjections that are not quotient maps.

Example 3.11. The winding map

p : R ↠ S1

p(t) = (cos(2πt), sin(2πt))

is a quotient map. Its restriction

p|[0,1] : [0, 1] ↠ S1

is also a quotient map. However, recall that the restriction

p|[0,1) : [0, 1) ↠ S1

is not a quotient map.

Exercise 3.12. Let f : X ↠ Y be a surjective continuous map.

(a) If f is an open map, show that f is a quotient map.

(b) If f is a closed map, show that f is a quotient map.

(c) Find an example of a quotient map q : R ↠ Y which is neither an open map nor a
closed map.

Exercise 3.13. Consider the quotient group R/Q, where the equivalence relation on R is
x ∼ x′ ⇐⇒ x − x′ ∈ Q. Show that the quotient topology on R/Q is indiscrete, i.e., only
the empty set ∅ and the entire set R/Q are open.
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4 Closure and limit points

4.1 Closure

Definition 4.1. Let X be a topological space and A ⊆ X a subset. The closure of A,
denoted A, is the smallest closed subset of X that contains A.

A point x ∈ A is called a closure point of A.

Lemma 4.2. The closure of any subset A ⊆ X exists.

Proof. The closed subset

A =
⋂

C⊆X closed
A⊆C

C

satisfies the required property.

Proposition 4.3. A point x ∈ X satisfies x ∈ A if and only if every neighborhood of x
intersects A.

Remark 4.4. The following conditions are also equivalent to x ∈ A:

� Every open neighborhood of x intersects A.

� Every basic open neighborhood of x intersects A (with respect to some base of the
topology on X).

The equivalence relies on the usual argument (cf. Homework 2 Problem 1):

� Every neighborhood of x contains an open neighborhood of x (by definition of neigh-
borhood).

� Every open neighborhood of x contains a basic open neighborhood of x.

Definition 4.5. Let (X, d) be a metric space and A ⊆ X a subset. The distance from a
point x ∈ X to the subset A is

d(x,A) := inf
a∈A

d(x, a).

Proposition 4.6. Let (X, d) be a metric space and A ⊆ X a subset. Then a point x ∈ X
satisfies x ∈ A if and only if d(x,A) = 0 holds.

Proof. Consider the equivalent conditions:

x ∈ A.

⇐⇒ For all ϵ > 0, we have B(x, ϵ) ∩ a ̸= ∅.

©2024 Martin Frankland All Rights Reserved 15



University of Regina MATH 441/841 - General Topology

⇐⇒ For all ϵ > 0, there is a point a ∈ A satisfying d(x, a) < ϵ.

⇐⇒ inf
a∈A

d(x, a) = 0 = d(x,A).

Definition 4.7. Let X be a topological space. A subset A ⊆ X is called dense in X if its
closure is all of X, that is, A = X.

Proposition 4.8. A subset A ⊆ X is dense in X if and only if every non-empty open subset
of X contains a point of A.

Proof. Consider the equivalent conditions on A:

A is dense in X, that is, A = X.

⇐⇒ For all x ∈ X, we have x ∈ A.

⇐⇒ For all x ∈ X and for all open neighborhood U of x, we have U ∩ A ̸= ∅.

⇐⇒ For all non-empty open subset U ⊆ X, we have U ∩ A ̸= ∅.

Remark 4.9. By the same argument as in Remark 4.4, A is dense in X if and only if every
non-empty basic open subset of X contains a point of A (for some base of the topology on
X).

Example 4.10. The rational numbers Q ⊂ R are dense in R.

The dyadic rational numbers

Z[
1

2
] = { p

2k
| p ∈ Z, k ≥ 0}

are also dense in R.

Example 4.11. Let X be a set equipped with the cofinite topology. Then any infinite subset
A ⊆ X is dense in X.
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4.2 Limit points

Definition 4.12. In a topological space X, a punctured neighborhood of a point x ∈ X
is a subset of the form N \ {x} where N ⊆ X is a neighborhood of x.

Example 4.13. In R, the subset (3, 4) ∪ (4, 6] is a punctured neighborhood of 4, namely
(3, 6] \ {4}.

Definition 4.14. Let X be a topological space and A ⊆ X a subset. A point x ∈ X is
a limit point of A if every punctured neighborhood of x intersects A. That is, for every
neighborhood N of x, we have (N \ {x}) ∩ A ̸= ∅.
The set of limit points of A is sometimes denoted A′.

Proposition 4.15. Let X be a topological space and A ⊆ X a subset. Then a point x ∈ X
is a closure point of A if and only if x belongs to A or is a limit point of A:

A = A ∪ A′.

Example 4.16. In the real line R, consider the subset A = {2}∪(5, 7]. Its set of limit points
is A′ = [5, 7] and its closure is A = {2} ∪ [5, 7].

Now consider the subset B = { 1
n
| n ∈ N}. Its set of limit points is B′ = {0} and its closure

is B = { 1
n
| n ∈ N} ∪ {0}.

Remark 4.17. The following conditions on a subset A ⊆ X are equivalent:

� A ⊆ X is closed.

� A equals its closure: A = A.

� A contains its closure points: A ⊆ A.

� A contains its limit points: A′ ⊆ A.

Definition 4.18. Let X be a topological space and A ⊆ X a subset. A point a ∈ A is an
isolated point of A if a admits a neighborhood N that contains no other point of a:

N ∩ A = {a}.

The negation of Definition 4.14 yields the following.

Proposition 4.19. A point a ∈ A is an isolated point of A if and only if it is not a limit
point of A:

{isolated points of A} = A \ A′.

Example 4.20. In Example 4.16, the only isolated point of A = {2} ∪ (5, 7] is the point 2.

In contrast, all points of B = { 1
n
| n ∈ N} are isolated points of B.
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4.3 Interior

Definition 4.21. Let X be a topological space and A ⊆ X a subset. The interior of A,
denoted int(A), is the largest open subset of X contained in A.

Lemma 4.22. The interior of any subset A ⊆ X exists.

Proof. The open subset

int(A) =
⋃

U⊆X open
U⊆A

U

satisfies the required property.

Definition 4.23. A point x ∈ X is an interior point of A if there exists an open subset
U ⊆ X satisfying x ∈ U ⊆ A.

With that terminology, the interior int(A) is the set of all interior points of A.

Example 4.24. In R, the interior of the subset A = {2} ∪ (5, 7] is int(A) = (5, 7).

The subset Q ⊂ R has empty interior: int(Q) = ∅.

Example 4.25. In Rn, the interior of the unit disk is the open unit disk:

int(Dn) = {x ∈ Rn | ∥x∥ < 1}.

Remark 4.26. The following conditions on a subset A ⊆ X are equivalent:

� A ⊆ X is open.

� A equals its interior: A = int(A).

� Every point of A is an interior point of A.

Proposition 4.27. Let X be a topological space and A ⊆ X a subset. Then we have

int(A)c = Ac

as well as
(A)c = int(Ac).
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Proof. Let us describe the complement of the interior:

int(A)c =

 ⋃
U⊆X open

U⊆A

U


c

by Lemma 4.22

=
⋂

U⊆X open
U⊆A

U c by De Morgan’s law

=
⋂

U⊆X open
Uc⊇Ac

U c

=
⋂

C⊆X closed
Ac⊆C

C relabeling C := U c

= Ac by Lemma 4.2.

The prove the second part, apply the first part to the subset Ac:

int(Ac)c = A

and take complements.
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5 Sequences

5.1 Continuity via the closure

Proposition 5.1. A function f : X → Y between topological spaces is continuous if and only
if the inclusion f(A) ⊆ f(A) holds for every subset A ⊆ X.

Proof. Recall that f is continuous if and only if for every closed subset C ⊆ Y , the preimage
f−1(C) ⊆ X is closed.

( =⇒ ) Let A ⊆ X be a subset. We want to show the inclusion

f(A) ⊆ f(A)

⇐⇒ A ⊆ f−1(f(A)).

Since f is continuous and f(A) ⊆ Y is closed, the preimage f−1(f(A)) ⊆ X is closed.
Moreover, the following inclusion holds:

A ⊆ f−1(f(A)) ⊆ f−1(f(A)).

Since A is the smallest closed subset containing A, we conclude A ⊆ f−1(f(A)), as desired.

( ⇐= ) Let C ⊆ Y be a closed subset. We want to show that the preimage f−1(C) ⊆ X is
closed, or equivalently:

f−1(C) ⊆ f−1(C)

⇐⇒ f(f−1(C)) ⊆ C.

Let us show that that inclusion does hold:

f(f−1(C)) ⊆ f(f−1(C)) by assumption on f

⊆ C since f(f−1(C)) ⊆ C

= C since C is closed.
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5.2 Sequences

Definition 5.2. A sequence (xn)n∈N in a topological space X is a family of points xn ∈ X
indexed by the natural numbers n ∈ N.

Definition 5.3. A sequence (xn)n∈N converges to a point x ∈ X if for every neighborhood
U of x, there exists an index N ∈ N such that xn ∈ U holds for all n ≥ N .

We write xn → x or xn
n→∞−−−→ x.

Definition 5.4. Let U ⊆ X be a subset. A sequence (xn)n∈N is eventually in U if there
exists an index N ∈ N such that xn ∈ U holds for all n ≥ N .

The sequence (xn)n∈N is frequently (or often) in U if for every index m ∈ N, there is an
index k ≥ m such that xk ∈ U holds.

In this terminology, a sequence (xn)n∈N converges to x ∈ X if for every neighborhood U of
x, the sequence (xn)n∈N is eventually in U .

Example 5.5. If a sequence (xn)n∈N is eventually constant at a point x ∈ X, then (xn)n∈N
converges to x.

Remark 5.6. Changing finitely many terms of a sequence does not change its convergence
behavior. If (xn) and (yn) are sequences in X that eventually coincide, i.e., there is an index
N ∈ N such that xn = yn holds for all n ≥ N , then we have xn → x if and only if yn → x.

Example 5.7. In a discrete space X, the only convergent sequences (xn)n∈N are those that
are eventually constant. Indeed, given xn → x, the sequence (xn)n∈N must be eventually in
the neighborhood {x} of x.

Exercise 5.8. Let X be a set endowed with the cocountable topology. Show that the only
convergent sequences (xn)n∈N in X are those that are eventually constant.

Proposition 5.9. In a metric space (X, d), a sequence (xn)n∈N converges to x if and only if
the distance d(xn, x) converges to 0:

xn → x ⇐⇒ d(xn, x) → 0.

Proof. Consider the following chain of equivalent conditions.

xn → x.

def⇐⇒ For all neighborhood U of x, the sequence (xn) is eventually in U .

⇐⇒ For all radius ϵ > 0, the sequence (xn) is eventually in the open ball B(x, ϵ).

def⇐⇒ For all ϵ > 0, the distance d(xn, x) is eventually less than ϵ.

⇐⇒ d(xn, x) → 0.
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Warning! In a topological space, the limit of a sequence need not be unique.

Example 5.10. In an indiscrete space X, every sequence (xn)n∈N converges to every point
x ∈ X.

Example 5.11. Consider R endowed with the cofinite topology and consider the sequence
defined by xn = n for all n ∈ N. Then that sequence (xn)n∈N converges to every point x ∈ R.

The same argument works for any sequence (xn)n∈N with distinct values xn.

We will see that in a Hausdorff space, the limit of a sequence is unique (if it exists).
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5.3 Limit point versus limit of a sequence

Proposition 5.12. Let X be a space and A ⊆ X a subset. If (an)n∈N is a sequence in A
that converges to a point x ∈ X, then x is a closure point of X:

an → x =⇒ x ∈ A.

Proof. Let U be a neighborhood of x. By the condition an → x, there is an index N ∈ N
such that an ∈ U holds for all n ≥ N . In particular, we have aN ∈ U ∩ A ̸= ∅.

In a metric space, the converse holds.

Proposition 5.13. Let (X, d) be a metric space, A ⊆ X a subset, and x ∈ A. Then there
exists a sequence (an)n∈N in A converging to x.

Proof. For each n ∈ N, the open ball B(x, 1
n
) must intersect A, since x is a closure point of

A. Pick a point

an ∈ B(x,
1

n
) ∩ A ̸= ∅.

Then the sequence (an)n∈N in A converges to x:

d(an, x) <
1

n

n→∞−−−→ 0

=⇒ d(an, x) → 0

=⇒ an → x

using Proposition 5.9.

The analogous statement is not true in a general topological space: not all closure points of
A are limits of sequences in A.

Definition 5.14. Let X be a topological space and A ⊆ X a subset. The sequential
closure of A is the set of all limits of sequences in A, denoted

A
seq

= {x ∈ X | there is a sequence (an)n∈N in A with an → x}.

The inclusions
A ⊆ A

seq ⊆ A

always hold, the first one because of constant sequences, the second one by Proposition 5.12.

Example 5.15. Let X be a set endowed with the cocountable topology. For any subset
A ⊆ X, we have A

seq
= A, by Exercise 5.8.

On the other hand, any uncountably infinite subset A is dense in X, i.e., A = X. For such
a subset, the inclusion

A
seq ⊂ A

is proper.
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6 Hausdorff spaces

6.1 Definitions and examples

Definition 6.1. A topological space X is Hausdorff (or T2) if for any distinct points
x, y ∈ X, there exist open subsets U, V ⊂ X satisfying x ∈ U , y ∈ V , and U ∩ V = ∅.
In other words, distinct points can be separated by neighborhoods.

Example 6.2. Every metric space is Hausdorff. Given distinct points x, y ∈ X, we have
d(x, y) > 0. Take the open balls U = B(x, d(x,y)

2
) and V = B(y, d(x,y)

2
). Then U and V are

disjoint, by the triangle inequality.

Example 6.3. Every discrete space X is Hausdorff. Given distinct points x, y ∈ X, take
the open neighborhoods U = {x} and V = {y}.

Example 6.4. An indiscrete space X with at least two points is not Hausdorff. Indeed, the
only neighborhood of a point x is the entire set X.

Example 6.5. Let X be a set endowed with the cofinite topology. Then the following are
equivalent.

1. X is Hausdorff.

2. X is discrete.

3. X is finite.

Proof. The equivalence (2) ⇐⇒ (3) was proved on Homework 1 Problem 2. The implication
(2) =⇒ (1) is Example 6.3. Let us prove (1) =⇒ (3) by contraposition.

Assume that X is infinite and pick any two points x, y ∈ X. Let U and V be neighborhoods
of x and y respectively. Then U and V are cofinite:

U = X \ {x1, . . . , xm}

V = X \ {y1, . . . , yn}.

Since X is infinite, the intersection

U ∩ V = X \ {x1, . . . , xm, y1, . . . , yn}

must contain a point (in fact, infinitely many).

Proposition 6.6. 1. A subspace of a Hausdorff space is Hausdorff.

2. An arbitrary product of Hausdorff spaces is Hausdorff.

3. An arbitrary coproduct of Hausdorff spaces is Hausdorff.
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Proof. (1) Let X be a Hausdorff space and A ⊆ X a subspace. Let a, b ∈ A be distinct
points. Since X is Hausdorff, there exist open subsets U, V ⊂ X satisfying a ∈ U , b ∈ V ,
and U ∩ V = ∅. Then U ∩A is an open subset of A containing a, V ∩A is an open subset of
A containing b, and they are still disjoint:

(U ∩ A) ∩ (V ∩ A) = U ∩ V ∩ A = ∅ ∩ A = ∅.

(2) Let {Xα} be a family of Hausdorff spaces. We want to show that the product
∏

αXα is
Hausdorff. Let x = (xα) and y = (yα) be distinct points in

∏
αXα. Then there exists some

index α0 for which x and y have distinct components:

xα0 ̸= yα0 ∈ Xα0 .

Since Xα0 was assumed Hausdorff, there exist disjoint open subsets Uα0 , Vα0 ⊂ Xα0 satisfying
xα0 ∈ Uα0 and yα0 ∈ Vα0 . Define the “large open box” U =

∏
α Uα ⊂

∏
αXα by

Uα =

{
Uα0 if α = α0

Xα if α ̸= α0.

Then U is open in the product topology and contains the point x. Similarly, define the “large
open box” V =

∏
α Vα ⊂

∏
α Xα by

Vα =

{
Vα0 if α = α0

Xα if α ̸= α0.

Then V is an open neighborhood of the point y. Moreover, U and V are disjoint:

U ∩ V = (
∏
α

Uα) ∩ (
∏
α

Vα)

=
∏
α

(Uα ∩ Vα)

= ∅

because of the condition Uα0 ∩ Vα0 = ∅.
(3) See Homework 6 Graduate Problem 3.

Remark 6.7. Quotients of Hausdorff spaces need not be Hausdorff.

Example 6.8 (Line with two origins). Consider the disjoint union of two lines R×{1, 2} ∼=
R
∐

R. Take the quotient space

X = (R× {1, 2})/∼

where the equivalence relation is generated by (t, 1) ∼ (t, 2) for all t ̸= 0. In other words, we
glue together the two lines everywhere except at the origin.

This space X is not Hausdorff, because the two distinct origins [(0, 1)] and [(0, 2)] cannot be
separated by neighborhoods. For any open neighborhoods U of [(0, 1)] and V of [(0, 2)] in
X, we have U ∩ V ̸= ∅.
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6.2 Properties of Hausdorff spaces

Definition 6.9. The diagonal of a topological space X is the set

∆ := {(x, x) ∈ X ×X | x ∈ X} ⊆ X ×X.

Proposition 6.10. A topological space X is Hausdorff if and only if the diagonal ∆ is closed
in X ×X.

Proof. Consider the following equivalent statements.

The diagonal ∆ ⊆ X ×X is closed.

⇐⇒ The complement X ×X \∆ ⊆ X ×X is open.

⇐⇒ For every (x, y) /∈ ∆, there is a basic open neighborhood U × V of (x, y) satisfying
(U × V ) ∩∆ = ∅.

⇐⇒ For every distinct points x, y ∈ X, there are open subsets U, V ⊂ X with x ∈ U , y ∈ V ,
and U ∩ V = ∅.

def⇐⇒ X is Hausdorff.

Proposition 6.11 (Uniqueness of limits). Let X be a Hausdorff space, and (xn)n∈N a se-
quence in X with xn → x and xn → y. Then x = y.

In other words: Limits of sequences are unique (if they exist).

Proof. Assume xn → x and let y ∈ X be a point distinct from x. Since X is Hausdorff,
there exist disjoint open subsets U, V ⊂ X with x ∈ U and y ∈ V . Since the sequence (xn)
converges to x, there exists an index N such that xn ∈ U holds for all n ≥ N . Since U and V
are disjoint, the condition xn /∈ V holds for all n ≥ N . In particular, (xn) is not eventually
in V , so that (xn) cannot converge to y.

Remark 6.12. In a Hausdorff space X, we can safely write the condition xn → x as

lim
n→∞

xn = x.

There is no ambiguity, since the sequence (xn)n∈N has at most one limit.
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7 Countability axioms

7.1 First-countable spaces

Definition 7.1. Let X be a topological space. A neighborhood base at a point x ∈ X is
a collection Bx of neighborhoods of x such that for any neighborhood N of x, there is some
B ∈ B satisfying B ⊆ N .

Remark 7.2. Given a base B of the topology on X, for any x ∈ X, the collection

Bx := {B ∈ B | x ∈ B}

is a neighborhood base at x. Conversely, given a neighborhood base Bx for each point x ∈ X,
their union

B :=
⋃
x∈X

Bx

forms a base of the topology on X.

Definition 7.3. A topological space X is first-countable if every point x ∈ X has a
countable neighborhood base.

Example 7.4. Every metric space is first-countable. For x ∈ X, consider the neighborhood
base

Bx = {B(x, r) | r > 0, r ∈ Q}

consisting of open balls around x of rational radius.

The collection of open balls

{B(x,
1

n
) | n ∈ N}

is another countable neighborhood base at x.

Remark 7.5. Given a countable neighborhood base Bx at a point x, choose a labeling
Bx = {B1, B2, B3, . . .}. Without loss of generality, we may assume that the Bn are nested
(decreasing), by replacing Bn with

⋂n
i=1Bi. The collection

{
n⋂

i=1

Bi | n ∈ N}

also forms a neighborhood base at x.

Proposition 7.6. Let X be a first-countable topological space and A ⊆ X a subset. Let
x ∈ A be in the closure of A. Then there exists a sequence (an)n∈N in A satisfying an → x.

In other words, the sequential closure of A coincides with the closure: A
seq

= A.

Corollary 7.7. Let X be a first-countable topological space.
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1. A subset C ⊆ X is closed if and only if whenever a sequence (xn)n∈N in C satisfies
xn → x, then we have x ∈ C.

2. A subset U ⊆ X is open if and only if whenever a sequence (xn)n∈N in X satisfies
xn → x ∈ U , then the sequence is eventually in U .

Example 7.8. The space RN with the box topology is not first-countable. On Homework 5
Problem 2, we found a subset A = {x ∈ RN | xn > 0 for all n ∈ N} and a point 0 =
(0, 0, 0, . . .) ∈ A which is not the limit of any sequence in A.

Example 7.9. Let X be an uncountable set equipped with the cocountable topology. Then
X is not first-countable. In the notes from September 28 Example 3.4, we saw that for any
uncountable subset A ⊂ X and x ∈ X \ A, the point x is in A but is not the limit of any
sequence in A.

Example 7.10. Let X be an uncountable set equipped with the cofinite topology. Then X
is not first-countable. (See Homework 6 Problem 2.)

This can be shown directly. It cannot be shown using sequences, since in the cofinite topology,
the sequential closure coincides with the closure:

A
seq

= A =

{
A if A is finite

X if A is infinite.

Proposition 7.11. 1. A subspace of a first-countable space is first-countable.

2. A countable product of first-countable spaces is first-countable.

3. An arbitrary coproduct of first-countable spaces is first-countable.

Proof. (1) Let X be a first-countable space and A ⊆ X a subset, endowed with the subspace
topology. Let a ∈ A. Since X is first-countable, the point a ∈ X admits a countable
neighborhood base Ba in X. Then the collection

{B ∩ A | B ∈ Ba}

is a countable neighborhood base at a in A.

(2) Let {Xi}i∈N be a countable family of first-countable spaces. We want to show that their
product

∏
i∈N Xi (with the product topology) is also first-countable.

Let x = (x1, x2, . . .) ∈
∏

i∈NXi. We want to find a countable neighborhood base at x.
Because each space Xi is first-countable, there is a countable neighborhood base Bxi

at
xi ∈ Xi. Without loss of generality, assume Xi ∈ Bxi

(which will simplify the notation).
Consider the collection of subsets of

∏
i∈N Xi

Bx := {
∏
i∈N

Bi | Bi ∈ Bxi
and Bi ̸= Xi for at most finitely many i}.

Note that each B ∈ B is a neighborhood of x. We claim that B is a countable neighborhood
base at x.
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Bx is a neighborhood base at x. Any neighborhood of x contains a basic open neigh-
borhood

∏
i Ui of x, where Ui ⊆ Xi is open, and Ui ̸= Xi for at most finitely many i.

Since Bxi
is a neighborhood base at xi ∈ Xi, there is some Bi ∈ Bxi

satisfying Bi ⊆ Ui,
where we pick Bi = Xi for every index i satisfying Ui = Xi. By construction, we have
B :=

∏
i Bi ∈ Bx and B ⊆

∏
i Ui.

Bx is countable. Rewrite the collection Bx as

Bx = {
∏
i∈N

Bi | Bi ∈ Bxi
and Bi ̸= Xi for at most finitely many i}

=
⋃
n∈N

{
∏
i∈N

Bi | Bi ∈ Bxi
and Bi ̸= Xi possibly for i ≤ n but Bi = Xi for i > n}

=:
⋃
n∈N

B(n)
x .

Each of those “finitely supported” subcollections B(n)
x is in bijection with

B(n)
x

∼=
n∏

i=1

Bxi

where the latter is a finite product of countable sets, hence countable. Therefore Bx is a
countable union of countable sets, hence countable.

Part (3) is left as an exercise.
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7.2 Sequential continuity

Definition 7.12. Let X and Y be topological spaces. For x ∈ X, a function f : X → Y
is sequentially continuous at x if whenever xn → x holds, we have f(xn) → f(x). The
function f is sequentially continuous if it is sequentially continuous at x for every x ∈ X.

Proposition 7.13. Let X and Y be topological spaces, where X is first-countable. A function
f : X → Y is continuous at x ∈ X if and only if whenever xn → x holds, we have f(xn) →
f(x).

In other words, continuity always implies sequential continuity, but if the domain X is first-
countable, then continuity is equivalent to sequential continuity.

Proof. ( =⇒ ) That implication holds for all topological spaces.

( ⇐= ) Assume f is discontinuous at x ∈ X, which means there is a neighborhood N of f(x)
such that for any neighborhood M of x, we have f(M) ⊈ N . Since X is first-countable,
there is a countable neighborhood base M1 ⊇ M2 ⊇ M3 ⊇ . . . of x. Because of the condition
f(Mn) ⊈ N , we can pick xn ∈ Mn satisfying f(xn) /∈ N .

Then the sequence {xn}n∈N satisfies xn → x but f(xn) is never in N , so in particular we have
f(xn) ↛ f(x).

Alternate proof. Recall that f is continuous if and only if for every subset A ⊆ X, the
inclusion f(A) ⊆ f(A) holds. The inclusion A

seq ⊆ A holds in any space. Since X is first-
countable, the sequential closure coincides with the closure: A

seq
= A. The assumption that

f is sequentially continuous guarantees f(A
seq

) ⊆ f(A)
seq

. Combining those inclusions yields

f(A) = f(A
seq

) ⊆ f(A)
seq

⊆ f(A).
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7.3 Second-countable spaces

Definition 7.14. A topological spaceX is second-countable if its topology has a countable
base.

Example 7.15. Euclidean space Rn is second-countable, because the collection

B = {B(x, r) | x ∈ Qn, r > 0, r ∈ Q}

consisting of open balls of rational radius around points with rational coordinates is a base
for the topology, and B is a countable collection.

Proposition 7.16. A second-countable space is always first-countable.

Proof. Let B be a countable base for the topology of X, and let x ∈ X. Then the collection

Bx = {B ∈ B | x ∈ B}

is a neighborhood base for x, and it is countable.

Remark 7.17. The converse does not hold. For example, consider X an uncountable set
endowed with the discrete topology. Then X is first-countable but not second-countable.

Remark 7.18. We have seen that a metric space is always first-countable. However, it need
not be second-countable. For example, consider again X an uncountable set endowed with
the discrete topology. Then X is metrizable but not second-countable.

In diagrams:

metric

×qy ��

second-countable +3 first-countable.

×
^f

Definition 7.19. A topological space X is called separable if it contains a countable dense
subset.

Proposition 7.20. A second-countable space is always separable.

Proof. Let B = {Bi}i∈N be a countable base for the topology of X. Pick a point bi ∈ Bi in
each basic open, and consider the set A := {bi | i ∈ N}. Then A is countable, and moreover
it is dense in X.

Indeed, any non-empty open subset U ⊆ X is a union of basic open subsets U =
⋃

j∈J Bj for
some J ⊆ N. Hence, U contains the points bj ∈ U ∩ A for all j ∈ J . This shows that A is
dense in X (by Proposition 1.8 of the notes from September 23).

On Homework 6 Problem 2, you show that the converse fails: separable does not imply
second-countable, in fact not even first-countable.
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8 Compactness

8.1 Definitions and examples

Definition 8.1. Let X be a topological space.

� A cover of X is a collection {Uα}α∈A of subsets Uα ⊆ X satisfying X =
⋃

α∈A Uα.

� An open cover of X is a cover {Uα}α∈A where each Uα is open in X.

� A subcover of {Uα}α∈A is a subcollection {Uβ}β∈B (for some B ⊆ A) which is still a
cover, that is, X =

⋃
β∈B Uβ.

Definition 8.2. A topological space X is compact if for every open cover {Uα}α∈A of X,
there is a finite subcover {Uα1 , . . . , Uαn}, that is, X = Uα1 ∪ . . . ∪ Uαn .

Example 8.3. A finite topological space is compact. Indeed, let {Uα} be an open cover of
X. For each point x ∈ X, choose some Uα(x) containing x. Then we obtain a finite subcover

X =
⋃
x∈X

Uα(x).

Example 8.4. An indiscrete space is compact.

Example 8.5. More generally, a space endowed with a finite topology T is compact. Indeed,
any collection of open subsets U ⊆ T is then finite.

Exercise 8.6. Show that a space endowed with the cofinite topology is compact.

Example 8.7. A discrete space is compact if and only if it is finite.

Proof. ( ⇐= ) Every finite space X is compact, by Example 8.3.

( =⇒ ) Since the space X is discrete, each singleton {x} is open in X. The equality

X =
⋃
x∈X

{x}

means that the collection {{x}}x∈X of all singletons is an open cover of X. Since X is
compact, there is a finite subcover {{x1}, . . . , {xn}}, which means

X = {x1} ∪ . . . ∪ {xn} = {x1, . . . , xn},

so that X is finite.

Example 8.8. The real line R is not compact. Indeed, the open cover {(n−1, n+1) | n ∈ Z}
admits no finite subcover.

Example 8.9. The interval (0, 1] is not compact. Indeed, the open cover {( 1
n
, 1] | n ∈ N, n ≥ 2}

admits no finite subcover.
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8.2 Facts about compactness

Proposition 8.10. Let X be a topological space and Y ⊆ X a subspace. Then Y is compact
if and only if for every collection {Uα}α∈A of open subsets Uα ⊆ X satisfying Y ⊆

⋃
α∈A Uα,

there is a finite subcollection {Uα1 , . . . , Uαn} satisfying Y ⊆ Uα1 ∪ . . . ∪ Uαn.

Proposition 8.11. Let K1, . . . , Kn be compact subspaces of X. Then their union K1∪. . .∪Kn

is compact.

Slogan: “finite union of compact is compact”.

Proof. It suffices to prove the case n = 2. Let {Uα}α∈A be an open cover of K1 ∪K2 in X,
that is:

K1 ∪K2 ⊆
⋃
α∈A

Uα.

Since each Ki is compact, for i = 1, 2, there is a finite subcover

Ki ⊆
⋃
α∈Bi

Uα

for some finite subset Bi ⊆ A. Taking the union of those finite indexing sets yields a finite
set B := B1 ∪B2 ⊆ A and a corresponding finite subcover

K1 ∪K2 ⊆
⋃

α∈B1

Uα ∪
⋃

α∈B2

Uα =
⋃
α∈B

Uα.

Proposition 8.12. Let f : K → Y be a continuous map between topological spaces, where K
is compact. Then f(K) is compact.

Slogan: “continuous image of compact is compact”.

Proof. Let f(K) ⊆
⋃

α∈A Vα be an open cover of f(K) in Y . Then their preimages form an
open over of K:

K = f−1(f(K))

= f−1

(⋃
α∈A

Vα

)

=
⋃
α∈A

f−1(Vα).

Since K is compact, there is a finite subcover

K = f−1(Vα1) ∪ · · · ∪ f−1(Vαn)

= f−1(Vα1 ∪ · · · ∪ Vαn).

Applying f yields the inclusion

f(K) ⊆ f
(
f−1(Vα1 ∪ · · · ∪ Vαn)

)
⊆ Vα1 ∪ · · · ∪ Vαn

which is a finite subcover of the given {Vα}α∈A.
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Corollary 8.13. A quotient of a compact space is always compact.

Proposition 8.14. Let K be a compact topological space and C ⊆ K a closed subspace.
Then C is compact.

Slogan: “closed in compact is compact”.

Proof. Let C ⊆
⋃

α∈A Uα be an open cover of C in K. Then

K = C ∪ Cc =

(⋃
α∈A

Uα

)
∪ Cc

is an open cover of K, since Cc is open in K. Since K is compact, there is a finite subcover

K = Uα1 ∪ · · · ∪ Uαn ∪ Cc

where we included Cc without loss of generality (otherwise just add Cc to the finite subcover).
This yields a finite subcover of C

C ⊆ Uα1 ∪ · · · ∪ Uαn ,

showing that C is compact.

Proposition 8.15. Let X be a Hausdorff topological space and K ⊆ X a compact subspace.
Then K is closed in X.

Slogan: “compact in Hausdorff is closed”.

Proof. Let x ∈ Kc = X \ K. We want to show that x is an interior point of Kc. Since X
is Hausdorff, for each y ∈ K, we can find Uy and Vy disjoint open neighborhoods of x and y
respectively:

x ∈ Uy, y ∈ Vy, Uy ∩ Vy = ∅.

Then K ⊆
⋃

y∈K Vy is an open cover of K in X. Since K is compact, there is a finite subcover

K ⊆ Vy1 ∪ · · · ∪ Vyn .

The corresponding neighborhoods Uyi of x yield an open neighborhood of x

U := Uy1 ∩ · · · ∩ Uyn

which is disjoint from K, since U ∩ Vyi = ∅ holds for each i = 1, . . . , n. In other words, we
have

x ∈ U ⊆ Kc,

which shows that x is an interior point of Kc.

The assumption that X be Hausdorff cannot be dropped from the statement.
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Example 8.16. Let X be an indiscrete space. Then every subspace Y ⊂ X is compact,
though most of them are not closed in X. Only the empty set ∅ and X itself are closed in
X.

Example 8.17. Let X be a space with the cofinite topology. Then every subspace Y ⊂ X
is compact, though most of them are not closed in X. Only the finite subsets and X itself
are closed in X.

Proposition 8.18. Let f : K → Y be a continuous map between topological spaces, where K
is compact and Y a Hausdorff. Then f is a closed map.

In particular, if f is a continuous bijection, then f is a homeomorphism.

Proof. Let C ⊆ K be a closed subset. Since K is compact and C ⊆ K is closed, C is itself
compact, by Proposition 8.14. Hence its image f(C) under the continuous map f is also
compact, by Proposition 8.12. Since Y is Hausdorff and f(C) is compact, then f(C) ⊆ Y is
closed, by Proposition 8.15.
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8.3 An important example

A basic example of compact space, yet one of the most important, is provided by the following
classic theorem.

Theorem 8.19 (Bolzano–Weierstrass). The interval [0, 1] is compact.

Proof. Suppose [0, 1] is not compact, i.e., there exists an open cover {Uα}α∈A which does not
admit a finite subcover. Then either [0, 1

2
] or [1

2
, 1] (or both) cannot be covered by a finite

subcover. Call this new interval [a1, b1], where we write [a0, b0] := [0, 1].

Repeating the argument, for every n ≥ 0, we obtain an interval [an, bn] which cannot be
covered by a finite subcover, and each interval has length bn − an = 1

2n
. Moreover, the

intervals are nested (decreasing):

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . .

The sequences {an}n∈N and {bn}n∈N are monotone and bounded, therefore they converge, say
an → a and bn → b. We have

lim
n→∞

(bn − an) = lim
n→∞

bn − lim
n→∞

an

lim
n→∞

1

2n
= b− a = 0

so that a = b. This point a ∈ [0, 1] lies in some Uα0 , which is open, so we can find some
small radius ϵ > 0 such that the open ball satisfies the inclusion (a− ϵ, a+ ϵ) ⊆ Uα0 . (To be
nitpicky, we should instead write (a− ϵ, a+ ϵ) ∩ [0, 1], which is an open ball in [0, 1].)

By the convergence an → a and bn → a, for n large enough we have [an, bn] ⊂ (a− ϵ, a+ ϵ) ⊆
Uα0 . These intervals [an, bn] can thus be covered by a finite subcover, namely the collection
{Uα0} consisting of only one member. This contradicts the construction of [an, bn].

Remark 8.20. Any closed interval [a, b] ⊂ R is homeomorphic to [0, 1] and thus also compact.

Example 8.21. Consider the continuous map

f : [0, 2π] → S1

t 7→ (cos t, sin t)

which induces a continuous map on the quotient

f : [0, 2π]/∼ → S1

where the equivalence relation ∼ identifies the endpoints of the interval, i.e., is generated by
0 ∼ 2π. Then f is a continuous bijection, the domain [0, 2π]/∼ is compact (as a quotient of
a compact space), and S1 is Hausdorff. Therefore f is a homeomorphism.
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9 The tube lemma and applications

9.1 The tube lemma

Lemma 9.1 (The tube lemma). Let X and Y be topological spaces with Y compact. Let
x ∈ X and let O ⊆ X × Y be an open subset containing the “slice” {x} × Y . Then there
exists a “tube” U × Y (where U ⊆ X is open) satisfying

{x} × Y ⊆ U × Y ⊆ O.

Proof. For each y ∈ Y , consider the point (x, y) ∈ {x} × Y ⊆ O. Since O is open, there is a
basic open neighborhood By = Ux,y × Vy of (x, y) satisfying

(x, y) ∈ Ux,y × Vy ⊂ O.

As y varies, those open boxes cover the slice:

{x} × Y ⊆
⋃
y∈Y

By.

Note that the slice {x} × Y is homeomorphic to Y . Since Y is compact, there exists a finite
subcover

{x} × Y ⊆ By1 ∪ · · ·Byn .

Take U := Ux,y1 ∩ · · ·Ux,yn , which is an open neighborhood of x in X. We claim that the
“tube” U × Y is of the desired form. Indeed, the following inclusion holds:

U × Y = U ×

(
n⋃

i=1

Vyi

)

=
n⋃

i=1

(U × Vyi)

⊆
n⋃

i=1

(Ux,yi × Vyi) since U ⊆ Ux,yi for each i

=
n⋃

i=1

Byi

⊆
⋃
y∈Y

By

⊆ O since By ⊆ O for each y ∈ Y.

Theorem 9.2. Let X and Y be compact spaces. Then their product X × Y is compact.

Proof. We can show this using the tube lemma. See [Mun00, Theorem 26.7].
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9.2 Closed graph theorem

Proposition 9.3. Let X and Y be topological spaces with Y compact. Then the projection
pX : X × Y → X is a closed map.

Proof. Let C ⊆ X × Y be a closed subset. We want to show that its image pX(C) ⊆ X is
closed. We will show that the complement pX(C)c = X\pX(C) is open inX. Let x ∈ pX(C)c.
This condition on x can be expressed as

x ∈ pX(C)c ⇐⇒ x /∈ pX(C)

⇐⇒ for all (x′, y′) ∈ C, pX(x
′, y′) = x′ ̸= x

⇐⇒ for all y ∈ Y, (x, y) /∈ C

⇐⇒ {x} × Y ⊆ Cc = (X × Y ) \ C.

Since Cc ⊆ X × Y is an open subset containing the slice {x} × Y and Y is compact, by the
tube lemma, there is a tube U × Y satisfying

{x} × Y ⊆ U × Y ⊆ Cc.

Taking complements yields the inclusion

C ⊆ (U × Y )c = U c × Y.

Projecting onto X yields the inclusion

pX(C) ⊆ pX(U
c × Y ) = U c.

Taking complements again yields
U ⊆ pX(C)c,

so that x is an interior point of pX(C)c.

Remark 9.4. The assumption that Y be compact cannot be removed in general. For example,
the projection p[0,1] : [0, 1]× R → [0, 1] is not a closed map. See Homework 3 Problem 3(b).

Proposition 9.5. Let f : X → Y be a function between topological spaces where Y is com-
pact. If the graph Γf ⊆ X × Y is closed, then f is continuous.

Proof. We will show that f is pointwise continuous at x for every x ∈ X. Let x ∈ X and
let V ⊆ Y be an open neighborhood of f(x). We want to find an open neighborhood U of x
satisfying f(U) ⊆ V . Consider the slice {x} × Y ⊆ X × Y . For each y ∈ Y with y ̸= f(x),
the point (x, y) does not lie on the graph Γf . Since the graph Γf ⊆ X × Y was assumed
closed, there is a basic open neighborhood By = Ux,y × Vy satisfying

(x, y) ∈ By ⊆ X × Y \ Γf .
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For y = f(x), take Bf(x) = X × V . As y varies, those open boxes cover the slice:

{x} × Y ⊆
⋃
y∈Y

By.

Since Y is compact, by the tube lemma, there is a tube U × Y satisfying

{x} × Y ⊆ U × Y ⊆
⋃
y∈Y

By.

For all x′ ∈ U , we have

(x′, f(x′)) ∈ U × Y ⊆
⋃
y∈Y

By.

But for y ̸= f(x), the open box By contains no point on the graph: By ∩ Γf = ∅, hence
(x′, f(x′)) /∈ By. This forces (x

′, f(x′)) to be in the one remaining box:

(x′, f(x′)) ∈ Bf(x) = X × V.

This shows f(x′) ∈ V and thus f(U) ⊆ V .

Alternate proof. Let C ⊆ Y be a closed subset. We want to show that its preimage f−1(C) ⊆
X is closed. Consider the equivalent conditions:

x ∈ f−1(C) ⇐⇒ f(x) ∈ C

⇐⇒ (x, f(x)) ∈ X × C

⇐⇒ ∃y ∈ Y with (x, y) ∈ Γf ∩ (X × C)

⇐⇒ x ∈ pX(Γf ∩ (X × C))

yielding the equality
f−1(C) = pX(Γf ∩ (X × C)).

Since the graph Γf ⊆ X × Y was assumed closed, the intersection Γf ∩ (X × C) ⊆ X × Y
is closed as well. Since Y is compact, the projection pX : X × Y → X is a closed map (by
Proposition 9.3). Therefore, the subset

pX(Γf ∩ (X × C)) = f−1(C)

is closed in X.

Corollary 9.6 (Closed graph theorem). Let f : X → Y be a function between topological
spaces with Y compact Hausdorff. Then f is continuous if and only if its graph Γf ⊆ X × Y
is closed.

Proof. The implication ( =⇒ ) follows from Hausdorffness of Y and Homework 6 Prob-
lem 1(a). The implication ( ⇐= ) follows from compactness of Y and Proposition 9.5.

Remark 9.7. The assumption that Y be compact cannot be removed in general. For example,
consider the function f : [0, 1] → R defined by

f(x) =

{
0 if x = 0
1
x

if x > 0.

Then the graph Γf ⊆ [0, 1]× R is closed, but f is not continuous.
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9.3 Compactness in Rn

Definition 9.8. Let (X, d) be a metric space. The diameter of a subset A ⊆ X is

diam(A) := sup
x,y∈A

d(x, y).

A subset A ⊆ X is called bounded if it has finite diameter. Equivalently, the distance
between points in A is bounded above: there exists an M ∈ R such that the inequality
d(x, y) ≤ M holds for all x, y ∈ A.

Example 9.9. A finite union of balls
⋃n

i=i B(xi, ri) is bounded.

Example 9.10. A subset of a bounded set is also bounded.

Exercise 9.11. Show that a subset A ⊆ X is bounded if and only if it is contained in some
ball, i.e., there exists a point x ∈ X and a radius r > 0 satisfying A ⊆ B(x, r).

Remark 9.12. Boundedness is a metric property but not a topological invariant. For example,
consider the real line R and the open interval (0, 1) with their usual metrics. They are
homeomorphic: R ∼= (0, 1), but R is unbounded whereas (0, 1) is bounded.

Lemma 9.13. Let (X, d) be a metric space and K ⊆ X a compact subspace. Then K is
bounded.

Proof. Pick any point x ∈ X and consider the open cover by increasingly large open balls

K ⊆
⋃
n∈N

B(x, n).

Since K is compact, there is a finite subcover

K ⊆ B(x, n1) ∪ . . . ∪B(x, nk) = B(x,N)

with N = max{n1, . . . , nk}. Therefore K is bounded.

Alternate proof. Consider the open cover by open balls

K ⊆
⋃
x∈K

B(x, 1).

Since K is compact, there is a finite subcover

K ⊆ B(x1, 1) ∪ . . . ∪B(xk, 1).

Since a finite union of balls is bounded, so is K.

Theorem 9.14 (Heine–Borel theorem). A subset A ⊆ Rn is compact if and only if it is
closed and bounded.
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Proof. A compact subset A ⊆ Rn is closed, since Rn is Hausdorff. Moreover, A is bounded,
by Lemma 9.13.

Conversely, let A ⊆ Rn be closed and bounded. Since A is bounded, it is contained in some
closed box

B = [a1, b1]× · · · × [an, bn].

By the Bolzano–Weierstrass theorem, the closed interval [ai, bi] is compact. Since a finite
product of compact spaces is compact (Theorem 9.2), the closed box B is compact. Since A
is closed in Rn, it is also closed in B. Hence A is compact, since a closed subset of a compact
space is compact.

Remark 9.15. We have seen that any compact subspace K ⊆ X of a metric space is closed
and bounded. The converse fails in general. For example, let X be an infinite set equipped
with the discrete metric

d(x, y) =

{
0 if x = y

1 if x ̸= y,

which induces the discrete topology. Every subset A ⊆ X is closed, since the topology is
discrete. Moreover, every subset A ⊆ X is bounded: diam(A) = 1 (or 0 if A is a singleton).
However, a subset A ⊆ X is compact if and only if it is finite.

Example 9.16. The following spaces are compact.

(a) The n-cube In = [0, 1]n ⊂ Rn.

(b) The n-disk
Dn = {x ∈ Rn | ∥x∥ ≤ 1}

(c) The n-sphere
Sn = {x ∈ Rn+1 | ∥x∥ = 1}.

(d) The n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1 |
n∑

i=0

xi = 1, xi ≥ 0 for all i}.

In fact, the n-simplex is homeomorphic to the n-disk: ∆n ∼= Dn.

Corollary 9.17 (Extreme value theorem). Let f : D → R be a continuous function whose
domain D ⊆ Rn is closed and bounded. Then f is bounded and achieves its bounds.

Proof. By the Heine–Borel theorem, D is compact. Since f is continuous, the image
f(D) ⊂ R is compact, in particular bounded. Denote m := inf f(D) and M := sup f(D).
Then we have

m ∈ f(D) = f(D)

M ∈ f(D) = f(D)
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since f(D) is closed. Hence, there are points xmin ∈ D and xmax ∈ D satisfying f(xmin) = m
and f(xmax) = M . That is, f achieves its lower bound at xmin and its upper bound at
xmax.

Example 9.18. If K ⊂ Rn is compact, then for any x ∈ Rn, there is a point y ∈ K
minimizing the distance to x:

d(x, y) = d(x,K) = inf
z∈K

d(x, z).

Remark 9.19. 1. The assumption that D be closed cannot be removed in general. For
example, consider the bounded subset D = (0, 1] ⊂ R. The function

f : (0, 1] → R

f(x) =
1

x

is unbounded. The function

g : (0, 1] → R

g(x) = x

is bounded but does not achieve its infimum m = 0.

2. The assumption that D be bounded cannot be removed in general. For example,
consider the closed subset D = [0,+∞) ⊂ R. The function

f : [0,+∞) → R

f(x) = x

is unbounded. The function

g : [0,+∞) → R

g(x) = arctan(x)

is bounded but does not achieve its supremum M = π
2
.
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10 Sequential compactness

10.1 Definitions and examples

Definition 10.1. Let (xn)n∈N be a sequence in a topological space X. A subsequence of
(xn)n∈N is a sequence (xnk

)k∈N for some strictly increasing indices n1 < n2 < n3 < · · · .

Definition 10.2. A topological space X is sequentially compact if every sequence in X
has a convergent subsequence.

Example 10.3. In the real line R, consider the sequence (xn)n∈N = (
√
7, π,

√
7, π, . . .), that

is:

xn =

{√
7 if n is odd

π if n is even.

Although the sequence (xn)n∈N is not convergent, it has many convergent subsequences. For
instance, the subsequence (xnk

)k∈N = (x1, x3, x5, . . .) given by

nk = 2k − 1

is the constant sequence (
√
7,
√
7,
√
7, . . .), which converges to

√
7. Likewise, the subsequence

(xnk
)k∈N = (x2, x4, x6, . . .) given by

nk = 2k

is the constant sequence (π, π, π, . . .), which converges to π.

Example 10.4. In the real line R, the sequence (xn)n∈N defined by xn = n has no convergent
subsequence. This shows in particular that R is not sequentially compact.

Example 10.5. In the open interval (0, 2), the sequence (xn)n∈N defined by xn = 1
n
has no

convergent subsequence. This shows in particular that (0, 2) is not sequentially compact.
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10.2 Cluster points

Definition 10.6. In a topological space X, a point x ∈ X is a cluster point of a sequence
(xn)n∈N if for every neighborhood U of x, there exist infinitely many indices n satisfying
xn ∈ U . Equivalently: for every neighborhood U of x and every N ∈ N, there is an index
n ≥ N satisfying xn ∈ U .

Lemma 10.7. If a sequence (xn)n∈N has a convergent subsequence xnk

k→∞−−−→ x, then x is a
cluster point of the sequence (xn)n∈N.

Proof. Let U ⊆ X be a neighborhood of x and let N ∈ N. We want to find some index
n ≥ N such that xn ∈ U holds.

By the convergence xnk

k→∞−−−→ x, there is an index K1 ∈ N such that xnk
∈ U holds for all

k ≥ K1. Furthermore, since the indices nk increase to infinity as k → ∞, there is an index
K2 ∈ N such that nk ≥ N holds for all k ≥ K2. Taking K := max{K1, K2}, we find nK ≥ N
and xnK

∈ U .

Proposition 10.8. Let X be a first-countable topological space, (xn)n∈N a sequence in X, and
x ∈ X a cluster point of that sequence. Then there is a subsequence (xnk

)k∈N that converges
to x.

Proof. See Homework 8 Problem 1.
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10.3 Countable compactness

Definition 10.9. A collection of subsets {Aα} of a set X has the finite intersection
property if the intersection of any finite subcollection is non-empty:

Aα1 ∩ · · · ∩ Aαn ̸= ∅.

Lemma 10.10. A topological space X is compact if and only if every collection of closed
subsets {Cα} that has the finite intersection property has a non-empty intersection:⋂

α

Cα ̸= ∅.

Proof. Consider the following chain of equivalent conditions.

X is compact.

def⇐⇒ For every collection of open subsets {Uα} satisfying
⋃

α Uα = X, there exists a finite
subcollection {Uα1 , . . . , Uαn} satisfying

Uα1 ∪ · · · ∪ Uαn = X.

⇐⇒ For every collection of open subsets {Uα} such that every finite subcollection {Uα1 , . . . , Uαn}
satisfies

Uα1 ∪ · · · ∪ Uαn ̸= X,

the whole collection must also satisfy⋃
α

Uα ̸= X.

Taking Cα := U c
α yields the next equivalence.

⇐⇒ For every collection of closed subsets {Cα} such that every finite subcollection {Cα1 , . . . , Cαn}
satisfies

Cc
α1

∪ · · · ∪ Cc
αn

̸= X,

the whole collection must also satisfy⋃
α

Cc
α ̸= X.

Using De Morgan’s law and taking complements yields the next equivalence.

⇐⇒ For every collection of closed subsets {Cα} such that every finite subcollection {Cα1 , . . . , Cαn}
satisfies

Cα1 ∩ · · · ∩ Cαn ̸= ∅,
the whole collection must also satisfy⋂

α

Cα ̸= ∅.
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Proposition 10.11 (Cantor’s intersection theorem for compact spaces). Let X be a com-
pact space and C1 ⊇ C2 ⊇ · · · a nested sequence of non-empty closed subsets. Then their
intersection is non-empty: ⋂

n∈N

Cn ̸= ∅.

Proof. The collection {Cn}n∈N has the finite intersection property:

Cn1 ∩ · · · ∩ Cnk
= Cm ̸= ∅,

where m is the largest index m = max{n1, . . . , nk}. Since X is compact, the whole collection
{Cn}n∈N has a non-empty intersection.

Note that we only used countable collections in the proof, so the result can be generalized.

Definition 10.12. A topological space X is countably compact if every countable open
cover of X admits a finite subcover.

Remark 10.13. Compact always implies countably compact, but the converse does not hold
in general. For instance, the first uncountable ordinal ω1 endowed with the order topology
is sequentially compact but not compact. See the discussion here:

https://math.stackexchange.com/questions/489225/compact-and-countably-compact

Proposition 10.14. The following conditions on a space X are equivalent.

1. X is countably compact.

2. For every countable collection {Cn}n∈N of closed subsets of X with the finite intersection
property, their intersection is non-empty:

⋂
n∈N Cn ̸= ∅.

3. For every nested sequence C1 ⊇ C2 ⊇ · · · of non-empty closed subsets of X, their
intersection is non-empty:

⋂
n∈N Cn ̸= ∅.

Proof. (1 ⇐⇒ 2) The proof of Lemma 10.10 also works here, using only countable collections
instead of arbitrary collections.

(2 =⇒ 3) As observed in the proof of Proposition 10.11, a nested sequence C1 ⊇ C2 ⊇ · · ·
of non-empty subsets satisfies the finite intersection property.

(3 =⇒ 2) Let {Cn}n∈N be a countable collection of closed subsets of X with the finite
intersection property. Then the subsets

Dn := C1 ∩ · · · ∩ Cn =
n⋂

i=1

Ci

are closed (as finite intersections of closed subsets), non-empty (by the finite intersection
property), and they form a nested sequence

D1 ⊇ D2 ⊇ D3 ⊇ · · · .
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By assumption (3), their intersection is non-empty:

n⋂
n∈N

Dn ̸= ∅

and therefore the same is true of the original collection:

n⋂
n∈N

Cn =
n⋂

n∈N

Dn ̸= ∅.

The implication (1) =⇒ (3) generalizes Cantor’s intersection theorem from Proposition 10.11.
Using Proposition 10.14, one can show the following.

Proposition 10.15. A topological space X is countably compact if and only if every sequence
in X has a cluster point.

Proof. See Homework 8 Problem 2.
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10.4 Relationship with compactness

Proposition 10.16. Every sequentially compact space is countably compact.

Proof. Let X be a sequentially compact space. By Proposition 10.15, it suffices to show that
any sequence (xn)n∈N in X has a cluster point. Since X was assumed sequentially compact,

there is a convergent subsequence xnk

k→∞−−−→ x. By Lemma 10.7, x is a cluster point of the
sequence (xn)n∈N.

Remark 10.17. The converse does not hold in general. Homework 8 Problem 3 provides an
example of a compact space that is not sequentially compact.

Proposition 10.18. Let X be a first-countable countably compact space. Then X is sequen-
tially compact.

Proof. Let (xn)n∈N be a sequence in X. Consider the n-tail of the sequence

Tn := {xi | i ≥ n} ⊆ X.

The tails form a nested sequence of non-empty subsets T1 ⊇ T2 ⊇ · · · and so do their closures

T1 ⊇ T2 ⊇ · · · .

Since X is countably compact, the intersection
⋂

n∈N Tn is non-empty, by Proposition 10.14.

Pick a point x ∈
⋂

n∈N Tn. Since X is first-countable, there is a subsequence (xnk
)k∈N con-

verging to x, by Proposition 10.8.

Theorem 10.19. A metric space is compact if and only if it is sequentially compact.

Proof. ( =⇒ ) Since a metric space is first-countable, this implication is a special case of
Proposition 10.18.

( ⇐= ) See [Mun00, Theorem 28.2].

Summarizing the implications:

compact

"*

× )1
sequentially compact

×iq

rz

countably compact
first-countable

>F
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11 Complete metric spaces

11.1 Completeness

Definition 11.1. A sequence (xn)n∈N in a metric space (X, d) is a Cauchy sequence if for
any ϵ > 0, there is an index N ∈ N satisfying

d(xm, xn) < ϵ

for all m,n ≥ N .

Equivalently: limn→∞ supk∈N d(xn, xn+k) = 0.

Lemma 11.2. In a metric space (X, d), every convergent sequence is Cauchy.

Proof. Let xn → x be a convergent sequence in X. Let ϵ > 0. Then there exists an index
N ∈ N such that d(xn, x) <

ϵ
2
holds for all n ≥ N . For every m,n ≥ N , we have

d(xm, xn) ≤ d(xm, x) + d(x, xn) <
ϵ

2
+

ϵ

2
= ϵ,

showing that the sequence (xn)n∈N is Cauchy.

Lemma 11.3. Let (xn)n∈N be a Cauchy sequence in a metric space (X, d). If (xn)n∈N has a
convergent subsequence xnk

→ x, then xn → x also holds.

Proof. Let ϵ > 0. Since the sequence (xn)n∈N is Cauchy, there is an index N ∈ N such that
d(xm, xn) <

ϵ
2
holds for all m,n ≥ N . Since the subsequence (xnk

)k∈N converges to the point
x, there is an index K ∈ N such that d(xnk

, x) < ϵ
2
holds for all k ≥ K. Pick an index j ≥ K

that satisfies nj ≥ N . Then for every n ≥ N , we have

d(xn, x) ≤ d(xn, xnj
) + d(xnj

, x) <
ϵ

2
+

ϵ

2
= ϵ,

showing the convergence xn → x.

Definition 11.4. A metric space (X, d) is complete if every Cauchy sequence in X con-
verges.
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11.2 Properties and examples

Proposition 11.5. Euclidean space Rn is complete.

Proof. Let (xi)i∈N be a Cauchy sequence in Rn. Then the subset

A = {xi | i ∈ N}

is bounded. Its closure A ⊆ Rn is closed and bounded, hence compact (by the Heine–Borel
theorem), and therefore sequentially compact. The sequence (xi)i∈N in A has a convergent
subsequence xik → x ∈ A. By Lemma 11.3, the Cauchy sequence (xi)i∈N also converges to
x.

Example 11.6. The rational line Q is not complete. Indeed, take a sequence (rn)n∈N in Q
that converges to

√
2 in R. Then that sequence is Cauchy but does not converge in Q.

Example 11.7. The open interval (0, 1) is not complete. Indeed, the sequence defined by
xn = 1

n+1
is Cauchy but does not converge in (0, 1).

Remark 11.8. The topological spaces R and (0, 1) are homeomorphic, yet R is complete and
(0, 1) is not complete. This shows that completeness is not a topological invariant.

Lemma 11.9. Let (X, d) be a complete metric space and C ⊆ X a closed subset. Then C is
complete.

Slogan: “closed in complete is complete”.

Proof. Let (xn)n∈N be a Cauchy sequence in C. Since X is complete, the sequence converges
to some point x ∈ X. But limits of sequences are in the closure: x ∈ C = C.

Lemma 11.10. Let (X, d) be a metric space and A ⊆ X a complete subspace. Then A is
closed in X.

Slogan: “complete is always closed”.

Proof. Let x ∈ A. Since X is first-countable, the closure point x ∈ A is the limit of some
sequence (an)n∈N in A. Since the sequence (an)n∈N converges, it is Cauchy (by Lemma 11.2).
Since A is complete, we have an → a for some point a ∈ A. Since X is Hausdorff, limits of
sequences are unique, which ensures x = a ∈ A. This proves the inclusion A ⊆ A.

Lemma 11.11. Any compact metric space (X, d) is complete.

Proof. Let (xn)n∈N be a Cauchy sequence in X. Since X is compact (and first-countable), it
is sequentially compact, so that the sequence (xn)n∈N has a convergent subsequence xnk

→ x.
By Lemma 11.3, the Cauchy sequence (xn)n∈N also converges to x.

The following theorem characterizes compact metric spaces.

Theorem 11.12. A metric space (X, d) is compact if and only if it is complete and totally
bounded.

Proof. See [Mun00, Theorem 45.1].
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11.3 Cantor’s intersection theorem

Proposition 11.13 (Cantor’s intersection theorem for complete spaces). Let (X, d) be a
complete metric space and C1 ⊇ C2 ⊇ · · · a nested sequence of non-empty closed subsets
satisfying diam(Cn) → 0 as n → +∞. Then the intersection of the collection is a single
point: ⋂

n∈N

Cn = {x}.

Proof. The intersection
⋂

n∈N Cn contains at most one point. Indeed, assume x, y ∈
⋂

n∈N Cn.
Then the distance between the points satisfies

d(x, y) ≤ diam(Cn) for all n ∈ N

=⇒ d(x, y) ≤ inf
n∈N

diam(Cn) = 0

=⇒ d(x, y) = 0

=⇒ x = y.

It remains to show that
⋂

n∈N Cn is non-empty. For each n ∈ N, pick a point xn ∈ Cn. Then
the sequence (xn)n∈N is Cauchy. Indeed, let ϵ > 0. There is an index N ∈ N such that
diam(Cn) < ϵ holds for all n ≥ N . For all m,n ≥ N , we have xm, xn ∈ CN and therefore

d(xm, xn) ≤ diam(CN) < ϵ.

Since X is complete, the Cauchy sequence (xn)n∈N converges to some point x ∈ X. For
each index i ∈ N, the tail of the sequence (xn)n∈N is contained in Ci, which implies that the
point x = limn→+∞ xn is in the closure Ci = Ci. Since this holds for all i ∈ N, we conclude
x ∈

⋂
i∈N Ci.

Remark 11.14. We cannot drop the assumption diam(Cn) → 0. For instance, consider the
nested sequence of closed subsets Cn = [n,+∞), whose intersection is empty:⋂

n∈N

[n,+∞) = ∅.

Nor can we drop the assumption that the subsets be closed. For instance consider the nested
sequence of subsets An = (0, 1

n
], whose diameters tend to zero, but whose intersection is

empty: ⋂
n∈N

(0,
1

n
] = ∅.
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12 Banach fixed point theorems

12.1 For compact metric spaces

Definition 12.1. A map f : X → Y between metric spaces is called a shrinking map if it
satisfies

d(f(x), f(y)) < d(x, y)

for all distinct points x, y ∈ X.

Theorem 12.2 (Banach fixed point theorem for compact spaces). Let (X, d) be a compact
metric space and f : X → X a shrinking map. Then:

1. f has a unique fixed point.

2. For any starting point x0 ∈ X, the sequence of iterates fn(x0) converges to the fixed
point of f .

Proof. (1) The map f has at most one fixed point. Indeed, let p, q ∈ X be fixed points of f .
If they were distinct, then their distance would satisfy

d(p, q) = d(f(p), f(q)) < d(p, q),

which contradicts d(p, q) > 0.

To show existence of a fixed point, consider the continuous function φ : X → R defined by

φ(x) = d(x, f(x)).

Note that x ∈ X is a fixed point of f if and only if φ(x) = 0 holds:

f(x) = x ⇐⇒ d(x, f(x)) = 0 = φ(x).

For any point x ∈ X satisfying x ̸= f(x), applying f decreases the value of φ:

φ(f(x)) = d(f(x), f 2(x)) < d(x, f(x)) = φ(x).

Since X is compact, φ achieves its lower bound m ≥ 0 at some point xmin ∈ X. But the
minimum m = φ(xmin) must be 0. Otherwise, we would have φ(f(xmin)) < φ(xmin) = m,
contradicting the fact that m is the minimum value of φ. This proves d(xmin, f(xmin)) = 0
and thus f(xmin) = xmin.

(2) Let p ∈ X denote the (unique) fixed point of f and consider the sequence of iterates
xn := fn(x0). We want to show the convergence xn → p. If xN = p holds for some index N ,
then the sequence becomes constant at p from that point on: xn = p holds for all n ≥ N ,
which implies xn → p.
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Now assume that xn ̸= p holds for all n ∈ N. Then for every n ∈ N, we have

d(xn, p) = d(fn(x0), f(p))

< d(fn−1(x0), p)

= d(xn−1, p).

This yields a strictly decreasing sequence of real numbers

d(x0, p) > d(x1, p) > d(x2, p) > · · ·

which is bounded below by 0, hence converges to some number δ. We want to show δ = 0.

Since X is compact, it is sequentially compact, so that the sequence (xn)n∈N has a convergent
subsequence xnk

→ y. Continuity of the function d(−, p) : X → R implies

d(y, p) = d( lim
k→∞

xnk
, p) = lim

k→∞
d(xnk

, p).

On the other hand, the sequence d(xn, p) in R converges to the number δ, hence all its
subsequences also converge to δ, which shows

lim
k→∞

d(xnk
, p) = δ = d(y, p).

Likewise, we have

d(f(y), p) = d(f( lim
k→∞

xnk
), p)

= d( lim
k→∞

f(xnk
), p)

= d( lim
k→∞

xnk+1, p)

= lim
k→∞

d(xnk+1, p)

= δ

= d(y, p).

If d(y, p) were positive, we would have

d(f(y), p) = d(f(y), f(p)) < d(y, p),

contradicting the equality d(f(y), p) = d(y, p). This shows d(y, p) = 0, and therefore y = p
and d(xn, p) → 0, which shows xn → p.
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The following alternate proof is sketched in [Mun00, §28 Exercise 7].

Proof. For each n ∈ N, consider the subset An := fn(X) ⊆ X. Since X is compact and f is
continuous, An is compact. Since X is Hausdorff, each An ⊆ X is closed in X. Moreover,
they form a nested sequence

X = A0 ⊇ A1 ⊇ A2 ⊇ · · · .

Consider the intersection A :=
⋂

n∈N An, which is closed in X. First, let us prove f(A) = A.

Claim: f(A) ⊆ A. An element of f(X) is of the form f(x) for some x ∈ A, that is,
x ∈ fn(X) holds for all n ∈ N. Then f(x) ∈ fn+1(X) holds for all n ∈ N, proving f(x) ∈⋂

n∈NAn = A.

Claim: A ⊆ f(A). Let x ∈ A. For every n ∈ N, there is a point xn ∈ X satisfying
x = fn(xn). Let us rewrite this equality as

x = fn(xn) = f(fn−1(xn)) = f(yn),

with yn := fn−1(xn). Since X is compact, it is sequentially compact, and thus the sequence
(yn)n∈N has a convergent subsequence ynk

→ y as k → +∞. Continuity of f then gives
f(ynk

) → f(y) as k → +∞. But the sequence (f(ynk
))k∈N is the constant sequence at x,

which converges to x, proving x = f(y). The condition yn ∈ An−1 implies that for every
n ∈ N, we have y ∈ An = An, and thus y ∈ A. This proves f(y) ∈ f(A).

Claim: A is a singleton. By Cantor’s intersection theorem (for compact spaces), A is
non-empty: A ̸= ∅.
Since A ⊆ X is closed and X is compact, A is also compact. Therefore, the continuous
function d : A × A → R (the metric on A) achieves its upper bound diam(A) at some pair
of points a, b ∈ A. But the inclusion A ⊆ f(A) guarantees that there exist points a′, b′ ∈ A
satisfying f(a′) = a and f(b′) = b. If a and b are distinct, then so are a′ and b′, and we have

d(a, b) = d(f(a′), f(b′)) < d(a′, b′) < d(a, b),

which is impossible. Therefore, we have a = b and diam(A) = 0. In other words, A = {p}
consists of a single point p ∈ X.

Claim: A is the fixed point set of f . The inclusion f(A) ⊆ A shows f(p) = p, so that
p is a fixed point of f . Moreover, any fixed point q of f satisfies fn(q) = q for all n ∈ N, and
hence q ∈ A. This shows that f has a unique fixed point p.

For the second statement, consider the sequence of iterates xn := fn(x0) ∈ An. The sequence
(xn)n∈N has a convergent subsequence xnk

→ x, and as above we deduce x ∈ A, that is, x = p
is the fixed point of f . As in the first proof, this implies the convergence d(xn, p) → 0 and
thus xn → p.
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Example 12.3. The assumption that f be shrinking cannot be dropped in general. For
example, consider the unit circle S1 ⊂ R2 and consider the rotation by an angle θ ∈ (0, 2π)

Rθ : S
1 → S1

Rθ

[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Viewing S1 as the unit circle in the complex plane C, the rotation Rθ can be written as

Rθ(z) = eiθz.

The map Rθ is an isometry, in particular is non-expansive. However, Rθ has no fixed point.

Example 12.4. By the Brouwer fixed point theorem, every continuous map f : [0, 1] → [0, 1]
has a fixed point. However, even for X = [0, 1], the other conclusions in the Banach fixed
point theorem are not guaranteed without the assumptions.

Uniqueness of the fixed point may fail. For instance, the identity map

id: [0, 1] → [0, 1]

is an isometry and has infinitely many fixed points, since every point x ∈ [0, 1] satisfies
id(x) = x.

Even when f : [0, 1] → [0, 1] has a unique fixed point, convergence of the iterates fn(x0) may
fail. For instance, consider the map

f : [0, 1] → [0, 1]

f(x) = 1− x,

which is an isometry. This map f has a unique fixed point p = 1
2
. However, for any starting

point x0 ̸= 1
2
, the sequence of iterates fn(x0) alternates between two points:

(x0, 1− x0, x0, 1− x0, . . .)

and hence doesn’t converge. For instance, taking the starting point x0 = 0.3 yields the
sequence of iterates

(0.3, 0.7, 0.3, 0.7, . . .).
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12.2 For complete metric spaces

Definition 12.5. A map f : X → Y between metric spaces is a contraction if there is a
number 0 ≤ c < 1 such that the inequality

d(f(x), f(y)) ≤ c d(x, y)

holds for all x, y ∈ X.

Theorem 12.6 (Banach fixed point theorem for complete spaces). Let (X, d) be a complete
metric space and f : X → X a contraction. Then:

1. f has a unique fixed point.

2. For any starting point x0 ∈ X, the sequence of iterates fn(x0) converges to the fixed
point of f .

Proof. The map f has at most one fixed point, for the same reason as above. If p, q ∈ X are
two fixed points of f , then we have

d(p, q) = d(f(p), f(q)) ≤ c d(p, q)

which implies d(p, q) = 0 and thus p = q.

Now let us prove the existence of a fixed point and the second statement at the same
time. Pick any x0 ∈ X and consider the sequence of iterates xn := fn(x0). Denote
δ := d(x0, f(x0)) = d(x0, x1). For any indices m < n, we have

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + . . .+ d(xn−1, xn)

≤ cmd(x0, x1) + cm+1d(x0, x1) + . . .+ cn−1d(x0, x1)

= δcm(1 + c+ c2 + . . .+ cn−m−1)

< δcm
1

1− c

→ 0 as m → ∞.

This shows that (xn)n∈N is a Cauchy sequence, hence converges to some point x ∈ X since
X is complete. But then x is a fixed point of f :

f(x) = f( lim
n→∞

xn)

= lim
n→∞

f(xn)

= lim
n→∞

xn+1

= x.
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Example 12.7. The assumption that f be a contraction cannot be dropped in general. For
example, consider the interval X = [1,+∞), which is complete, as a closed subset of the
complete metric space R. Consider the map

f : [1,+∞) → [1,+∞)

f(x) = x+
1

x
,

which is a shrinking map, but not a contraction. The map f has no fixed point. A similar
example is discussed on Homework 9 Problem 2.

Example 12.8. The assumption that X be complete cannot be dropped in general. For
example, consider the interval X = [0, 1), which is not complete, since it is not closed in R.
Consider the map

f : [0, 1) → [0, 1)

f(x) =
1

2
x+

1

2
,

which is a contraction with Lipschitz constant c = 1
2
. However, the map f has no fixed point.
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13 The evaluation map

Proposition 13.1. Let X be a locally compact Hausdorff space and Y an arbitrary topological
space. Then the evaluation map

e : X × C(X, Y ) → Y

given by e(x, f) = f(x) is continuous.

Remark 13.2. The evaluation map is not always continuous.

Exercise 13.3. Let T be a topology on the set C(X, Y ) making the evaluation map

e : X × C(X, Y ) → Y

continuous. Then T contains the compact-open topology [Mun00, Exercise 46.8].

Now let X, Y , and T be topological spaces, and let F (X, Y ) denote the set of all functions
from X to Y . There is a natural bijection of sets:

φ : F (X × T, Y )
∼=−→ F (T, F (X, Y )) (1)

sending a function H : X × T → Y to the function φ(H) : T → F (X, Y ) defined by

φ(H)(t) = H(−, t) =: ht.

Proposition 13.4. (a) If a function H : X × T → Y is continuous, then the following two
conditions hold:

1. ht : X → Y is continuous for all t ∈ T ;

2. The corresponding function φ(H) : T → C(X, Y ) is continuous.

(b) Assuming X is locally compact Hausdorff, the converse holds as well. In other words, if
conditions (1) and (2) hold, then the corresponding function H : X × T → Y is continuous.

Proof. (a) Worksheet “The compact-open topology” Problem 2.

(b) Rewriting H(x, t) as

H(x, t) = H(−, t)(x)

= (φ(H)(t)) (x)

= e (x, φ(H)(t))

we see that the function H : X × T → Y corresponding to φ(H) : T → C(X, Y ) is the
composite

X × T

idX×φ(H) ''

H
// Y

X × C(X, Y ).

e

99
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The map φ(H) : T → C(X, Y ) is continuous by assumption, and so is idX × φ(H). Since X
is locally compact Hausdorff, the evaluation map e is continuous by Proposition 13.1, and so
is the composite H = e ◦ (idX × φ(H)).

Interpretation. For any spaces X, Y , T , part (a) ensures that the bijection φ from (1)
restricts to a map

φ : C(X × T, Y ) → C (T,C(X, Y )) (2)

sometimes called the adjunction map. This latter φ is always injective, since the original
φ was injective.

However, the latter φ is not always surjective. In other words, a family {ht : X → Y }t∈T of
continuous maps that vary continuously in the parameter t ∈ T do not always yield a map
H : X × T → Y which is jointly continuous in both arguments.

Part (b) says that if X is nice enough (e.g. locally compact Hausdorff), then φ is indeed
surjective.

Remark 13.5. Proposition 13.4 is useful when trying to show that a map T → C(X, Y ) into a
mapping space is continuous. By part (a), it suffices that the corresponding map X×T → Y
be continuous.
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14 Nets

14.1 Directed sets and nets

Definition 14.1. A preorder on a set Λ is a relation ≤ which is:

1. reflexive: λ ≤ λ for all λ ∈ Λ;

2. transitive: λ1 ≤ λ2 and λ2 ≤ λ3 implies λ1 ≤ λ3.

Definition 14.2. A directed set (Λ,≤) is a set Λ equipped with a preorder ≤ such that
for every λ1, λ2 ∈ Λ, there is some λ3 satisfying λ1 ≤ λ3 and λ2 ≤ λ3.

In other words, every finite subset of Λ has an upper bound.

Remark 14.3. A partial order is a preorder that moreover satisfies antisymmetry:

λ ≤ µ and µ ≤ λ =⇒ λ = µ.

Some authors include that condition in their definition of directed set.

Example 14.4. Here are some examples of directed sets.

1. The natural numbers N with the usual order ≤.

2. The real numbers R with the usual order ≤.

3. More generally, any totally ordered set.

4. More generally still, any poset (P,≤) that has finite joins (i.e., suprema) x ∨ y. For
instance, the power set P(S) of a set S, ordered by inclusion.

5. If a poset (P,≤) has finite meets (i.e., infima) x ∧ y, then its opposite poset (P,≤op)
(where the order is reversed) has finite joins, and is therefore a directed set. For
instance, the power set P(S) of a set S, ordered by reverse inclusion.

6. N× N with the componentwise preorder.

7. More generally, given directed sets Λ and Γ, their product Λ×Γ with the componentwise
preorder is a directed set. See Homework 10 Problem 1.

For our purposes, the following is one of the most important examples.

Example 14.5. Let X be a topological space, and x ∈ X. Then the set

Nx := {U ⊆ X | U is a neighborhood of x}

ordered by reverse inclusion (i.e., U1 ≤ U2 if U2 ⊆ U1) is a directed set. Indeed, given
neighborhoods U and V , their intersection serves as an upper bound:

U ≤ U ∩ V and V ≤ U ∩ V.
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Definition 14.6. Let X be a topological space. A net in X is a function x : Λ → X from a
directed set Λ into X.

We denote values of the net by xλ := x(λ) and denote the net by (xλ)λ∈Λ.

Example 14.7. A net in X indexed by (N,≤) is a sequence in X.

Definition 14.8. A net (xλ)λ∈Λ in a topological space X converges to a point x ∈ X if for
all neighborhood U of x, the net is eventually in U , i.e., there is an index λ0 ∈ Λ such that
xλ ∈ U holds for all λ ≥ λ0.

Convergence will be denoted xλ → x.
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14.2 Nets detect the topology

Proposition 14.9. Let X be a topological space and A ⊆ X a subset. Then x ∈ A holds if
and only if there is a net (aλ)λ∈Λ in A which converges to x, i.e., aλ → x.

In words: The closure of A consists of all limits of nets in A.

Proof. ( ⇐= ) Let U be a neighborhood of x. Since (aλ) converges to x, there is an index
λ0 ∈ Λ satisfying aλ ∈ U for all λ ≥ λ0. In particular, we have aλ0 ∈ U ∩ A ̸= ∅. Since U
was arbitrary, we conclude x ∈ A.

( =⇒ ) Let x ∈ A. Consider the directed set Nx of all neighborhoods of x, ordered by reverse
inclusion. For each U ∈ Nx, we have U ∩ A ̸= ∅ so we can pick a point aU ∈ U ∩ A. This
defines a net (aU)U∈Nx in A. We claim that it converges to x.

Given V ≥ U , we have V ⊆ U so that aV ∈ V ⊆ U . In other words, “past the index U ∈ Nx,
the net is inside the neighborhood U ⊆ X”, which proves the convergence aU → x.

Remark 14.10. Consider RN with the box topology, the subset

A = {x ∈ RN | xn > 0 for all n ∈ N},

and the origin 0 = (0, 0, . . .) ∈ RN. On Homework 5 Problem 2, you showed that 0 is a
closure point 0 ∈ A, yet no sequence in A converges to 0. By Proposition 14.9, there must
be a net in A converging to 0. Homework 10 Problem 2 provides an explicit such net.

Proposition 14.11. Let f : X → Y be a map between topological spaces. Then f is contin-
uous at x ∈ X if and only if for every net (xλ)λ∈Λ in X with xλ → x, we have f(xλ) → f(x)
in Y .

In words: Continuity is equivalent to netwise continuity.

Proof. ( =⇒ ) Assume xλ → x. We want to show f(xλ) → f(x).

Let V be a neighborhood of f(x). By continuity of f at x, there is a neighborhood U of x
satisfying f(U) ⊆ V . By convergence of (xλ), there is an index λ0 ∈ Λ such that xλ ∈ U
holds for all λ ≥ λ0. Therefore we have f(xλ) ∈ f(U) ⊆ V whenever λ ≥ λ0, which proves
f(xλ) → f(x).

( ⇐= ) Recall that f is continuous if and only if it satisfies f(A) ⊆ f(A) for every subset
A ⊆ X. Let x ∈ A. By Proposition 14.9, there is a net (aλ)λ∈Λ in A converging to x,
aλ → x. By the assumption on f , we have f(xλ) → f(x). By Proposition 14.9, this implies
f(x) ∈ f(A), proving the inclusion f(A) ⊆ f(A).

Alternate proof. ( ⇐= ) Assume f is discontinuous at x, which means there is a neighborhood
V of f(x) satisfying f(U) ⊈ V for all neighborhoods U of x. For each such neighborhood
U , pick a point xU satisfying f(xU) /∈ V . This defines a net (xU)U∈Nx in X indexed by
the directed set Nx of all neighborhoods of x. By construction, the net satisfies xU → x.
However, the net (f(xU))U∈Nx in Y is never in V , so in particular f(xU) ↛ f(x).
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Proposition 14.12 (Uniqueness of limits of nets). A topological space X is Hausdorff if and
only if every net in X has at most one limit. In other words: limits are unique, when they
exist.

Proof. ( =⇒ ) Assume X is Hausdorff and (xλ)λ∈Λ is a net in X with xλ → x and xλ → y.
We want to show x = y.

Let U be a neighborhood of x and V a neighborhood of y. By convergence to x, there is an
index λ1 ∈ Λ such that xλ ∈ U holds whenever λ ≥ λ1 holds. By convergence to y, there is
an index λ2 ∈ Λ such that xλ ∈ V holds whenever λ ≥ λ2 holds.

Let λ3 ∈ Λ be an upper bound for the two indices, i.e., λ1 ≤ λ3 and λ2 ≤ λ3. Then we have{
λ3 ≥ λ1 =⇒ xλ3 ∈ U

λ3 ≥ λ2 =⇒ xλ3 ∈ V

which shows xλ3 ∈ U ∩ V ̸= ∅, so that x and y cannot be separated by neighborhoods. Since
X is Hausdorff, this proves x = y.

( ⇐= ) Assume X is not Hausdorff, which means there exist distinct points x, y ∈ X which
cannot be separated by neighborhoods. In other words, for any neighborhood U of x and
neighborhood V of y, we have U ∩ V ̸= ∅. Pick a point in the intersection xU,V ∈ U ∩ V .
This defines a net (xU,V )(U,V )∈Λ in X indexed by the directed set Λ = Nx × Ny of pairs of
neighborhoods of x and y respectively.

We show that this net converges to both x and y. Let Ũ be a neighborhood of x. For every
index (U, V ) ≥ (Ũ ,X), we have

xU,V ∈ U ∩ V ⊆ U ⊆ Ũ

which proves xU,V → x. Likewise, we have xU,V → y.

Remark 14.13. For sequences, the forward implication holds, but the backward implication
does not hold. In other words, uniqueness of limits of sequences in X does not imply that
X is Hausdorff.

For example, take X to be an uncountable set endowed with the cocountable topology. The
only convergent sequences in X are the eventually constant sequences, and those have a
unique limit since X is T1. However, X is not Hausdorff.

Proposition 14.14. Let {Xα}α∈A be a family of topological spaces. Then a net (xλ)λ∈Λ in
the product

∏
α∈AXα converges to a point x = (xα)α∈A if and only if for each index α ∈ A,

the net (xλ
α)λ∈Λ in Xα converges to xα.

Here xλ
α = pα(x

λ) ∈ Xα denotes the αth coordinate of the point xλ ∈
∏

α∈AXα, and likewise
xα = pα(x), where

pα :
∏
α′∈A

Xα′ → Xα

denotes the projection onto the αth factor.

Proof. See Homework 10 Problem 3.
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14.3 Subnets

If nets are meant to generalize sequences, what should be the generalization of subsequences
to nets?

Definition 14.15. Let (xλ)λ∈Λ be a net in X. A subnet of (xλ)λ∈Λ is a composite

M
φ−→ Λ

x−→ X

where M is a directed set and the function φ : M → Λ is order-preserving (also called non-
decreasing or monotone) and cofinal.

Order-preserving means: µ1 ≤ µ2 =⇒ φ(µ1) ≤ φ(µ2).

Cofinal means that the function will eventually “pass” any index: for all λ ∈ Λ, there is a
µ ∈ M satisfying φ(µ) ≥ λ.

We write λµ := φ(µ). Note that a subnet (xλµ)µ∈M is itself a net, since M is a directed set.

Example 14.16. The function φ : N → N defined by φ(k) = 5k is order-preserving and
cofinal. Given a sequence (xn)n∈N, this function φ yields the subnet

(xnk
)k∈N = (x5, x10, x15, . . .)

where we write nk := φ(k). Note that this is a subsequence.

Example 14.17. The function φ : N → N defined by φ(k) = ⌈k
2
⌉ is order-preserving and

cofinal. (Here the brackets denote the ceiling function, which rounds up to the next integer.)
Given a sequence (xn)n∈N, this function φ yields the subnet

(xnk
)k∈N = (x1, x1, x2, x2, x3, x3, . . .).

Note that this is not a subsequence.

Example 14.18. A function φ : N → N is cofinal if and only if it is unbounded. Thus, a
subnet (xnk

)k∈N of a sequence which is still indexed by N is almost a subsequence, except
that indices nk are allowed to be repeated finitely many times, as in Example 14.17.

In contrast, a subsequence (xnk
)k∈N is defined as having strictly increasing indices: k1 < k2

implies nk1 < nk2 .

A subnet of a sequence can also be indexed by any directed set, not just N.

Example 14.19. The function φ : N×N → N defined by φ(k, ℓ) = 2k+4ℓ is order-preserving
and cofinal. Given a sequence (xn)n∈N, this function φ yields the subnet (xk,ℓ)(k,ℓ)∈N×N with
values xk,ℓ := xφ(k,ℓ) = x2k+4ℓ.
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15 Compactness via nets

15.1 Cluster points

Definition 15.1. Let X be a topological space and (xλ)λ∈Λ a net in X. A point x ∈ X is a
cluster point of the net (xλ)λ∈Λ if for any neighborhood U of x, the net is frequently in U ,
i.e., for all index λ0 ∈ Λ, there is a λ ∈ Λ satisfying λ ≥ λ0 and xλ ∈ U .

Proposition 15.2. Let X be a topological space and (xλ)λ∈Λ a net in X. Then x ∈ X is a
cluster point of (xλ)λ∈Λ if and only if there is a subnet (xλµ)µ∈M converging to x.

Proof. ( ⇐= ) Assume xλµ → x. Let U be a neighborhood of x and λ0 ∈ Λ an arbitrary
index. By cofinality of the indices λµ, there is a µ0 ∈ M satisfying λµ0 ≥ λ0. By convergence
of the subnet xλµ → x, there is a µ1 ∈ M such that xλµ ∈ U holds for all µ ≥ µ1. Let µ2 ∈ M
be an upper bound for µ0 and µ1, i.e., satisfying{

µ0 ≤ µ2

µ1 ≤ µ2.

The first inequality yields λµ2 ≥ λµ0 ≥ λ0. The second inequality guarantees xλµ2
∈ U ,

showing that the net (xλ)λ∈Λ is frequently in U .

( =⇒ ) Assume that x ∈ X is a cluster point of the net (xλ)λ∈Λ. Consider the preordered set

M := {(λ, U) ∈ Λ×Nx | xλ ∈ U}

with the componentwise preorder. Here, Nx denotes the directed set of all neighborhoods of
x (as in the notes from November 16, Example 1.5).

Claim: M is a directed set. Let (λ1, U1), (λ2, U2) ∈ M . Let λ3 ∈ Λ be an upper bound
for λ1 and λ2, i.e., satisfying λ1 ≤ λ3 and λ2 ≤ λ3. Since x is a cluster point of the net
(xλ)λ∈Λ, the net is frequently in the neighborhood U1 ∩ U2. In particular, there is an index
λ′
3 ≥ λ3 satisfying xλ′

3
∈ U1 ∩ U2. This provides the element (λ′

3, U1 ∩ U2) in M which is an
upper bound for the two elements we started with:{

(λ1, U1) ≤ (λ′
3, U1 ∩ U2)

(λ2, U2) ≤ (λ′
3, U1 ∩ U2).

Claim: The projection pΛ : M → Λ is order-preserving and cofinal. The projection
is order-preserving since the preorder on M is componentwise:

(λ, U) ≤ (λ′, U ′) =⇒ λ ≤ λ′

⇐⇒ pΛ(λ, U) ≤ pΛ(λ
′, U ′).

For cofinality, let λ0 ∈ Λ. Then we have xλ0 ∈ X, yielding an element (λ0, X) ∈ M which
satisfies

pΛ(λ0, X) = λ0 ≥ λ0.
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Claim: The subnet x(λ,U) converges to x. Let V be a neighborhood of x. Since x is
a cluster point of the net (xλ)λ∈Λ, there is an index λ0 ∈ Λ satisfying xλ0 ∈ V , yielding the
element (λ0, V ) ∈ M . But then for every index (λ, U) ≥ (λ0, V ) in M , we have

x(λ,U) = xλ ∈ U ⊆ V,

showing that the subnet (x(λ,U))(λ,U)∈M is eventually in V .
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15.2 Compactness via nets

Recall what happens when we try to describe compactness via sequences. The following
diagram summarizes relationships between some conditions on a topological space X:

compact

"*

×HW 8 #3

)1
sequentially compact

×iq

qy

countably compact ks
HW 8 #2

+3 every sequence has a cluster point

first-countable
HW 8 #1

KS

When using nets instead of sequences, we obtain the following statement.

Theorem 15.3. The following conditions on a topological space X are equivalent:

1. X is compact.

2. Every net in X has a convergent subnet.

3. Every net in X has a cluster point.

Proof. The equivalence (2) ⇐⇒ (3) follows from Proposition 15.2.

(1) =⇒ (3) Let (xλ)λ∈Λ be a net in X. For each index λ ∈ Λ, consider the λ-tail of the
net

Tλ := {xλ′ ∈ X | λ′ ≥ λ} ⊆ X.

The collection of all tails {Tλ}λ∈Λ satisfies the finite intersection property. Indeed, let
λ1, . . . , λk ∈ Λ, and let λ′ ∈ Λ be an upper bound for {λ1, . . . , λk}, i.e., satisfying λi ≤ λ′ for
all 1 ≤ i ≤ k. Then we have xλ′ ∈ Tλi

for all 1 ≤ i ≤ k, so that the finite intersection is
non-empty:

xλ′ ∈ Tλ1 ∩ · · · ∩ Tλk
̸= ∅.

Consequently, the closures of the tails {Tλ}λ∈Λ also satisfy the finite intersection property.
Since X was assumed compact, the intersection of the entire collection is non-empty:⋂

λ∈Λ

Tλ ̸= ∅.

Pick a point x ∈
⋂

λ∈Λ Tλ.

Claim: x is a cluster point of the net (xλ)λ∈Λ. Let U be a neighborhood of x and λ0 ∈ Λ
an arbitrary index. The condition x ∈ Tλ0 guarantees U ∩ Tλ0 ̸= ∅. A point x′ ∈ U ∩ Tλ0 is
of the form x′ = xλ for some λ ≥ λ0 and satisfies xλ ∈ U , showing that the net (xλ)λ∈Λ is
frequently in U .

©2024 Martin Frankland All Rights Reserved 67



University of Regina MATH 441/841 - General Topology

(3) =⇒ (1) Let {Ci}i∈I be a collection of closed subsets of X satisfying the finite inter-
section property. We want to show that their intersection is non-empty:

⋂
i∈I Ci ̸= ∅. Take

the poset
Pfin(I) := {J ⊆ I | J is finite}

ordered by inclusion. Since Pfin(I) has (finite) joins, given by the union J ∨ J ′ = J ∪ J ′,
Pfin(I) is a directed set. For each finite subset J ⊂ I, the intersection

⋂
i∈J Ci is non-empty;

pick a point

xJ ∈
⋂
i∈J

Ci.

By the assumption on X, the net (xJ)J∈Pfin(I) has a cluster point x ∈ X.

Claim: x ∈
⋂

i∈I Ci. Since the Ci are closed, it suffices to show x ∈ Ci = Ci for all i ∈ I.

Fix an index i0 ∈ I, viewed as the singleton {i0} ⊆ I. Let U be a neighborhood of x. Since
x is a cluster point of the net (xJ)J∈Pfin(I), the net is frequently in U . In particular, there is
a J ∈ Pfin(I) satisfying J ≥ {i0} and xJ ∈ U . But we have

xJ ∈
⋂
i∈J

Ci ⊆ Ci0 ,

showing xJ ∈ U ∩ Ci0 ̸= ∅. Since the neighborhood U was arbitrary, this shows x ∈ Ci0 .
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16 Tychonoff’s theorem

16.1 Zorn’s lemma

In order to prove Tychonoff’s theorem, we will make use of Zorn’s lemma. It is often used
to prove the existence of objects with certain maximality properties, e.g., maximal interval
of existence of solutions to certain differential equations, maximal ideals in a ring, etc.

Definition 16.1. A partial order on a set P is a relation ≤ which is:

1. reflexive: x ≤ x for all x ∈ P ;

2. transitive: x ≤ y and y ≤ z implies x ≤ z;

3. antisymmetric: x ≤ y and y ≤ x implies x = y.

Note that a relation satisfying (1) and (2) is what we previously called a preorder.

A partially ordered set or poset (P,≤) is a set P equipped with a partial order ≤.

Example 16.2. Let S be a set and consider the poset P(S) of all subsets of S, ordered by
inclusion.

Remark 16.3. Note that reverse inclusion also defines a partial order on P(S). More generally,
given any partial order, its reverse is also a partial order.

Definition 16.4. A chain in a poset P is a subset C ⊆ P which is totally ordered. In other
words, any two elements of C are comparable: for all x, y ∈ C, we have either x ≤ y or
y ≤ x.

Example 16.5. Let S = {a, b, c, d, e} and consider the collection

C = {{a, c, d}, {a, c, d, e}, {d}} ⊂ P(S).

Then C is a chain in P(S), i.e., consists of nested subsets of S:

{d} ⊂ {a, c, d} ⊂ {a, c, d, e}.

In contrast, the collection {{a, c, d}, {a, c, e}, {c}} ⊂ P(S) is not a chain, since {a, c, d} and
{a, c, e} are not comparable:

{a, c, d} ̸⊆ {a, c, e}

{a, c, e} ̸⊆ {a, c, d}.

Example 16.6. In the poset N× N with componentwise order, the subset

C = {(8, 5), (3, 1), (4, 3)}
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is a chain, because of the ordering:

(3, 1) ≤ (4, 3) ≤ (8, 5).

In contrast, the subset
{(2, 4), (3, 7), (5, 6)}

is not a chain, since (3, 7) and (5, 6) are not comparable:

(3, 7) ̸≤ (5, 6)

(5, 6) ̸≤ (3, 7).

Definition 16.7. An element m ∈ P is a poset P is maximal if no element is greater than
m. In other words, the inequality x ≥ m implies x = m.

Example 16.8. 1. In the poset P(S), the entire set S ∈ P(S) is maximal, and in fact is
the only maximal element.

2. In the poset P(S) \ {S}, a subset of S is maximal if and only if it is of the form S \ {s}
for some element s ∈ S.

3. In the totally ordered set N (which is in particular a poset), there is no maximal element.

4. In the poset of proper ideals of a commutative ring R, the maximal elements are the
maximal ideals M ⊂ R. For example, the maximal ideals of Z are those of the form
(p) ⊂ Z for some prime number p ∈ Z.

Definition 16.9. Let A ⊆ P be a subset of a poset P . An upper bound for A is an element
b ∈ P satisfying a ≤ b for all a ∈ A. Note that b need not be in A.

Example 16.10. In the totally ordered set (R,≤), consider the subset A = (5, 7). Then 7 is
an upper bound for A, as are 20 and 99. The subset A has the least upper bound supA = 7,
which is not in A.

Now take the subset B = (5, 7]. Then 7, 20, and 99 are still upper bounds for B, with 7
being in B.

Remark 16.11. When an upper bound is in the subset A ⊆ P , it is automatically unique and
is the least upper bound. In other words, if m,m′ ∈ A are upper bounds for A, then we have
m = m′ = supA.

Example 16.12. Consider the poset P(S) and a collection C = {Si}i∈I of subsets of S.
Then the union

⋃
i∈I Si is an upper bound for C ⊆ P(S), in fact the least upper bound for C.

Theorem 16.13 (Zorn’s lemma). Let P be a non-empty poset such that every chain in P
has an upper bound (in P ). Then P has a maximal element (i.e., at least one).

The proof of Zorn’s lemma relies on the axiom of choice. In fact, it turns out that Zorn’s
lemma is equivalent to the axiom of choice.
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16.2 Tychonoff’s theorem

Theorem 16.14 (Tychonoff’s theorem). Let {Xα}α∈A be a family of compact spaces. Then
their product

∏
α∈A Xα is compact.

Without loss of generality, each space Xα is non-empty. Before proving the theorem, recall
a few relevant facts from the notes from November 18.

� A space is compact if and only if every net has a cluster point.

� A point x is a cluster point of a net if and only if the net has a subnet converging to x.

� A net in a product space
∏

α∈AXα converges to a point x = (xα)α∈A if and only if it
converges componentwise to x.

To show that the product
∏

α∈A Xα is compact, it suffices to show that every net (xλ)λ∈Λ in∏
α∈AXα has a cluster point. Looking at the second and third facts above, a naive attempt

would go as follows.

For each coordinate α ∈ A, the space Xα is compact, so that the net (xλ
α)λ∈Λ in Xα has a

cluster point xα ∈ Xα. One might hope that the point x = (xα)α∈A ∈
∏

α∈AXα is then a
cluster point of the original net (xλ)λ∈Λ, but this is not true, even in a finite product!

Example 16.15. Consider the compact spaces X = Y = [0, 1] and their product X × Y =
[0, 1]2. Consider the sequence in X × Y given by

(xn, yn) =

(
1 + (−1)n

2
,
1 + (−1)n

2

)
,

whose first few terms are
(0, 0), (1, 1), (0, 0), (1, 1), · · · .

Then the sequence in X = [0, 1]

(xn)n∈N = (pX(xn, yn))n∈N = (
1 + (−1)n

2
)n∈N

has exactly two cluster points: 0 and 1. Likewise for the sequence (yn)n∈N in Y . However,
the pairs (0, 1) and (1, 0) are not cluster points of the original sequence (xn, yn)n∈N in X×Y ,
whose only cluster points are (0, 0) and (1, 1).

Even if the point x = (xα)α∈A happened to be a cluster point of the net (xλ)λ∈Λ, one might
not be able to build a subnet of (xλ)λ∈Λ converging to x by picking a subnet of (xλ

α)λ∈Λ
converging to xα for each coordinate α ∈ A.

Example 16.16. Consider X = Y = [0, 1] as in Example 16.15. Consider the sequence in
X × Y given by

(xn, yn) =

(
1 + (−1)⌈

n
2
⌉

2
,
1 + (−1)n

2

)
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whose first few terms are

(0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (1, 0), (1, 1), · · · .

That sequence in X × Y has exactly four cluster points: (0, 0), (0, 1), (1, 0), and (1, 0).
Working one component at a time, first consider the sequence (xn)n∈N in X and pick its
cluster point 0 ∈ X, which is the limit of the subsequence

(x4k−3)k∈N = (x1, x5, x9, x13, · · · ) = (0, 0, 0, 0, · · · ).

The corresponding subsequence in X × Y

(x4k−3, y4k−3)k∈N = ((x1, y1), (x5, y5), (x9, y9), · · · ) = ((0, 0), (0, 0), (0, 0), · · · )

has a unique cluster point (0, 0). In particular, it does not have a subsequence converging to
(0, 1), which was a cluster point of the original sequence (xn, yn).

To prove that a finite product of compact spaces is compact, we used the tube lemma. Let
us reprove that statement using nets, as a warm-up for arbitrary products.

Proposition 16.17. Let X and Y be compact spaces. Then the product X × Y is compact.

Alternate proof using nets. Let (xλ, yλ)λ∈Λ be a net in X × Y . Since X is compact, the net
(xλ)λ∈Λ has a convergent subnet (xλµ)µ∈M , with xλµ → x.

Now consider the corresponding subnet (xλµ , yλµ)µ∈M in X ×Y . Since Y is compact, the net
(yλµ)µ∈M has a convergent subnet (yλµν

)ν∈N , with yλµν
→ y. But a subnet of a convergent

net is also convergent (to the same limit points), so we have xλµν
→ x. Therefore, the subnet

(xλµν
, yλµν

)ν∈N of (xλ, yλ)λ∈Λ converges to (x, y) ∈ X × Y .
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16.3 The proof

We present a proof of Tychonoff’s theorem due to Chernoff [Che92]. A different proof is
presented in [Mun00, §37]. All the proofs rely on some version of the axiom of choice,
because it turns out that Tychonoff’s theorem is equivalent to the axiom of choice.

Proof. We want to show that the given net (xλ)λ∈Λ in
∏

αXα has a cluster point. For any
subset I ⊆ A, denote by

pI :
∏
α∈A

Xα →
∏
α∈I

Xα

the projection map, which we also denote as a restriction x|I := pI(x). Define a partial
cluster point with domain I as a pair (I, x) where x ∈

∏
α∈I is a cluster point of the net

(xλ|I)λ∈Λ. Order the partial cluster points by extension of the domain, that is:

(I, x) ≤ (J, y) ⇐⇒ I ⊆ J and y|I = x.

This relation defines a partial order on the set P of all partial cluster points.

Claim: P is non-empty. For every α ∈ A, the space Xα is compact. Therefore, the
net (xλ

α)λ∈Λ in Xα has a cluster point xα ∈ Xα. This provides a partial cluster point
({α}, xα) ∈ P . ✓

Claim: Every chain in P has an upper bound. Let {(I(t), x(t))}t∈T be a chain in P .
Take the union of the domains

I :=
⋃
t∈T

I(t) ⊆ A

and take x ∈
∏

α∈I Xα to be the unique point restricting to the given ones in the chain, that
is, satisfying

x|I(t) = x(t) ∈
∏

α∈I(t)

Xα

for all t ∈ T . Then for all t ∈ T , we have (I(t), x(t)) ≤ (I, x). We still need to make sure that
(I, x) is an element of the poset P , in other words:

Subclaim: x ∈
∏

α∈I Xα is a cluster point of the net (xλ|I)λ∈Λ.
Let λ0 ∈ Λ and let U =

∏
α∈I Uα be a basic open neighborhood of x ∈

∏
α∈I Xα. Explicitly,

each Uα ⊆ Xα is open, and Uα ̸= Xα holds for at most finitely many coordinates α ∈ I, say,
α1, . . . , αn. For each 1 ≤ k ≤ n, the coordinate αk must appear in a domain I(tk) for some
tk ∈ T .

Since the collection {(I(t), x(t))}t∈T is a chain in P , the coordinates αk must in fact appear
in some common domain I(t′). For instance, take I(t′) to be the maximal element among
It1 , . . . , Itn with respect to inclusion. But then we have the partial cluster point (I(t′), x(t′)),
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that is, x(t′) ∈
∏

α∈I(t′)
Xα is a cluster point of the net (xλ|I(t′))λ∈Λ. Hence, there is an index

λ ≥ λ0 satisfying

xλ|I(t′) ∈
∏

α∈I(t′)

Uα.

This implies xλ|I ∈
∏

α∈I Uα, since the remaining coordinates add no constraint: for
α ∈ I \ I(t′), we have Uα = Xα. Hence, the net (xλ|I)λ∈Λ is frequently in U . ✓

By Zorn’s lemma, the poset P has a maximal element (J, y).

Claim: The domain of a maximal element must be J = A. Assume that there is
a coordinate α0 /∈ J . Since y ∈

∏
α∈J Xα is a cluster point of the net (xλ|J)λ∈Λ there is a

convergent subnet xλµ|J → y. Moreover, the space Xα0 is compact, so the net (x
λµ
α0)µ∈M has

a cluster point xα0 ∈ Xα0 .

The extension ỹ ∈
∏

α∈J∪{α0}Xα defined by{
ỹ|J = y

ỹα0 = xα0

is therefore a cluster point of the net (xλ|J∪{α0})λ∈Λ. This yields a partial cluster point
(J ∪ {α0}, ỹ) ∈ P which is strictly greater than (J, y):

(J, y) < (J ∪ {α0}, ỹ),

so that (J, y) is not maximal. ✓

In conclusion, the partial cluster point (J, y) = (A, y) ∈ P is in fact a cluster point
y ∈

∏
α∈A Xα of the given net (xλ)λ∈Λ.
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17 Separation axioms

17.1 Definitions

Definition 17.1. A topological space X is called:

� T0 or Kolmogorov if any distinct points are topologically distinguishable: For
x, y ∈ X with x ̸= y, there is an open subset U ⊂ X containing one of the two
points but not the other.

� T1 or Fréchet if any distinct points are separated (i.e., not in the closure of the other):
For x, y ∈ X with x ̸= y, there are open subsets Ux, Uy ⊂ X satisfying x ∈ Ux but
y /∈ Ux, whereas y ∈ Uy but x /∈ Uy.

� T2 or Hausdorff if any distinct points can be separated by neighborhoods: For
x, y ∈ X with x ̸= y, there are open subsets Ux, Uy ⊂ X satisfying x ∈ Ux, y ∈ Uy, and
Ux ∩ Uy = ∅.

� regular if points and closed sets can be separated by neighborhoods: For x ∈ X and
C ⊂ X closed with x /∈ C, there are open subsets Ux, UC ⊂ X satisfying x ∈ Ux,
C ⊂ UC , and Ux ∩ UC = ∅.

� T3 if it is and T1 and regular.

� completely regular if points and closed sets can be separated by functions: For x ∈ X
and C ⊂ X closed with x /∈ C, there is a continuous function f : X → [0, 1] satisfying
f(x) = 0 and f |C ≡ 1.

� T31
2
or Tychonoff if it is T1 and completely regular.

� normal if closed sets can be separated by neighborhoods: For A,B ⊂ X closed and
disjoint, there are open subsets U, V ⊂ X satisfying A ⊆ U , B ⊆ V , and U ∩ V = ∅.

� T4 if it is T1 and normal.

Warning 17.2. Munkres includes the T1 condition in the definition of regular and normal
[Mun00, §31]. In other words, what Munkres calls regular is what we call T3, and what
Munkres calls normal is what we call T4.
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17.2 Examples and non-examples

The implications T4 =⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0 hold, as well as T3 1
2

=⇒ T3. By
Urysohn’s lemma, the implication T4 =⇒ T3 1

2
also holds, so that the chain can be written

as
T4 =⇒ T3 1

2
=⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0.

Moreover, each implication is strict, i.e., there are counterexamples to the reverse direction.

Example 17.3. An indiscrete space with at least two points is not T0.

Example 17.4. The Sierpinski space is T0 but not T1. Recall that the Sierpinski space is a
two-point space X = {a, b} with the topology T = {∅, {a}, X}.

Example 17.5. Let X be a set equipped with the cofinite topology. Then X is T1. If X
infinite, then X is not T2.

Example 17.6. Let X be a set equipped with the cocountable topology. Then X is T1. If
X uncountable, then X is not T2.

Example 17.7. An indiscrete space X is regular and normal (vacuously). Indeed, the only
non-empty closed subset C ⊆ X is C = X, for which there is no point x /∈ C.

Proposition 17.8. Any compact Hausdorff space is T4.

Proof. See Homework 7 Problem 2.

Lemma 17.9. Let (X, d) be a metric space, A ⊆ X a non-empty subset, and consider the
function fA : X → R defined by

fA(x) = d(x,A).

Then fA is Lipschitz continuous with Lipschitz constant 1, that is:

|fA(x)− fA(y)| ≤ d(x, y) for all x, y ∈ X.

In particular, fA is continuous.

Proof. For every x, y ∈ X and a ∈ A, we have

d(x, a) ≤ d(x, y) + d(y, a).

Taking the infimum over a ∈ A yields

d(x,A) ≤ d(x, y) + d(y, A),

which can be rewritten as
d(x,A)− d(y, A) ≤ d(x, y).

Interchanging the role of x and y, we also obtain

d(y, A)− d(x,A) ≤ d(x, y)

and therefore
|fA(x)− fA(y)| = |d(x, S)− d(y, S)| ≤ d(x, y).
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Proposition 17.10. Any metric space is T4.

Proof. Let A,B ⊂ X be disjoint (non-empty) closed subsets of a metric space (X, d). Con-
sider the function f : X → [0, 1] defined by

f(x) =
fA(x)

fA(x) + fB(x)
.

This function satisfies the following properties.

� f is well-defined since the denominator is strictly positive on X:

fA(x) + fB(x) = 0 ⇐⇒ fA(x) = 0 and fB(x) = 0

⇐⇒ x ∈ A = A and x ∈ B = B

⇐⇒ x ∈ A ∩B = ∅.

� f is continuous, since the sum fA + fB is continuous, so that the quotient f = fA
fA+fB

is
continuous on X.

� f takes values in [0, 1], by the inequalities 0 ≤ fA(x) ≤ fA(x) + fB(x) for all x ∈ X.

� f takes the value 0 precisely on A:

f(x) = 0 ⇐⇒ fA(x)

fA(x) + fB(x)
= 0

⇐⇒ fA(x) = 0

⇐⇒ x ∈ A = A.

� f takes the value 1 precisely on B:

f(x) = 1 ⇐⇒ fA(x)

fA(x) + fB(x)
= 1

⇐⇒ fA(x) = fA(x) + fB(x)

⇐⇒ fB(x) = 0

⇐⇒ x ∈ B = B.

Then the subsets U := f−1([0, 1
3
)) and V := f−1((2

3
, 1]) are open in X, disjoint, and satisfy

A ⊆ U and B ⊆ V .

Remark 17.11. A function f : X → [0, 1] satisfying the properties in the proof is said to
precisely separate the subsets A and B. A space is called perfectly normal if any
disjoint closed subsets can be precisely separated by a function. A space is called T6 if it is
T1 and perfectly normal.

The previous proof (with a slight adjustment in the case B = ∅) shows that every metric
space is T6.
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17.3 Equivalent characterizations

Proposition 17.12. The following are equivalent.

1. X is T1.

2. Every singleton {x} is closed in X.

3. For every x ∈ X, we have

{x} =
⋂

all neighborhoods
U of x

U.

Proposition 17.13. The following are equivalent.

1. X is T2.

2. The diagonal ∆ ⊆ X ×X is closed in X ×X.

3. For every x ∈ X, we have

{x} =
⋂

closed neighborhoods
C of x

C.

Proposition 17.14. The following are equivalent.

1. X is regular.

2. For every x ∈ X, any neighborhood of x contains a closed neighborhood of x. In other
words, the closed neighborhoods form a neighborhood base at x.

3. Given x ∈ U where U is open, there exists an open V ⊆ X satisfying

x ∈ V ⊆ V ⊆ U.

Proposition 17.15. The following are equivalent.

1. X is T2 and regular.

2. X is T1 and regular.

3. X is T0 and regular.

Recall that X is called T3 if it satisfies those equivalent conditions.

Proof. In light of the implications T2 =⇒ T1 =⇒ T0, it suffices to show that a regular T0

space is also T2.
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Let x, y ∈ X be distinct points. Since X is T0, there exists an open subset U ⊂ X containing
one of the two points but not the other. Without loss of generality, U contains x but not y.
Since X is regular, there is an open subset V ⊂ X satisfying

x ∈ V ⊆ V ⊆ U,

by Proposition 17.14. Then V and V
c
are separating neighborhoods for x and y: we have

x ∈ V , y ∈ V
c
, and V ∩ V

c
= ∅.

Proposition 17.16. The following are equivalent.

1. X is normal.

2. For every A ⊆ X closed, any neighborhood of A contains a closed neighborhood of A.

3. Given A ⊆ U where A is closed and U is open, there exists an open V ⊆ X satisfying

A ⊆ V ⊆ V ⊆ U.

Remark 17.17. A normal T0 space need not be T1. For example, the Sierpinski space as in
Example 17.4 is normal (vacuously). Indeed, the only non-empty closed subsets of X are the
closed point {b} and X, so that there are no disjoint (non-empty) closed subsets.
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17.4 A few properties

Proposition 17.18. Behavior of subspaces.

1. A subspace of a T0 space is T0.

2. A subspace of a T1 space is T1.

3. A subspace of a T2 space is T2.

4. A subspace of a regular (resp. T3) space is regular (resp. T3).

5. A subspace of a completely regular (resp. T3 1
2
) space is completely regular (resp. T3 1

2
).

6. A closed subspace of a normal (resp. T4) space is normal (resp. T4).

Remark 17.19. A subspace of a normal space need not be normal in general.

Proposition 17.20. Behavior of (arbitrary) products.

1. A product of T0 spaces is T0.

2. A product of T1 spaces is T1.

3. A product of T2 spaces is T2.

4. A product of regular (resp. T3) spaces is regular (resp. T3).

5. A product of completely regular (resp. T3 1
2
) spaces is completely regular (resp. T3 1

2
).

Remark 17.21. A product of normal spaces need not be normal in general, even a finite
product. See [Mun00, §31, Example 3].
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17.5 The Kolmogorov quotient

Definition 17.22. Two points x, y ∈ X in a topological space X are called topologically
distinguishable if there exists an open subset U ⊂ X that contains one of the points but
not the other.

Recall that X is called T0 if any distinct points are topologically distinguishable.

The points x, y are called topologically indistinguishable if they are not topologically
distinguishable, which amounts to x and y having exactly the same neighborhoods. More
explicitly: For every open subset U ⊆ X, we have

x ∈ U ⇐⇒ y ∈ U.

Exercise 17.23. Show that topological indistinguishability is an equivalence relation on X.

Definition 17.24. The Kolmogorov quotient of X is the quotient space KQ(X) := X/∼
where topologically indistinguisable points become identified.

In particular, X is T0 if and only if the quotient map π : X ↠ KQ(X) is a homeomorphism.

Lemma 17.25. The Kolmogorov quotient KQ(X) is T0.

Proof. Let a, b ∈ KQ(X) be distinct points. Pick representatives x, y ∈ X of a and b
respectively. Since a and b are distinct, x and y are topologically distinguishable. Let U ⊂ X
be an open subset that distinguishes x and y, without loss of generality x ∈ U and y /∈ U .

By definition of ∼, U is a union of equivalence classes (i.e., z ∈ U implies that any z′ ∼ z is
also in U), which is saying π−1π(U) = U . Therefore π(U) is open in KQ(X) and contains
π(x) = a. However π(U) does not contain b, since every u ∈ U is distinguishable from y, so
that π(u) ̸= π(y) = b.

Corollary 17.26. X is T0 if and only if X is homeomorphic to its Kolmogorov quotient.

Proposition 17.27. The Kolmogorov quotient satisfies the following universal property.
For any T0 space Y and continuous map f : X → Y , there is a unique continuous map
f : KQ(X) → Y satisfying f = f ◦ π, i.e., making the following diagram commute:

X
π
// //

f ##

KQ(X)

∃! f
��

Y.

In other words, KQ(X) is the “closest T0 space which X maps into”.

Proof. By the universal property of the quotient topology, if suffices to show that such a map
f : X → Y is constant on equivalence classes, that is, x ∼ x′ implies f(x) = f(x′).

Assuming f(x) ̸= f(x′), there is an open U ⊂ Y that distinguishes f(x) and f(x′) since Y is
T0. Without loss of generality f(x) ∈ U and f(x′) /∈ U . Then f−1(U) ⊂ X is an open that
distinguishes x and x′, given x ∈ f−1(U) and x′ /∈ f−1(U). We conclude x ̸∼ x′.
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18 Urysohn’s lemma

18.1 The statement

Theorem 18.1 (Urysohn’s lemma). Let X be a normal space. Then closed subsets of X can
be separated by functions: For A,B ⊆ X closed and disjoint, there is a continuous function
f : X → [0, 1] satisfying f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B.

Such a function is called an Urysohn function for A and B.

Proof. Step 1: Construction.

Since A and B are disjoint, the inclusion A ⊆ Bc =: U1 holds, and note that A is closed and
U1 is open.

Since X is normal, there is an open U 1
2
satisfying

A ⊆ U 1
2
⊆ U 1

2
⊆ U1.

Consider the inclusion A ⊆ U 1
2
where A is closed and U 1

2
is open. There is an open U 1

4

satisfying
A ⊆ U 1

4
⊆ U 1

4
⊆ U 1

2
.

Likewise, consider U 1
2
⊆ U1 where U 1

2
is closed and U1 is open. There is an open U 3

4
satisfying

U 1
2
⊆ U 3

4
⊆ U 3

4
⊆ U1.

Repeating the process, we obtain for every “dyadic rational” r = k
2n

for some n ≥ 0 and
0 < k ≤ 2n an open subset Ur satisfying

� A ⊆ Ur for all r;

� Ur ⊆ Us whenever r < s.

In particular we have Ur ⊆ U1 = Bc for all r, i.e., every Ur is disjoint from B.

Define the function f : X → [0, 1] by the formula

f(x) =

{
1 if x belongs to no Ur

inf{r | x ∈ Ur} otherwise.

Claim: f is an Urysohn function for A and B.

Step 2: Verification.

First, note that the dyadic rationals in (0, 1] are dense in [0, 1].

The condition A ⊆ Ur for all r implies f |A ≡ 0.

The condition B ∩ Ur = ∅ for all r implies f |B ≡ 1.
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It remains to show that f is continuous. This follows from two facts.

Fact A: x ∈ Ur =⇒ f(x) ≤ r. Indeed, the inclusion Ur ⊆ Us holds for all s > r, and s can
be made arbitrarily close to r.

Fact B: x /∈ Ur =⇒ f(x) ≥ r. This is because the set {s | x ∈ Us} is upward closed, and
thus cannot contain numbers q < r if r is not in the set. This implies r ≤ inf{s | x ∈ Us} =
f(x).

Continuity where f = 0.

Assume f(x) = 0, and let ϵ > 0. Let r be a dyadic rational in (0, ϵ). Then we have x ∈ Ur

(by fact B) and f(y) ≤ r < ϵ for all y ∈ Ur (by fact A). Since Ur is a neighborhood of x, f
is continuous at x.

Continuity where f = 1.

Assume f(x) = 1, and let ϵ > 0. Let r be a dyadic rational in (1−ϵ, 1). Then we have x ∈ Ur
c

(by fact A) and f(y) ≥ r > 1− ϵ for all y ∈ Ur
c
(by fact B). Since Ur

c
is a neighborhood of

x, f is continuous at x.

Continuity where 0 < f < 1.

Assume 0 < f(x) < 1, and let ϵ > 0. Take r, s dyadic rationals satisfying

f(x)− ϵ < r < f(x) < s < f(x) + ϵ.

This implies x ∈ Us (by fact B) and x ∈ Ur
c
(by fact A), in other words x ∈ Us \ Ur, which

is a neighborhood of x.

Every y ∈ Us satisfies f(y) ≤ s (by fact A), whereas every y ∈ Ur
c
satisfies f(y) ≥ r (by

fact B), so that the inequality

f(x)− ϵ < r ≤ f(y) ≤ s < f(x) + ϵ

holds for all y ∈ Us \ Ur. This proves continuity of f at x.

Alternate proof of continuity. Since intervals of the form [0, α) or (α, 1] form a subbase for
the topology of [0, 1], it suffices to show that their preimages f−1[0, α) and f−1(α, 1] are open
in X.

Consider the equivalent statements:

x ∈ f−1[0, α) ⇐⇒ f(x) < α

⇐⇒ There is a dyadic rational r < α satisfying x ∈ Ur

⇐⇒ x ∈
⋃
r<α

Ur.

This proves the equality

f−1[0, α) =
⋃
r<α

Ur
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which is open in X since each Ur is open.

Likewise, consider the equivalent statements:

x ∈ f−1(α, 1] ⇐⇒ f(x) > α

⇐⇒ There is a dyadic rational s > α satisfying x /∈ Us

⇐⇒ There is a dyadic rational r > α satisfying x /∈ Ur

⇐⇒ x ∈
⋃
r>α

Ur
c
.

This proves the equality

f−1(α, 1] =
⋃
r>α

Ur
c

which is open in X since each Ur
c
is open.

Remark 18.2. The result is trivially true if either A or B is empty, but the proof still works!

Remark 18.3. The Urysohn function need not separate A and B precisely. In other words,
there can be points x /∈ A with f(x) = 0 and points y /∈ B with f(y) = 1.
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18.2 Tietze extension theorem

One important application of Urysohn’s lemma is in proving the following.

Theorem 18.4 (Tietze extension theorem). Let X be a normal space and A ⊆ X a closed
subset.

1. Any continuous function f : A → [a, b] admits a continuous extension f̃ : X → [a, b].

2. Any continuous function f : A → R admits a continuous extension f̃ : X → R.

Proof. See [Mun00, Theorem 35.1].
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