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Abstract

These are the evolving lecture notes for the course MATH 420/820 - Commutative
Algebra in the Winter 2024 semester. We are following Atiyah and Macdonald as main
reference. The notes provide more details and examples.
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1 Ideals and quotient rings

1.1 Ring homomorphisms

Definition 1.1.1. Let R and S be rings. A ring homomorphism (or ring map) from R
to S is a function f : R → S satisfying:

f(x+ y) = f(x) + f(y)

f(xy) = f(x)f(y)

for all x, y ∈ R. The ring homomorphism f is unital if moreover it satisfies

f(1R) = 1S.

In this course, ring homomorphisms will be assumed unital unless otherwise noted.

Exercise 1.1.2. Given ring maps f : R → S and g : S → T , check that the composition

g ◦ f : R → T

is also a ring map.

Example 1.1.3. Let R be any ring.

1. The identity map id: R → R is a ring homomorphism.

2. There is a unique ring map R → 0 to the zero ring 0, namely the constant map with
value 0. This says that the zero ring 0 is the terminal ring.

3. There is a unique ring map Z → R, given by

n 7→ n · 1R.

This says that Z is the initial (unital) ring.

Example 1.1.4. For any ring R, ring maps φ : Z[x] → R correspond bijectively to elements
of R, via evaluation at x:

{ring maps φ : Z[x] → R}
∼=−→ R

φ 7→ φ(x).

Given an element a ∈ R, the corresponding ring map

φa : Z[x] → R

is given by evaluating at x = a:
φa(p(x)) = p(a),

or more explicitly:

φa

(
d∑
i=0

cix
i

)
=

d∑
i=0

cia
i.

This says that Z[x] is the free ring on one generator, as well as the free commutative ring on
one generator.
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Example 1.1.5. For a commutative ring R, ring maps φ : Z[x, y] → R correspond bijectively
to pairs of elements of R, via evaluation at x and y:

{ring maps φ : Z[x, y] → R}
∼=−→ R2

φ 7→ (φ(x), φ(y)) .

Given a pair of elements (a, b) ∈ R2, the corresponding ring map

φa,b : Z[x, y] → R

is given by evaluating at x = a and y = b:

φa,b(p(x, y)) = p(a, b).

This says that Z[x, y] is the free commutative ring on two generators.

Remark 1.1.6. For a not necessarily commutative ring R, ring maps φ : Z[x, y] → R corre-
spond bijectively to pairs of commuting elements of R, via evaluation at x and y.

The free ring on two generators is the ring of polynomials in two non-commuting variables
Z⟨X, Y ⟩.

Definition 1.1.7. A ring homomorphism f : R → S is an isomorphism if there exists a
ring homomorphism g : S → R satisfying g ◦ f = idR and f ◦ g = idS.

Proposition 1.1.8. A ring homomorphism f : R → S is an isomorphism if and only if f is
bijective.
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1.2 Subrings and ideals

Definition 1.2.1. A subring of a ring R is a subset A ⊆ R satisfying:

� 0 ∈ A

� x, y ∈ A =⇒ x+ y ∈ A and −x ∈ A

� x, y ∈ A =⇒ xy ∈ A.

The subring A is unital if moreover it satisfies 1R ∈ A.

As for rings, subrings will be assumed unital unless otherwise noted.

Remark 1.2.2. Given a subring A ⊆ R, the inclusion map inc : A ↪→ R is a ring homomor-
phism.

Example 1.2.3. 1. The integers are a subring of the rational numbers: Z ⊂ Q.

2. The integers are also a subring of the Gaussian integers: Z ⊂ Z[i].

3. The rational numbers are a subring of the real numbers: Q ⊂ R.

4. Given a commutative ring k, consider the polynomial ring k[x]. The subset of polyno-
mials having only even degree terms

k[x2] =

{
n∑
i=0

c2ix
2i | n ≥ 0, c2i ∈ k

}
is a subring of k[x].

5. The polynomials form a subring of the power series: k[x] ⊂ kJxK.

6. The polynomials also form a subring of the Laurent polynomials: k[x] ⊂ k[x, x−1].

Definition 1.2.4. Let R be a commutative ring. An ideal of R is a subset I ⊆ R satisfying:

� 0 ∈ I

� x, y ∈ I =⇒ x+ y ∈ I

� r ∈ R and x ∈ I =⇒ rx ∈ I.

Example 1.2.5. 1. Given an integer n ∈ Z, the multiples of n form an ideal nZ ⊆ Z,
also denoted (n) = nZ.

2. The polynomials that are multiples of x (i.e. those with constant term zero) form an
ideal of the polynomial ring k[x]:

x k[x] =

{
d∑
i=1

cix
i | d ≥ 0, ci ∈ k

}
also denoted (x) = x k[x].
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3. More generally, given a commutative ring R and an element a ∈ R, the ideal generated
by a consists of all multiples of a:

(a) = Ra = {ra | r ∈ R} ⊆ R.

An ideal of the form (a) is called a principal ideal.

4. Yet more generally, the ideal generated by elements a1, . . . , an ∈ R consists of all
R-linear combinations of the ai:

(a1, . . . , an) = Ra1 + · · ·+Ran =

{
n∑
i=1

riai | ri ∈ R

}
⊆ R.

It is the smallest ideal of R containing a1, . . . , an.

Remark 1.2.6. If an ideal I ⊆ R contains an invertible element u, we have

u ∈ I =⇒ u−1u = 1 ∈ I

=⇒ r · 1 ∈ I for all r ∈ R

=⇒ I = R.

Hence a proper ideal I ⊊ R cannot be a unital subring of R, though it is a non-unital subring.

Definition 1.2.7. A principal ideal domain (PID for short) is an integral domain in
which every ideal is principal.

Example 1.2.8. 1. The integers Z form a PID. Any non-zero ideal I ⊆ Z is generated
by the greatest common divisor of its non-zero elements. For instance:

(a, b) = (gcd(a, b))

(6, 10) = (2)

(10, 15) = (5)

(10, 13) = (1) = Z.

2. For any field k, the polynomial ring k[x] is a PID. For instance:

(x2 − 1, x2 − x) = (x− 1) ⊂ k[x]

(x2 − 1, x+ 2) = (1) = k[x].

3. The polynomial ring k[x, y] is not a PID, since the ideal (x, y) ⊂ k[x, y] is not principal.

4. The polynomial ring Z[x] is not a PID, since the ideal (7, x) ⊂ Z[x] is not principal.
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1.3 Quotient rings

Definition 1.3.1. Given a commutative ring R and an ideal I ⊆ R, the quotient ring R/I
is the set of cosets of I

R/I = {r + I | r ∈ R}.

We also denote the equivalence class of r by r + I = [r] = r = q(r). Addition and multipli-
cation in R/I are induced by those in R via the formulas

[a] + [b] = [a+ b]

[a][b] = [ab],

which are well-defined, i.e., independent of the choices of representatives in R.

If the ring R was unital to begin with, then so is the quotient ring R/I, with unit element

1R/I = [1R].

Warning 1.3.2. We sometimes denote the equivalence class of r ∈ R in a quotient ring R/I
also by r rather than r, [r], or r + I, if the context makes clear that we are working in the
quotient ring.

Remark 1.3.3. Given an ideal I ⊆ R, the quotient map q : R ↠ R/I is a ring homomorphism.

Lemma 1.3.4. Let R be a commutative ring.

1. For any ring map f : R → S, the kernel ker(f) ⊆ R is an ideal of R.

2. Every ideal I ⊆ R arises as the kernel of some ring map.

Proof. 1. Exercise.

2. The ideal I ⊆ R is the kernel of the quotient map q : R ↠ R/I.

Remark 1.3.5. Every ring map f : R → S factors as a quotient map followed by an inclusion:

R
f

//

q ��
��

f ′ %% %%

S.

R/ ker(f)
∼=
// im(f)

. � inc

<<

Example 1.3.6. 1. The integers modulo n are the quotient ring

Z/n := Z/nZ = Z/(n).
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2. Given a commutative ring k, the quotient ring k[x]/(x) is described by the isomorphism
that evaluates polynomials at x = 0:

k[x]/(x)
∼=−→ k

[p(x)] 7→ p(0),

in other words, extracting the constant term:[
d∑
i=0

cix
i

]
7→ c0.

3. More generally, for any a ∈ k, evaluation at x = a yields an isomorphism of rings

k[x]/(x− a)
∼=−→ k

[p(x)] 7→ p(a).

4. For any b ∈ k, evaluation at y = b yields an isomorphism of rings

k[x, y]/(y − b)
∼=−→ k[x]

[p(x, y)] 7→ p(x, b).

5. The quotient ring

k[ϵ] := k[x]/(x2) ∼= {a+ bϵ | a, b ∈ k, ϵ2 = 0}

is called the ring of dual numbers. Here ϵ denotes the equivalence class [x] of x in
the quotient ring k[x]/(x2).

Lemma 1.3.7. Let f : R → S be a ring map.

1. For any ideal J ⊆ S, the preimage f−1(J) ⊆ R is an ideal of R.

2. For any ideal I ⊆ R, the image f(I) ⊆ S is a non-unital subring of S.

3. If f is surjective, then for any ideal I ⊆ R, the image f(I) ⊆ S is an ideal of S.

Remark 1.3.8. The image f(I) ⊆ S need not be an ideal in general. Consider for instance
the image of the inclusion map inc : Z ↪→ Q, which is not an ideal of Q. More generally, any
(proper unital) subring A ⊊ R is not an ideal of R, as observed in Remark 1.2.6.

Exercise 1.3.9. (a) Let f : R → S be a non-surjective ring map. Show that there is an
ideal I ⊆ R whose image f(I) is not an ideal of S.

(b) Find an example of non-surjective ring map f : R → S such that for every proper ideal
I ⊊ R, the image f(I) is an ideal of S.
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Proposition 1.3.10. Let R be a commutative ring and I ⊆ R an ideal. The ideals of R/I
correspond bijectively to the ideals of R containing I, via the correspondence:

{ideals of R/I}
∼=
// {ideals of R containing I}

J ⊆ R/I � // q−1(J)

q(I ′) I ′ ⊆ R.�oo

Here q : R ↠ R/I denotes the quotient map.

©2024 Martin Frankland All Rights Reserved 9
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2 Zero-divisors, nilpotent elements, units

2.1 Zero-divisors

Definition 2.1.1. Let R be a commutative ring. An element x ∈ R is a zero-divisor if
there exists y ̸= 0 in R satisfying xy = 0.

Technically 0 is considered a zero-divisor, though we will often be interested in nontrivial
zero-divisors x ̸= 0.

Example 2.1.2. In the ring Z/6, the elements 2 and 3 are zero-divisors since they satisfy
2 · 3 = 0, but 2 ̸= 0 and 3 ̸= 0.

Definition 2.1.3. An integral domain is a commutative ring with 1 ̸= 0 and containing
no nontrivial zero-divisors.

Having no nontrivial zero-divisors can be rephrased as the implication

xy = 0 =⇒ x = 0 or y = 0.

By contraposition, this is in turn equivalent to:

x ̸= 0 and y ̸= 0 =⇒ xy ̸= 0.

Example 2.1.4. 1. The ring Z is an integral domain.

2. The ring Z/5 is in integral domain (in fact a field). The ring Z/6 is not an integral
domain. More generally, Z/n is an integral domain if and only if n is prime.

Proposition 2.1.5. If R is an integral domain, then so is the polynomial ring R[x].

Proof. Let p, q ∈ R[x] be non-zero polynomials of degrees m and n respectively, that is:

p =
m∑
i=0

aix
i and q =

n∑
j=0

bjx
j

with am ̸= 0 and bn ̸= 0. Their product is

pq = ambnx
m+n + lower degree terms.

The leading coefficient satisfies ambn ̸= 0 since R is an integral domain, which ensures
pq ̸= 0.
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2.2 Nilpotent elements

Definition 2.2.1. Let R be a ring. An element x ∈ R is nilpotent if xn = 0 holds for some
n ≥ 1.

Lemma 2.2.2. Any nilpotent element is a zero-divisor.

Proof. Let x ∈ R be nilpotent and let n be the smallest exponent such that xn = 0 holds.
Then we have

x(xn−1) = xn = 0

but xn−1 ̸= 0.

Note that the convention x0 = 1 covers the case x = 0. Alternately, treat the case x = 0
separately by recalling that 0 is always a zero-divisor.

The converse of Lemma 2.2.2 does not hold, as we will see below.

Example 2.2.3. 1. In the ring Z/4, the element 2 is nilpotent since it satisfies 22 = 4 = 0.

2. In the ring Z/6, the element 2 is not nilpotent, since its powers are all non-zero:

21 = 2 ̸= 0

22 = 4 ̸= 0

23 = 8 = 2.

3. For any (nontrivial) commutative ring k, consider the quotient ring R = k[x, y]/(xy).
In R, x and y are zero-divisors since they satisfy

xy = 0 but x ̸= 0 and y ̸= 0.

However x and y are not nilpotent: xn ̸= 0 holds for all n ≥ 1, and likewise for y.

Lemma 2.2.4. Let R be a commutative ring and a, b ∈ R nilpotent elements.

1. The sum a+ b is nilpotent.

2. The product ra is nilpotent for any r ∈ R.

In other words, the nilpotent elements form an ideal of R.

Proof. 1. Assume am = 0 and bn = 0. Since R is commutative, the binomial expansion yields

(a+ b)m+n−1 =
m+n−1∑
i=0

(
m+ n− 1

i

)
aibm+n−1−i.

The terms with i ≥ m have ai = 0 and thus vanish. The terms with i < m have

m+ n− 1− i ≥ n =⇒ bm+n−1−i = 0.

Hence the entire sum vanishes: (a+ b)m+n−1 = 0.

2. Since R is commutative, we have (ra)n = rnan = 0.

©2024 Martin Frankland All Rights Reserved 11
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Remark 2.2.5. The statement does not hold for a non-commutative ring R. The proof does
show the following.

1. If a, b ∈ R are commuting nilpotent elements, then a+ b is nilpotent.

2. If a nilpotent element a ∈ R commutes with r ∈ R, then ra is nilpotent.

Example 2.2.6. Let k be a commutative ring and consider the matrix ring R = Mat2(k).
Take the matrices

A =

[
0 1

0 0

]
and B =

[
0 0

1 0

]
,

both of which are nilpotent: A2 = B2 = 0. Their sum is the invertible matrix

A+B =

[
0 1

1 0

]
,

which in particular is not nilpotent. Their product is

AB =

[
1 0

0 0

]
,

which is not nilpotent.

Example 2.2.7. Let k be a commutative ring and consider the ring of polynomials in two
non-commuting variables k⟨X, Y ⟩. Consider the quotient

R = k⟨X, Y ⟩/(X2, Y 2)

by the two-sided ideal generated by X2 and Y 2. In R, the elements X and Y are both
nilpotent: X2 = Y 2 = 0. However, their sum X + Y is not nilpotent. Their product XY is
also not nilpotent.

Now back to commutative rings.

Definition 2.2.8. Let R be a commutative ring.

1. The ideal of nilpotent elements of R is called the nilradical of R, denoted

nil(R) = {a ∈ R | an = 0 for some n ≥ 1}.

2. The ring R is reduced if it has no nontrivial nilpotents: nil(R) = 0.

By Lemma 2.2.2, every integral domain is reduced, though the converse does not hold.

Example 2.2.9. 1. The ring Z/4 has nilradical

nil(Z/4) = (2) = {0, 2}.

2. The ring Z/6 has nilradical
nil(Z/6) = 0.

Hence Z/6 is reduced, though it is not an integral domain.

Exercise 2.2.10. (a) Compute the nilradical nil(Z/72).

(b) Recall that Z/n is an integral domain if and only if n is prime. When is Z/n reduced?

©2024 Martin Frankland All Rights Reserved 12
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2.3 Units

Definition 2.3.1. Let R be a commutative ring.

1. An element a ∈ R is a unit if it is invertible. Explicitly: there is an element b ∈ R
satisfying

ab = 1.

If such a b exists, it is unique, and called the inverse of a, denoted a−1.

2. The set of all units in R is called the group of units (or multiplicative group) of R,
denoted

R× = {a ∈ R | a is invertible}.

Exercise 2.3.2. Show that an element a ∈ R is a unit if and only if the ideal generated by
a is the whole ring: (a) = (1) = R.

Let us justify that units form a group under multiplication.

Lemma 2.3.3. Let R be a commutative ring.

1. If a, b ∈ R are units, then so is their product ab.

2. If x is a non-unit, then so is rx for any r ∈ R.

Proof. 1. The inverse of ab is b−1a−1:

ab(b−1a−1) = a(bb−1)a−1 = aa−1 = 1.

2. By contraposition, the statement is equivalent to saying that if a product ab is invertible,
then both factors must be invertible. This holds, since the inverse of a is b(ab)−1:

a
(
b(ab)−1

)
= (ab)(ab)−1 = 1.

Example 2.3.4. 1. The only invertible integers are 1 and −1:

Z× = {±1}.

2. An element a ∈ Z/n is invertible if and only if it is coprime to n:

(Z/n)× = {a ∈ Z/n | gcd(a, n) = 1}.

Example 2.3.5. Let R be an integral domain. A polynomial p =
∑d

i=0 cix
i ∈ R[x] is

invertible if and only if it is a constant polynomial p = c0 and the constant term c0 is
invertible in R:

R[x]× ∼= R×.

©2024 Martin Frankland All Rights Reserved 13
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Example 2.3.6. Recall that Laurent polynomials are like polynomials except that they may
have terms of negative degrees. For instance:

3x−8 + 7x−1 + 5x2 ∈ Z[x, x−1].

The ring of Laurent polynomials with coefficients in R is

R[x, x−1] =

{∑
i∈Z

cix
i | ci ∈ R, ci ̸= 0 for finitely many i

}
.

If R is an integral domain, then a Laurent polynomial is invertible if and only if it is a unit
in R times a power of x:

R[x, x−1]× = {uxd | d ∈ Z, u ∈ R×}.

In that case, its inverse is
(uxd)−1 = u−1x−d.

Proposition 2.3.7. Let R be a commutative ring. A power series f ∈ RJxK is invertible if
and only if its constant term c0 is invertible in R:

RJxK× =

{
∞∑
i=0

cix
i ∈ RJxK | c0 ∈ R×

}
.

Proof. See Homework 2 Problem 2, which is [AM69, §1 Exercise 5(i)].

Example 2.3.8. In the power series ring ZJxK, the inverse of 1 + 3x can be computed using
a geometric series:

(1 + 3x)−1 =
1

1 + 3x

=
1

1− (−3x)

=
∞∑
i=0

(−3x)i

=
∞∑
i=0

(−3)ixi

= 1− 3x+ 9x2 − 27x3 + · · ·

Example 2.3.9. In the polynomial ring Z/4[x], the polynomial 1 + 2x is a unit, in fact, is
its own inverse:

(1 + 2x)(1 + 2x) = 1 + 4x+ 4x2 = 1.

Lemma 2.3.10. Let R be a commutative ring. If u ∈ R× is a unit and x ∈ R is nilpotent,
then u+ x is a unit.
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Slogan: “unit + nilpotent = unit”.

Proof. This is [AM69, §1 Exercise 1]. If you want to solve it on your own, skip this spoiler.

Since x is nilpotent, xn = 0 holds for some n ≥ 1. The difference

un − xn = un − 0 = un

is a unit, by Lemma 2.3.3. But that difference factors as

un − xn = (u− x)(un−1 + un−2x+ · · ·+ xn−1).

Again by Lemma 2.3.3, the factor u− x must be a unit.

Alternate proof. We first treat the case u = 1. We would like to use the geometric series

1

1− x
= 1 + x+ x2 + · · · =

∞∑
i=0

xi.

Since xn = 0 holds, the formula for geometric sums yields the equation in R

(1− x)−1 = 1 + x+ x2 + · · ·+ xn−1

so that 1− x is invertible. The general case with a unit u ∈ R× reduces to the previous case
via

u− x = u(1− u−1x)

since u−1x is nilpotent.

The next proposition generalizes Example 2.3.5 and explains what was going on in Exam-
ple 2.3.9.

Proposition 2.3.11. Let R be a commutative ring. A polynomial p =
∑d

i=0 cix
i ∈ R[x]

is invertible if and only if its constant term c0 is invertible in R and the other coefficients
c1, . . . , cd are nilpotent.

Proof. [AM69, §1 Exercise 2].

Exercise 2.3.12. Let R be a commutative ring.

1. Show that two elements a, b ∈ R generate the same principal ideal (a) = (b) if and only
if they divide each other: a | b and b | a. Two such elements are said to be associate.

2. If two elements a, b ∈ R are related by a = ub for some unit u ∈ R×, show that they
are associate.

3. Show that the converse holds if R is an integral domain.

©2024 Martin Frankland All Rights Reserved 15
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2.4 Fields

Definition 2.4.1. A field is a commutative ring k in which 1 ̸= 0 and every non-zero element
is invertible:

k× = k \ {0}.

Proposition 2.4.2. The following conditions on a commutative ring R ̸= 0 are equivalent.

1. R is a field.

2. The only ideals of R are 0 and (1) = R.

3. Every ring map R → S into a non-zero ring S is injective.

Example 2.4.3. 1. The ring Z/n is a field if and only if n is prime. We denote the field
with p elements Fp = Z/p.

2. The rational numbers Q, the real numbers R, and the complex numbers C are fields.

Example 2.4.4. The Gaussian rationals

Q[i] = {a+ bi ∈ C | a, b ∈ Q}

form a field. It can be obtained both as the fraction field of the Gaussian integers:

Q[i] = Frac(Z[i])

and as the field extension of Q obtained by adjoining a square root of −1:

Q[i] = Q(i).

Remark 2.4.5. Given α ∈ C, denote by Q[α] the smallest subring of C containing Q and α.
It consists of all polynomial expressions in α with rational coefficients:

Q[α] =

{
d∑
i=0

ciα
i | d ≥ 0, ci ∈ Q

}
.

Denote by Q(α) the smallest subfield of C containing Q and α. It consists of all rational
expressions in α with rational coefficients:

Q(α) =

{
p

q
| p, q ∈ Q[α], q ̸= 0

}
.

We have equivalent conditions:

1. The inclusion of rings Q[α] ⊆ Q(α) is an equality.

2. The number α is algebraic, i.e., a root of some polynomial in Q[x].

3. The ring Q[α] is finite-dimensional as a Q-vector space.
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See [DF04, §13.1] for more details.

Example 2.4.6. For a field k, the field of rational functions with coefficients in k is

k(x) =

{
p

q
| p, q ∈ k[x], q ̸= 0

}
.

It is the fraction field of the polynomial ring with coefficients in k:

k(x) = Frac(k[x]).

Remark 2.4.7. More generally, we could start with an integral domain R and consider the
polynomial ring R[x], which is also an integral domain, by Proposition 2.1.5. Its fraction
field consists of the rational functions with coefficients in R:

Frac(R[x]) =

{
p

q
| p, q ∈ R[x], q ̸= 0

}
.

However, this construction has the same effect as first inverting all the non-zero constant
polynomials, then taking rational functions:

Frac(R[x]) ∼= Frac(R)(x).

Example 2.4.8. With R = Z, we have

Frac(Z[x]) ∼= Q(x) ∼= Frac(Q[x]).

By clearing denominators of the coefficients, a rational function in Q(x) can always be written
as a fraction of polynomials with integer coefficients, for instance:

3/4 + x7

1 + (5/3)x
=

9/4 + 3x7

3 + 5x
=

9 + 12x7

12 + 20x
.
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3 Prime ideals and maximal ideals

3.1 Definitions and properties

Definition 3.1.1. Let R be a commutative ring. A proper ideal I ⊊ R is called:

� prime if the following implication holds:

xy ∈ I =⇒ x ∈ I or y ∈ I.

Equivalently:
x /∈ I and y /∈ I =⇒ xy /∈ I.

� maximal if the only ideal larger than I is the whole ring R:

I ⊊ J =⇒ J = R.

Remark 3.1.2. Recall that an element p ∈ R is called prime if the following implication holds:

p | xy =⇒ p | x or p | y.

Reformulating in terms of the ideal (p) generated by p, the implication becomes:

xy ∈ (p) =⇒ x ∈ (p) or y ∈ (p).

In other words, the element p is prime if and only if the ideal (p) is prime.

Proposition 3.1.3. 1. An ideal P ⊂ R is prime if and only if the quotient ring R/P is
an integral domain.

2. An ideal m ⊂ R is maximal if and only if the quotient ring R/m is a field.

Corollary 3.1.4. 1. The ideal (0) ⊂ R is prime if and only if R is an integral domain.

2. The ideal (0) ⊂ R is maximal if and only if R is a field.

We can see those characterizations directly. The ideal (0) being prime means:

xy ∈ (0) =⇒ x ∈ (0) or y ∈ (0),

that is, R is an integral domain. The ideal (0) being maximal means:

x /∈ (0) =⇒ (x) = R,

that is, every non-zero element x ̸= 0 is a unit.

Corollary 3.1.5. Every maximal ideal is prime.

©2024 Martin Frankland All Rights Reserved 18



University of Regina MATH 420/820 - Commutative Algebra

Proposition 3.1.6. Let R be a commutative ring and I ⊆ R an ideal, and let q : R ↠ R/I
denote the quotient map. Via the bijective correspondence from Proposition 1.3.10

{ideals of R/I}
∼=
// {ideals of R containing I}

J ⊆ R/I � // q−1(J)

prime ideals correspond to prime ideals, and maximal ideals correspond to maximal ideals.

Proof. For an ideal J ⊆ R/I, the third isomorphism theorem yields

(R/I)/J ∼= R/q−1(J).

From this and Proposition 3.1.3, we obtain a chain of equivalent conditions:

The ideal J ⊆ R/I is prime.

⇐⇒ The quotient ring (R/I)/J is an integral domain.

⇐⇒ The quotient ring R/q−1(J) is an integral domain.

⇐⇒ The ideal q−1(J) ⊆ R is prime.

The same argument works for maximal ideals, replacing “integral domain” with “field”.

Proposition 3.1.7. Let φ : R → S be a ring map. If Q ⊆ S is a prime ideal, then the
preimage φ−1(Q) ⊆ R is a prime ideal.

Proof. For any x, y ∈ R, assume that the product satisfies xy ∈ φ−1(Q). We obtain the
implication:

xy ∈ φ−1(Q) ⇐⇒ φ(xy) ∈ Q

⇐⇒ φ(x)φ(y) ∈ Q

=⇒ φ(x) ∈ Q or φ(y) ∈ Q since Q is prime

⇐⇒ x ∈ φ−1(Q) or y ∈ φ−1(Q),

which shows that φ−1(Q) is prime.

Warning 3.1.8. Given a maximal ideal n ⊂ S, the preimage φ−1(n) ⊆ R need not be
maximal. Take for example the inclusion map inc : Z ↪→ Q. The ideal (0) ⊂ Q is maximal,
since Q is a field, yet its preimage

inc−1(0) = (0) ⊂ Z

is not maximal.

Nonetheless, by Corollary 3.1.5 and Proposition 3.1.7, the preimage φ−1(n) ⊆ R is guaranteed
to be prime.
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3.2 Examples

Example 3.2.1. In Z, every ideal is of the form (n) ⊆ Z for some n ∈ Z. For n ̸= 0, we
have equivalent conditions:

The ideal (n) is prime.

⇐⇒ The number n is prime.

⇐⇒ The ideal (n) is maximal.

Indeed, if n is a composite number n = ab, then any divisor will generate a larger ideal
(a) ⊆ (n), for instance:

(6) ⊊ (2).

Example 3.2.2. Let n ≥ 2 and consider the quotient ring Z/n. By the correspondence in
Proposition 1.3.10, every ideal in Z/n is of the form (k) for some divisor k | n. The ideal
(k) ⊆ Z/n is prime if and only if k is prime, in which case (k) is also maximal.

Example 3.2.3. For a field k, recall that the polynomial ring k[x] is a principal ideal domain
(PID). For a polynomial f ̸= 0, we have equivalent conditions:

The ideal (f) is prime.

⇐⇒ The polynomial f is prime.

⇐⇒ The polynomial f is irreducible, i.e., cannot be written as a product f = ab of non-units.

⇐⇒ The ideal (f) is maximal.

Example 3.2.4. For a field k, consider the truncated polynomial ring k[x]/(xn) for some
n ≥ 1. Every ideal I ⊆ k[x]/(xn) is of the form

I = (xi)

for some exponent 0 ≤ i ≤ n. This includes the extreme cases (x0) = (1) = k[x]/(xn) and
(xn) = (0). Hence the only prime ideal is (x), which is also the only maximal ideal.

Example 3.2.5. For a field k, the polynomial ring k[x, y] is a unique factorization domain
(UFD) but not a PID. The ideal (x) is prime, since the polynomial x is irreducible. However
(x) is not maximal, since there are larger proper ideals, for instance (x) ⊊ (x, y).

More generally, for any a, b ∈ k, the ideal (x − a) ⊂ k[x, y] is prime, but not maximal, as
exhibited by the inclusions

(x− a) ⊊ (x− a, y − b) ⊊ k[x, y].

The following statement generalizes Examples 3.2.1 and 3.2.3.
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Proposition 3.2.6. In a principal ideal domain, a non-zero ideal I ̸= (0) is prime if and
only if it is maximal.

The following statement generalizes Examples 3.2.2 and 3.2.4.

Corollary 3.2.7. Let R be a principal domain domain and I ⊂ R an ideal. Every ideal in
the quotient ring J ⊆ R/I is principal. A non-zero ideal J ⊆ R/I is prime if and only if it
is maximal.

Proof. This follows from Propositions 1.3.10 and 3.1.6.

Proposition 3.2.8. Let k be a field and consider the power series ring kJxK. Every non-zero
ideal in kJxK is of the form (xn) for some n ≥ 0.

In particular, the only maximal ideal is (x), and the prime ideals are (0) and (x).

Proof. For a power series f =
∑∞

i=0 cix
i with f ̸= 0, define the order of f as the lowest degree

appearing in f :

ν(f) := min{i ∈ N | ci ̸= 0}.

For instance:
ν(7x2 + 5x9) = 2.

Let I ⊆ kJxK be a non-zero ideal. Take the lowest degree appearing in any of the power
series in I:

n := min{ν(f) | f ∈ I}.
We claim I = (xn). Let us prove both inclusions separately.

(⊆) For every f ∈ I, the order of f is at least n:

m = ν(f) ≥ n

so that we can factor out xn:

f = cmx
m + cm+1x

m+1 + · · ·

= xn
(
cmx

m−n + cm+1x
m−n+1 + · · ·

)
∈ (xn).

(⊇) The lowest order n is realized by some power series g =
∑∞

i=n dix
i ∈ I, with dn ̸= 0.

Factoring out xn yields

g = dnx
n + dn+1x

m+1 + · · ·

= xn (dn + dn+1x+ · · · )

= xnh.
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The power series h = dn+dn+1x+ · · · is invertible, since its constant term dn ̸= 0 is invertible
in k; see Homework 2 Problem 2. Therefore we obtain

g ∈ I

=⇒ gh−1 ∈ I

=⇒ xn ∈ I,

which proves the inclusion (xn) ⊆ I.

Remark 3.2.9. The power series ring kJxK is an example of discrete valuation ring (DVR),
with the order function ν being the valuation. A similar argument shows more generally that
a DVR is a PID, where in fact every ideal is a power of the maximal ideal.
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3.3 Existence

Theorem 3.3.1. Every nontrivial commutative ring R ̸= 0 has a maximal ideal.

Remark 3.3.2. The proof relies on Zorn’s lemma, which is equivalent to the axiom of choice.
In fact, the statement of Theorem 3.3.1 is also equivalent to the axiom of choice.

Corollary 3.3.3. Every proper ideal I ⊊ R is contained in some maximal ideal.

Proof. Since I ⊊ R is a proper ideal, the quotient ring R/I ̸= 0 is nontrivial. By Theo-
rem 3.3.1, R/I has a maximal ideal m ⊆ R/I. By Proposition 3.1.6, the preimage q−1(m) ⊆ R
is a maximal ideal containing I.

Corollary 3.3.4. Every non-unit of R is contained in some maximal ideal.

Proof. A non-unit x ∈ R generates a proper ideal (x) ⊊ R. By Corollary 3.3.3, (x) is
contained in some maximal ideal m.
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4 Zorn’s lemma

4.1 Preliminaries on posets

Definition 4.1.1. Let (P,≤) be a partially ordered set (or poset for short).

1. A chain in P is a totally ordered subset C ⊆ P .

2. Given a subset A ⊆ P , an upper bound for A is an element b ∈ P such that

a ≤ b

holds for all a ∈ A.

Note that the upper bound b itself need not lie in A.

3. An element m ∈ P is maximal if there is no larger element:

m ≤ n =⇒ n = m.

Note thatm need not be larger than every element of P , sincemmight be incomparable
with many elements.

Example 4.1.2. Consider the set S = {a, b, c} and its power set P(S), viewed as a poset
ordered by inclusion. Take the poset of proper subsets of S:

P = P(S) \ {S}

= {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}} ,

as illustrated in the following Hasse diagram:

{a, b} {a, c} {b, c}

{a} {b} {c}

∅.

In the poset P , the subsets

C = {∅, {a}}

D = {∅, {a}, {a, b}}

are chains, whereas the subset
{∅, {a}, {b, c}}

is not a chain.
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For the chain C, the element {a} is an upper bound, as are {a, b} and {a, c}. In fact, {a} is
the least upper bound (a.k.a. supremum) for C.

The maximal elements in the poset P are those of the form S \{s}, namely {a, b}, {a, c}, and
{b, c}. Note that {a, b} is maximal but is not greater than {c}, since the two are incomparable.

Example 4.1.3. In the totally ordered set R, consider the interval A = [5, 8). The element
8 is an upper bound for A, as are 9, 9.1, and 43. In fact, 8 is the least upper bound for A.

Example 4.1.4. In the totally ordered set Q, consider the subset

A = {x ∈ Q | x2 < 2}.

The element 1.5 is an upper bound for A. However, A does not have a least upper bound in
Q.

4.2 The statement

Theorem 4.2.1 (Zorn’s lemma). Let (P,≤) be a non-empty poset in which every chain
admits an upper bound. Then P has a maximal element.

Remark 4.2.2. The statement of Zorn’s lemma is equivalent to the axiom of choice.
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5 Local rings, nilradical, Jacobson radical

5.1 Local rings

Definition 5.1.1. A commutative ring R is local if it has a unique maximal ideal.

We sometimes denote a local ring (R,m) where m ⊂ R is the maximal ideal. The residue
field of R is the quotient ring k = R/m.

Proposition 5.1.2. For a commutative ring R, the following are equivalent.

1. R is local.

2. The non-units of R form an ideal (and thus the unique maximal ideal).

3. The non-units of R are closed under addition.

4. There is a maximal ideal m ⊂ R such that every element of 1 +m is a unit.

Let us prove more directions than needed, because the arguments are interesting.

Proof. (2 ⇐⇒ 3) The non-units are always closed under multiplication by arbitrary ele-
ments:

x is a non-unit =⇒ rx is a non-unit for all r ∈ R.

Hence the non-units form an ideal if and only if they satisfy the other condition in the
definition of ideal, namely being closed under addition.

(1 =⇒ 2) Assume that R local, with unique maximal ideal m. Every non-unit x ∈ R is
contained in some maximal ideal, hence x ∈ m since that is the only maximal ideal. This
proves the inclusion

{non-units} ⊆ m.

Since m is a proper ideal, the reverse inclusion also holds:

m = {non-units}.

(2 =⇒ 1) Assume that the non-units of R form an ideal. Then the ideal of non-units is
maximal, since any larger ideal J must contain a unit, hence J = (1) = R.

Moreover, every proper ideal I ⊂ R consists of non-units:

I ⊆ {non-units}.

In particular, any maximal ideal m ⊂ R must satisfy

m = {non-units}

by the maximality condition.
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(2 =⇒ 4) Assume that the non-units of R form an ideal, hence a maximal ideal m = R\R×.
For every x ∈ m, the element 1 + x must be a unit, otherwise

1 = (1 + x)− x

would be a sum of non-units, hence a non-unit.

(4 =⇒ 2) Let m ⊂ R be a maximal ideal such that every element of 1 + m is a unit. We
want to show that m consists of all the non-units, i.e., that every element x ∈ R\m is a unit.
By maximality of m, adjoining x to m yields the whole ring:

(x) +m = (1) = R

=⇒ rx+m = 1 for some r ∈ R,m ∈ m

=⇒ rx = 1−m is a unit, by the assumption

=⇒ x is a unit.

Example 5.1.3. Any field k is a local ring, with unique maximal ideal (0) ⊂ k.

Example 5.1.4. 1. The ring Z is not local, since it has distinct maximal ideals (2) ̸= (3).
Recall that the maximal ideals of Z are those of the form (p) for a prime number p ∈ Z.
We also see that non-units in Z fail to be closed under addition, for instance

3− 2 = 1 ∈ Z×.

2. The ring Z/6 is not local, since it has distinct maximal ideals (2) ̸= (3).

3. The ring Z/4 is local, with unique maximal ideal (2) ⊂ Z/4.

Example 5.1.5. The p-local integers are the rational numbers where we may divide by
any prime except p:

Z(p) =
{a
b
∈ Q | p ∤ b

}
.

The units of Z(p) are the fractions that can be written without a factor of p in the numerator:

Z×
(p) =

{a
b
∈ Z(p) | p ∤ a

}
.

Taking complements, the non-units of Z(p) are the multiples of p:

Z \ Z×
(p) = (p).

Therefore Z(p) is local, with unique maximal ideal (p) and residue field Z(p)/(p) ∼= Fp.

Example 5.1.6. For a field k, the polynomial ring k[x] is not local, since it has distinct
maximal ideals (x) ̸= (x− 1).

Note that non-units in k[x] fail to be closed under addition, for instance

x− (x− 1) = 1 ∈ k[x]×.
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Example 5.1.7. For a field k, consider the truncated polynomial ring k[x]/(xn) for some
n ≥ 1. In Example 3.2.4, we saw that the only prime ideal in k[x]/(xn) is (x). Therefore
k[x]/(xn) is local, with unique maximal ideal (x) and residue field

(k[x]/(xn)) /(x) ∼= k[x]/(x) ∼= k.

Example 5.1.8. For a field k, consider the power series ring kJxK. In Proposition 3.2.8, we
saw that the only prime ideals of kJxK are (0) and (x). Therefore kJxK is local, with unique
maximal ideal (x) and residue field kJxK/(x) ∼= k.
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5.2 Nilradical

Recall that the nilradical of a commutative ring R is the ideal of nilpotent elements:

nil(R) = {x ∈ R | xn = 0 for some n ≥ 1}.

Proposition 5.2.1. The quotient ring R/ nil(R) is reduced, i.e., has no nilpotents.

Proof. For x ∈ R, denote by x its equivalence class in the quotient ring R/ nil(R). Let
x ∈ R/ nil(R) be nilpotent, so that

xn = 0 ∈ R/ nil(R)

holds for some n ≥ 1. The representative xn ∈ R lies in the ideal nil(R), i.e., is nilpotent, so
that

(xn)k = 0 = xnk

holds for some k ≥ 1. The equation exhibits x as being nilpotent:

x ∈ nil(R)

⇐⇒ x = 0 ∈ R/ nil(R).

Exercise 5.2.2. In a commutative ring R, show that an arbitrary intersection of ideals
⋂
α Iα

is an ideal.

Proposition 5.2.3. For any commutative ring R, the nilradical is the intersection of all
prime ideals:

nil(R) =
⋂
P⊂R

P prime

P.

Proof. (⊆) Let a ∈ nil(R) be a nilpotent element, so that an = 0 holds for some n ≥ 1. Let
P ⊂ R be a prime ideal. The condition

an = 0 ∈ P

implies a ∈ P since P is prime. Since P was arbitrary, we obtain

a ∈
⋂
P⊂R
P prime

P.

(⊇) Let a ∈ R \nil(R) be a non-nilpotent element. We want to find some prime ideal P ⊂ R
satisfying a /∈ P . While the proof in [AM69, Proposition 1.8] is perfectly fine, here is a
streamlined argument explained by Martin Brandenburg in [Bra17].

Since a ∈ R is not nilpotent, the localization R[ 1
a
] is not the zero ring. Hence it has a maximal

ideal m ⊂ R[ 1
a
]. Since a

1
is a unit in R[ 1

a
], it cannot be in a proper ideal, in particular:

a

1
/∈ m

⇐⇒ a /∈ φ−1(m),
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where φ : R → R[ 1
a
] denotes the localization map, given by φ(x) = x

1
. Since m is a maximal

ideal, it is prime, and so is its preimage P := φ−1(m) ⊂ R. Therefore P is a prime ideal not
containing a.
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5.3 Jacobson radical

Definition 5.3.1. The Jacobson radical of a commutative ring R is the intersection of all
maximal ideals:

Jac(R) :=
⋂
m⊂R

m maximal

m.

Remark 5.3.2. Since every maximal ideal is prime, we always have the inclusion

nil(R) ⊆ Jac(R).

Proposition 5.3.3. In any commutative ring R, the Jacobson radical is

Jac(R) = {x ∈ R | 1 + rx is a unit for all r ∈ R} .

Proof. See [AM69, Proposition 1.9].

Example 5.3.4. In a local commutative ring R, the Jacobson radical is the unique maximal
ideal Jac(R) = m.

Example 5.3.5. 1. The ring Z has Jacobson radical

Jac(Z) =
⋂

p prime

(p)

= {n ∈ Z | p | n for all prime number p}

= (0).

2. The ring Z/6 has Jacobson radical

Jac(Z/6) = (2) ∩ (3) = (6) = (0).

3. Jac(Z/4) = (2). This is a special case of Example 5.3.4, since the ring Z/4 is local with
unique maximal ideal (2).

4. Jac(Z/18) = (6) = nil(Z/18). Compare with Homework 3 Problem 1.

Example 5.3.6. The p-local integers have as Jacobson radical

Jac(Z(p)) = (p).

This is also a special case of Example 5.3.4, since the ring Z(p) is local with unique maximal
ideal (p).

However Z(p) is an integral domain, in particular has no nilpotents:

nil(Z(p)) = (0) ⊊ (p) = Jac(Z(p)).
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Example 5.3.7. Let R be an integral domain and consider the polynomial ring R[x]. Its
Jacobson radical is Jac(R[x]) = (0). Indeed, for any f ∈ Jac(R[x]), the polynomial

1 + xf

must be a unit, hence a constant polynomial since R is an integral domain. This forces f = 0.

Example 5.3.8. For a field k, the truncated polynomial ring k[x]/(xn) is local with unique
maximal ideal (x), by Example 5.1.7. By Example 5.3.4, the Jacobson radical is the maximal
ideal

Jac (k[x]/(xn)) = (x).

In this case the nilradical and Jacobson radical agree:

nil (k[x]/(xn)) = (x).

Example 5.3.9. For a field k, the power series ring kJxK is local with unique maximal ideal
(x), by Example 5.1.8. By Example 5.3.4, the Jacobson radical is the maximal ideal

Jac(kJxK) = (x).

However kJxK is an integral domain, in particular has no nilpotents:

nil(kJxK) = (0) ⊊ (x) = Jac(kJxK).

The previous example can be generalized as follows.

Proposition 5.3.10. Let R be a commutative ring. In the power series ring RJxK, a power
series f =

∑∞
i=0 cix

i is in the Jacobson radical of RJxK if and only if its constant term c0 is
in the Jacobson radical of R:

f ∈ Jac(RJxK) ⇐⇒ c0 ∈ Jac(R).

Proof. See Homework 3 Problem 3, which is [AM69, §1 Exercise 5(iii)].
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6 Operations on ideals

6.1 Sum of ideals

Lemma 6.1.1. Let R be a commutative ring and X ⊆ R a subset.

1. There exists a smallest ideal of R containing X, called the ideal generated by X,
denoted (X) or RX.

2. Said ideal is given by the R-linear combinations of elements of X:

(X) =

{
n∑
i=1

rixi | n ≥ 0, ri ∈ R, xi ∈ X

}
.

Proof. 1. Since an arbitrary intersection of ideals is an ideal (Exercise 5.2.2), the subset

(X) =
⋂

ideals I⊆R
X⊆I

I

is an ideal, which moreover contains X. It is the smallest such ideal by construction: any
ideal J ⊆ R containing X satisfies (X) ⊆ J .

2. Let us prove both inclusions separately.

(⊇) Given r1, . . . rn ∈ R and x1, . . . , xn ∈ X, each term rixi must lie in (X), since (X) is an
ideal. Likewise, their sum

∑n
i=1 rixi must lie in (X).

(⊆) Denote the right-hand side by L (for linear combinations). Since L contains X, it
suffices to show that L is an ideal to conclude (X) ⊆ L. The set L contains 0 (as the linear
combination of n = 0 terms), is closed under sums:

(
n∑
i=1

rixi) + (
m∑
j=1

r′ix
′
i) ∈ L

and closed under multiplication by any element r ∈ R:

r(
n∑
i=1

rixi) =
n∑
i=1

(rri)xi ∈ L.

Definition 6.1.2. Let R be a commutative ring and I, J ⊆ R ideals. The sum of I and J
is the ideal

I + J = {x+ y ∈ R | x ∈ I, x ∈ J}.

More generally, given a family of ideals Iα ⊆ R indexed by α ∈ Λ, their sum is the ideal

∑
α∈Λ

Iα =

{
n∑
i=1

xαi
| n ≥ 0, αi ∈ Λ, xαi

∈ Iαi

}
.
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Exercise 6.1.3. 1. Check that I + J , and more generally
∑

α∈Λ Iα, is indeed an ideal of
R.

2. Show that I + J is the ideal generated by the union of I and J :

I + J = (I ∪ J)

(Homework 4 Problem 1).

3. More generally, the sum
∑

α∈Λ Iα is the ideal generated by the union of the Iα:

∑
α∈Λ

Iα =

(⋃
α

Iα

)
.

Remark 6.1.4. The union I ∪ J ⊆ R is not an ideal, in fact not even a subgroup, unless one
of I or J contains the other. Indeed, assume that I ∪ J is a subgroup and I ̸⊆ J , so that
there is an element i ∈ I \ J . We want to show the containment J ⊆ I. Let j ∈ J . By
assumption, the sum i+ j also lies in the union: i+ j ∈ I ∪ J . But i+ j cannot lie in J , in
light of

i = (i+ j)− j /∈ J.

Hence we have i+ j ∈ i, from which we obtain

j = (i+ j)− i ∈ I

and thus J ⊆ I.
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6.2 Product of ideals

Definition 6.2.1. Let R be a commutative ring and I, J ⊆ R ideals. The product of I and
J is the ideal

IJ =

{
n∑
i=1

xiyi ∈ R | n ≥ 1, xi ∈ I, yi ∈ J

}
.

Remark 6.2.2. The collection of products of elements of I and J

{xy ∈ R | x ∈ I, y ∈ J}

is not closed under addition in general, which is why we needed to take sums in Defini-
tion 6.2.1.

However, when I and J are both principal, with I = (a) and J = (b), then the set of products
of elements of I and J is already closed under addition, hence an ideal:

{xy ∈ R | x ∈ I, y ∈ J} = {(ra)(sb) ∈ R | r, s ∈ R}

= {r′ab ∈ R | r′ ∈ R}

= (ab).

Example 6.2.3. Consider the ring of polynomials with rational coefficients Q[x] and the
ideals I = J = (x, y). Both x · x = x2 and y · y = y2 are products of elements of I and J ,
but their sum x2 + y2 is not, since x2 + y2 is irreducible in Q[x]. Nonetheless, we have

x2 + y2 ∈ IJ

since sums were allowed in Definition 6.2.1.

The product of ideals I1, . . . , In ⊆ R is the ideal

I1 · · · In =

{
n∑
i=1

x1,i · · ·xn,i | n ≥ 1, xk,i ∈ Ik

}
.

In particular, the powers of an ideal I are ideals In which form a decreasing sequence

· · · ⊆ I3 ⊆ I2 ⊆ I ⊆ I0 = (1) = R.

Lemma 6.2.4. The product of ideals distributes over the sum: for any ideals I, J,K ⊆ R,
we have

I(J +K) = IJ + IK

(I + J)K = IK + JK.

Example 6.2.5. The product of principal ideals I = (a) and J = (b) is the principal ideal

IJ = (a)(b) = (ab).
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More generally, if I hasm generators I = (a1, . . . , am) and J has n generators J = (b1, . . . , bn),
then the product can be generated by the mn products of generators:

IJ = (a1b1, a1b2, . . . , ambn)

(Homework 4 Problem 1).

Example 6.2.6. In Z, take the ideals I = (6) and J = (10). Their sum is

(6) + (10) = (6, 10) = (2).

Their product is
(6)(10) = (6 · 10) = (60)

by Example 6.2.5. Their intersection is

(6) ∩ (10) = {n ∈ Z | 6 | n and 10 | n}

= {n ∈ Z | 30 | n}

= (30).

Example 6.2.7. For k a field, consider the polynomial ring k[x] and take the ideals I =
(x2 − x) and J = (x2 − 1). Using the factorizations

x2 − x = x(x− 1)

x2 − 1 = (x+ 1)(x− 1),

the sum of I and J is
(x2 − x) + (x2 − 1) = (x− 1).

Their product is

(x2 − x)(x2 − 1) =
(
(x2 − x)(x2 − 1)

)
=
(
x(x+ 1)(x− 1)2

)
by Example 6.2.5. Their intersection is

(x2 − x) ∩ (x2 − 1) = (x(x+ 1)(x− 1)) .

The next statement generalizes Examples 6.2.6 and 6.2.7.

Proposition 6.2.8. Let R be a unique factorization domain (UFD) and a, b ∈ R non-zero
elements.

1. The intersection of principal ideals is

(a) ∩ (b) = (lcm(a, b)).

2. The sum of principal ideals satisfies

(a) + (b) ⊆ (gcd(a, b)).
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3. If moreover R is a principal ideal domain (PID), then equality holds:

(a) + (b) = (gcd(a, b)).

Proof. 1. Since any two non-zero elements in a UFD admit a lowest common multiple, we
obtain:

(a) ∩ (b) = {x ∈ R | a | x and b | x}

= {x ∈ R | lcm(a, b) | x}

= (lcm(a, b)).

2. Writing d = gcd(a, b), the divisibility conditions yield

d | a and d | b

=⇒ (a) ⊆ (d) and (b) ⊆ (d)

=⇒ (a) + (b) ⊆ (d) by Exercise 6.1.3.

3. This is Bézout’s identity. In more detail: Since R is a PID, we have

(a) + (b) = (e)

for some element e ∈ R. We deduce the divisibility{
a ∈ (a) ⊆ (e) =⇒ e | a
b ∈ (b) ⊆ (e) =⇒ e | b

=⇒ e | gcd(a, b) = d

=⇒ (d) ⊆ (e) = (a) + (b).

Remark 6.2.9. Item (3) need not be true if R is not a PID. For example, consider a field
k and the polynomial ring k[x, y], which is a UFD. Take the principal ideals I = (x) and
J = (y). Their sum is

(x) + (y) = (x, y)

=

{
p =

∑
i,j≥0

cijx
iyj ∈ k[x, y] | c00 = 0

}
= {polynomials p(x, y) with constant term p(0, 0) = 0}.

However, the greatest common divisor is gcd(x, y) = 1, which yields a strict inclusion

(x) + (y) = (x, y) ⊊ (gcd(x, y)) = (1) = k[x, y].

Let us look at some non-principal ideals.
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Example 6.2.10. Consider a field k and the polynomial ring in three variables k[x, y, z].
Take the ideals I = (x, y) and J = (x, z). By Homework 4 Problem 1, their sum is

(x, y) + (x, z) = (x, y, z)

and their product is
(x, y)(x, z) = (x2, xz, xy, yz).

Their intersection (x, y) ∩ (x, z) consists of the polynomials p =
∑

i,j,k≥0 cijkx
iyjzk satisfying

the following equivalent conditions:

p has no terms zk nor terms yj.

⇐⇒ p = xq + r, where r = r(y, z) has no terms zk nor terms yj. Here we took

q =
∑
i≥1
j,k≥0

cijkx
i−1yjzk

r =
∑
j,k≥0

c0jky
jzk.

⇐⇒ p = xq + yzs for some polynomial s = s(y, z). Here we took

s =
∑
j,k≥1

c0jky
j−1zk−1.

⇐⇒ p ∈ (x, yz).

Thus the intersection is
(x, y) ∩ (x, z) = (x, yz).

Note that the inclusion
(x, y)(x, z) ⊊ (x, y) ∩ (x, z)

is strict: we have x ∈ (x, y) ∩ (x, z) but x /∈ (x, y)(x, z).
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6.3 Product versus intersection

Lemma 6.3.1. Let R be a commutative ring and I, J ⊆ R ideals.

1. The inclusion IJ ⊆ I ∩ J always holds.

2. If moreover the ideals satisfy I + J = (1), then the inclusion is an equality:

IJ = I ∩ J.

Proof. 1. It suffices to prove the inclusion for the generators of IJ , namely products xy with
x ∈ I and y ∈ J . Since I and J are ideals, we obtain:

x ∈ I =⇒ xy ∈ I

y ∈ J =⇒ xy ∈ J

and thus xy ∈ I ∩ J .
2. By the assumption I + J = (1), we can write 1 = i+ j for some i ∈ I and j ∈ J . Now let
a ∈ I ∩ J ; we want to show a ∈ IJ . Writing

a = a · 1 = a(i+ j) =

∈IJ︷︸︸︷
ai +

∈IJ︷︸︸︷
aj ,

both terms lie in IJ :

a ∈ J =⇒ ai ∈ IJ

a ∈ I =⇒ aj ∈ IJ

and thus a ∈ IJ .

Example 6.3.2. In Example 6.2.6, we saw the strict inclusion of ideals in Z

(60) = (6)(10) ⊊ (6) ∩ (10) = (30).

Just for fun, a few more examples:

(24) = (4)(6) ⊊ (4) ∩ (6) = (12)

(9) = (3)(3) ⊊ (3) ∩ (3) = (3).

Definition 6.3.3. Two ideals I, J ⊆ R are coprime if they together generate the whole
ring:

I + J = (1) = R.

Example 6.3.4. In Z, two nontrivial ideals (m) and (n) are coprime if and only if the
numbers m and n are coprime, i.e., gcd(m,n) = 1.
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6.4 Generalized Chinese remainder theorem

Recall a few facts about the product of rings.

Definition 6.4.1. The product of rings R and S is the Cartesian product R× S endowed
with the coordinatewise addition and multiplication:

(r, s) + (r′, s′) = (r + r′, s+ s′)

(r, s)(r′, s′) = (rr′, ss′).

Lemma 6.4.2. 1. The definition of the product makes R×S into a ring, and the projec-
tion maps {

pR : R× S ↠ R

pS : R× S ↠ S

into ring homomorphisms.

2. The product R×S is unital if and only if R and S are unital, in which case the unit is
coordinatewise:

1R×S = (1R, 1S).

3. The product R× S is commutative if and only if R and S are commutative.

The next statement says that the product of rings is indeed the product of rings (in the
categorical sense).

Proposition 6.4.3. The product of rings R × S satisfies the following universal property.
Given ring homomorphisms f : A → R and g : A → S, there exists a unique ring homomor-
phism h : A→ R× S satisfying pR ◦ h = f and pS ◦ h = g, as illustrated in the diagram

A

f





h
�� g

��

R× S
pR

||

pS

""
R S

This unique h is denoted h = (f, g).

Remark 6.4.4. The product of an infinite family of rings
∏

α∈ΛRα is defined similarly and
satisfies the same universal property. In other words, a ring homomorphism

A→
∏
α∈Λ

Rα

is the same data as a family of ring homomorphisms fα : A→ Rα for α ∈ Λ.
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Recall the following:

Theorem 6.4.5 (Classic Chinese remainder theorem). Let n ∈ Z be factored as n = n1 · · ·nk
where the numbers ni are pairwise coprime. Then the ring homomorphism

φ : Z/n
∼=−→ Z/n1 × · · · × Z/nk

is an isomorphism, where φ has as ith coordinate the quotient map qni
: Z/n↠ Z/ni.

Example 6.4.6. 1. The factorization 12 = 3 · 4 yields the ring isomorphism

Z/12
(q3,q4)

∼=
// Z/3× Z/4.

2. As a non-example, observe that the ring homomorphism

Z/4
(q2,q2)

// Z/2× Z/2

is not an isomorphism. In fact, the two sides are not even isomorphic as abelian groups.

Our next goal is to generalize that theorem to ideals rather than numbers.

Proposition 6.4.7. Let R be a commutative ring and I1, . . . , In ⊆ R ideals. Consider the
ring homomorphism

φ : R → R/I1 × · · · ×R/In

whose ith coordinate is the quotient map qIi : R ↠ R/Ii.

1. If the ideals I1, . . . , In are pairwise coprime, then their product agrees with their inter-
section:

n∏
i=1

Ii =
n⋂
i=1

Ii.

2. The map φ is surjective if and only if the Ii are pairwise coprime.

3. The map φ is injective if and only if
⋂n
i=1 Ii = (0) holds.

Proof. See [AM69, Proposition 1.10].

Corollary 6.4.8 (Generalized Chinese remainder theorem). Let R be a commutative ring
and I1, . . . , In ⊆ R ideals that are pairwise coprime. Then the ring homomorphism

φ : R/(I1 · · · In)
∼=−→ R/I1 × · · · ×R/In

is an isomorphism.

The case n = 2 reads as follows.
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Corollary 6.4.9. Let R be a commutative ring and I, J ⊆ R coprime ideals. Then the ring
homomorphism

(qI , qJ) : R/(IJ)
∼=−→ R/I ×R/J

is an isomorphism.

Exercise 6.4.10. Use Corollary 6.4.9 to produce an isomorphism of rings

Z[x]/(x2 − 5x+ 6)
∼=−→ Z× Z

(Homework 4 Problem 3).

Remark 6.4.11. The condition that ideals be pairwise coprime means that for all indices
i ̸= j, the ideals Ii and Ij are coprime, i.e., Ii+ Ij = (1). That condition is stronger than the
ideals being “jointly coprime”, in the sense that they jointly generate the whole ring:

I1 + · · ·+ In = (1).

Example 6.4.12. The numbers 2, 3, 4 ∈ Z are “jointly coprime”, in fact 2 and 3 already
generate all of Z:

(2) + (3) + (4) = (2, 3, 4) = (2, 3) = (1).

However, 2, 3, 4 are not pairwise coprime, since 2 and 4 are not coprime.

Example 6.4.13. For a more striking example, the numbers 6, 10, 15 are “jointly coprime”:

(6, 10, 15) = (gcd(6, 10, 15)) = (1) = Z,

yet none of the pairs are coprime:

(6, 10) = (2)

(6, 15) = (3)

(10, 15) = (5).
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6.5 Prime avoidance

Recall that for a prime element p ∈ R in a commutative ring R, we have the implication

p | n1 · · ·nk =⇒ p | ni for some i.

More generally, for a prime ideal P ⊂ R, we have the implication

n1 · · ·nk ∈ P =⇒ ni ∈ P for some i.

Let us generalize this conclusion to products of ideals.

Proposition 6.5.1. Let R be a commutative ring, I1, . . . , In ⊆ R ideals, and P ⊂ R a prime
ideal containing the product of the Ii:

n∏
i=i

Ii ⊆ P.

Then Ii ⊆ P holds for some index i.

If moreover P =
⋂n
i=1 Ii holds, then P = Ii holds for some index i.

Proof. Let us show the contrapositive. Assume Ii ̸⊆ P for all i and pick an element xi ∈ Ii\P
for each index i. Then the product of those elements

x1 · · ·xn ∈
n∏
i=i

Ii

is not in P , since each factor xi is not in P :

xi /∈ P for all i =⇒ x1 · · ·xn /∈ P.

This shows
∏n

i=i Ii ̸⊆ P .

For the second part, the first part gave us Ii ⊆ P for some index i. The reverse inclusion
follows from the assumption:

P =
n⋂
j=1

Ij ⊆ Ii.

Proposition 6.5.2 (Prime avoidance lemma). Let R be a commutative ring, P1, . . . , Pn ⊆ R
prime ideals, and I ⊂ R an ideal contained in the union of the Pi:

I ⊆
n⋃
i=i

Pi.

Then I ⊆ Pi holds for some index i.

Proof. See [AM69, Proposition 1.11].
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7 Ideal quotients and radicals

7.1 Ideal quotients

Definition 7.1.1. Let R be a commutative ring and I, J ⊆ R ideals. The ideal quotient
of I by J is

(I : J) = {r ∈ R | rJ ⊆ I}.

Lemma 7.1.2. The ideal quotient (I : J) ⊆ R is an ideal.

Remark 7.1.3. The inclusion I ⊆ (I : J) always holds.

Definition 7.1.4. The annihilator of an ideal J ⊆ R is the ideal

Ann(J) = (0 : J) = {r ∈ R | rJ = 0}.

Example 7.1.5. In the ring Z/12, here are a few annihilators of elements:

Ann(3) = (4)

Ann(2) = (6)

Ann(5) = (0).

More generally, consider the ring Z/n for n ≥ 2. The annihilator of an element m ∈ Z/n is
the principal ideal

Ann(m) =

(
n

gcd(m,n)

)
.

Remark 7.1.6. In an integral domain R, the annihilator of any non-zero element x ∈ R is
trivial: Ann(x) = (0).

More generally, in any commutative ring R, the set of zero-divisors is

D = {y ∈ R | there is x ̸= 0 satisfying xy = 0}

=
⋃
x ̸=0

Ann(x).

Example 7.1.7. In the ring Z, here are a few ideal quotients:

(6 : 2) = (3)

(6 : 5) = (6)

(6 : 10) = (3).

Let us generalize those examples.

Proposition 7.1.8. For integers m,n ̸= 0, the ideal quotient of n by m is the principal ideal

(n : m) =

(
n

gcd(m,n)

)
.
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Proof. Consider the equivalent conditions on an integer k ∈ Z:

k ∈ (n : m)

⇐⇒ k · (m) ⊆ (n)

⇐⇒ km ⊆ (n)

⇐⇒ n | km

⇐⇒ n

d
| km

d
where d = gcd(m,n)

⇐⇒ n

d
| k since gcd(

m

d
,
n

d
) = 1

⇐⇒ k ∈
(n
d

)
which proves the claim.

Example 7.1.9. Let R be an integral domain. In the polynomial ring R[x, y], let us compute
the ideal quotient (

x2 : (x, y)
)
= (x2).

To prove the equality, consider the equivalent conditions on a polynomial f ∈ R[x, y]:

f ∈
(
x2 : (x, y)

)
⇐⇒ f · (x, y) ⊆ (x2)

⇐⇒ fx ∈ (x2) and fy ∈ (x2)

⇐⇒ x2 | fx and x2 | fy

⇐⇒ x | f and x2 | f

⇐⇒ x2 | f

⇐⇒ f ∈ (x2).

Exercise 7.1.10. Let R be a commutative ring, I ⊆ R an ideal and Jα ⊆ R a family of
ideals (indexed by α ∈ Λ). Then we have the ideal quotient(

I :
∑
α∈Λ

Jα

)
=
⋂
α∈Λ

(I : Jα)

[AM69, Exercise 1.12].

Remark 7.1.11. We can revisit Example 7.1.9 in light of Exercise 7.1.10:(
x2 : (x, y)

)
=
(
x2 : (x) + (y)

)
= (x2 : x) ∩ (x2 : y)

= (x) ∩ (x2)

= (x2).
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7.2 The radical of an ideal

Definition 7.2.1. Let R be a commutative ring.

1. An nth root of an element a ∈ R is an element x ∈ R satisfying xn = a.

2. The radical of an ideal I ⊆ R is the set of all roots of elements of I, denoted:

rad(I) = {x ∈ R | xn ∈ I for some n ≥ 1} .

The radical of I is also denoted
√
I = rad(I).

3. An ideal I ⊆ R is radical if it contains all of its roots:

I = rad(I),

in other words, the following implication holds:

xn ∈ I for some n ≥ 1 =⇒ x ∈ I.

Remark 7.2.2. 1. The inclusion I ⊆ rad(I) always holds.

2. The formation of radicals preserves inclusions:

I ⊆ J =⇒ rad(I) ⊆ rad(J).

A bit of definition chasing shows the following:

Lemma 7.2.3. Let I ⊆ R be an ideal.

1. The radical of I consists of the elements that become nilpotent in the quotient ring R/I:

rad(I) = q−1 (nil(R/I))

where q : R ↠ R/I denotes the quotient map.

In particular, rad(I) is an ideal.

2. The ideal I is radical if and only if the quotient ring R/I is reduced.

Lemma 7.2.4. Let I ⊆ R be an ideal. The radical rad(I) is the smallest radical ideal
containing I. Explicitly:

1. The radical rad(I) is radical.

In other words, the equality rad(rad(I)) = rad(I) always holds.

2. If J ⊆ R is a radical ideal containing I, then the inclusion rad(I) ⊆ J holds.
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Proof. 1. Consider the quotient ring

R/ rad(I) = R/q−1(nil(R/I)) by Lemma 7.2.3

∼= (R/I)/ nil(R/I) by the third isomorphism theorem

= (R/I)red,

which is reduced. Hence the ideal rad(I) is radical, by Lemma 7.2.3.

2. Let J ⊆ R be a radical ideal containing I and let x ∈ rad(I), i.e., xn ∈ I holds for some
n ≥ 1. Then we have

xn ∈ I ⊆ J

=⇒ x ∈ J

since J is radical.

Example 7.2.5. In the ring Z, here are a few examples of radicals:

rad(9) = rad(32) = (3)

rad(24) = rad(23 · 3) = (2 · 3) = (6)

rad(42) = rad(2 · 3 · 7) = (2 · 3 · 7) = (42).

More generally, given a prime factorization n = pe11 · · · pekk , the radical of (n) is

rad(n) = rad(pe11 · · · pekk ) = (p1 · · · pk).

Thus the ideal (n) is radical if an only if n is a product of distinct prime factors.

Example 7.2.6. For k a field, consider the polynomial ring k[x]. Here are a few examples
of radicals:

rad(x2 + 6x+ 9) = rad
(
(x+ 3)2

)
= (x+ 3)

rad
(
(x− 5)3(x+ 8)

)
= ((x− 5)(x+ 8)) .

More generally, given a factorization of a polynomial p into irreducible factors p = pe11 · · · pekk ,
the radical of (p) is

rad(p) = rad(pe11 · · · pekk ) = (p1 · · · pk).

Thus the ideal (p) is radical if an only if p is a product of distinct irreducible factors.

Note that the factorization of a polynomial p depends on the field k. In Q[x], we have

rad(x2 + 1) = (x2 + 1)

whereas in F2[x], we have

rad(x2 + 1) =
(
(x+ 1)2

)
= (x+ 1).
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Example 7.2.7. In the polynomial ring k[x, y], we have the radical

rad
(
(y − x2)(x− 5)3

)
=
(
(y − x2)(x− 5)

)
.

Lemma 7.2.8. Every prime ideal P ⊂ R is radical.

Proof. Assume xn ∈ P holds for some n ≥ 1. Since P is prime, one of the factors must lie in
P , which implies x ∈ P . Hence P is radical.

Proposition 7.2.9. For any ideal I ⊆ R, the radical of I is the intersection of the prime
ideals containing I:

rad(I) =
⋂

P⊂R prime
I⊆P

P.

Proof. Let q : R ↠ R/I denote the quotient map. By Lemma 7.2.3, the radical is:

rad(I) = q−1 (nil(R/I))

= q−1

 ⋂
Q⊂R/I prime

Q


=

⋂
Q⊂R/I prime

q−1(Q)

=
⋂

P⊂R prime
I⊆P

P.

Proposition 7.2.10. 1. For any ideals I, J ⊆ R, the radical of the product is

rad(IJ) = rad(I ∩ J) = rad(I) ∩ rad(J).

2. For n ≥ 1, we have
rad(In) = rad(I).

In particular, if I is radical, then rad(In) = I.

Proof. 1. The first equality is left as an exercise [AM69, Exercise 1.13(iii)].

Let us prove the second equality rad(I ∩ J) = rad(I) ∩ rad(J).

(⊆) The inclusion I ∩ J ⊆ I yields rad(I ∩ J) ⊆ rad(I) and likewise rad(I ∩ J) ⊆ rad(J),
which gives

rad(I ∩ J) ⊆ rad(I) ∩ rad(J).
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(⊇) Let x ∈ rad(I) ∩ rad(J). The conditions x ∈ rad(I) and x ∈ rad(J) mean{
xm ∈ I for some m ≥ 1

xn ∈ J for some n ≥ 1.

Taking the higher exponent N = max{m,n}, we obtain xN ∈ I ∩ J , which shows x ∈
rad(I ∩ J).
2. By part (1), the radical of a power is

rad(In) = rad(

n times︷ ︸︸ ︷
II · · · I)

= rad(I) ∩ rad(I) ∩ · · · ∩ rad(I)

= rad(I).

In Example 7.2.5, we saw that a product of distinct prime elements generates a radical ideal.
This fact can be generalized as follows.

Proposition 7.2.11. Let R be a unique factorization domain (UFD). Given a prime factor-
ization f = pe11 · · · pekk , the radical of the principal ideal (f) is

rad(f) = rad(pe11 · · · pekk ) = (p1 · · · pk).
Thus the ideal (f) is radical if an only if f is a product of distinct prime factors.

Proof. Using Proposition 7.2.10, we compute the radical of the product:

rad(f) = rad(pe11 · · · pekk )

= rad ((pe11 ) · · · (pekk ))

= rad(pe11 ) ∩ · · · ∩ rad(pekk )

= (p1) ∩ · · · ∩ (pk)

= (lcm(p1, . . . , pk))

= (p1 · · · pk) .
The last equality relies on the pi being distinct prime elements in a UFD.

The situation with non-principal ideals is more delicate.

Example 7.2.12. For k a field, the polynomial ring k[x, y] is a UFD. The prime ideals (x)
and (x, y) are distinct, yet their product is not radical:

rad ((x)(x, y)) = rad(x) ∩ rad(x, y) by Proposition 7.2.10

= (x) ∩ (x, y) by Lemma 7.2.8

= (x).

One can also check directly the equality

rad ((x)(x, y)) = rad(x2, xy) = (x).

Note that (x)(x, y) is a product of distinct prime ideals, but is not radical.
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8 Extension and contraction

8.1 Definitions and basic properties

Definition 8.1.1. Let f : R → S be a ring homomorphism.

1. Given an ideal I ⊆ R, its extension along f is the ideal in S generated by the image
f(I), denoted

Ie = (f(I)) = Sf(I) ⊆ S.

2. Given an ideal J ⊆ S, its contraction along f is the preimage

J c = f−1(J) ⊆ R,

which is an ideal in R.

Lemma 8.1.2. Let f : R → S be a ring homomoprhism.

1. Extension and contraction are order-preserving with respect to inclusion:{
I1 ⊆ I2 ⊆ R =⇒ Ie1 ⊆ Ie2
J1 ⊆ J2 ⊆ S =⇒ J c1 ⊆ J c2 .

2. Extension and contraction preserve the two extreme cases, namely the trivial ideal 0
and the whole ring: {

(0)e = S and Re = S

(0)c = R and Sc = R.

3. Given generators for an ideal I = (g1, . . . , gr), the extension Ie has generators

Ie = (f(g1), . . . , f(gr)) .

Example 8.1.3. Consider the quotient map q : Z ↠ Z/6. Taking the ideal I = (10) ⊂ Z,
its extension along q is

Ie = (q(10)) = (10) = (2) ⊂ Z/6,

whose contraction is
Iec = q−1

(
(2)
)
= (2) ⊂ Z.

More generally, for any a ∈ Z, the principal ideal (a) has extension

(a)e = (a) = (gcd(a, 6)) ⊂ Z/6,

whose contraction is

(a)ec = q−1
(
(gcd(a, 6))

)
= (gcd(a, 6)) ⊂ Z.
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By the correspondence in Proposition 1.3.10, the previous example generalizes as follows.

Example 8.1.4. Let K ⊆ R be an ideal and q : R ↠ R/K the quotient map. For any ideal
I ⊆ R, extending along q and then contracting yields

Iec = q−1 ((q(I)) = I +K ⊆ R.

For any ideal J ⊆ R/K, contracting along q and then extending yields

J ce =
(
q(q−1(J))

)
= (J) = J.

Recall from Remark 1.3.5 that any ring homomorphism f : R → S factors as a quotient map
followed by an inclusion of a subring, namely the image of f :

R
f ′

// // im(f) �
� inc // S.

Example 8.1.4 tells us what happens for the first step R ↠ im(f).

Upshot: Extension and contraction is more interesting for the inclusion of a subring R ⊂ S.
In that case, the contraction of an ideal J ⊆ S is the ideal J ∩R ⊆ R.
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8.2 Examples with fractions

Example 8.2.1. Consider the inclusion of subring Z ⊂ Q. For any non-trivial ideal (n) ⊆ Z,
its extension is

(n)e = Q
since n ∈ Q is invertible. Going backwards, the only non-trivial ideal J ⊆ Q is (1) = Q,
whose contraction is Q ∩ Z = Z.

The story becomes more exciting if we only invert some of the primes in Z instead of inverting
them all. To that effect, let us introduce some terminology.

Definition 8.2.2. Let p ∈ Z be a prime. The p-adic valuation of a non-zero integer n ∈ Z
is the exponent of p in the prime factorization of n, denoted

νp(n) = max{k ≥ 0 | pk | n}.

It is convenient to adopt the convention νp(0) = +∞.

Example 8.2.3. Consider the integer n = 120 = 8 · 3 · 5 = 23 · 3 · 5. Its p-adic valuation for
various primes p is given by

ν2(120) = 3

ν3(120) = 1

ν5(120) = 1

νp(120) = 0 for any prime p ≥ 7.

Example 8.2.4. Let p ∈ Z be a prime. Consider the rational numbers that only have a
power of p in the denominator:

Z[
1

p
] =

{
a

pk
∈ Q | a ∈ Z, k ≥ 0

}
.

Consider the inclusion map

ι : Z ↪→ Z[
1

p
]

ι(a) =
a

1
.

For any non-trivial ideal (n) ⊆ Z, its extension is

(n)e = (
n

1
) = (

n

pνp(n)
) ⊆ Z[

1

p
]

since p ∈ Z[1
p
] is now invertible. Taking the contraction yields

(n)ec = (
n

pνp(n)
) ⊆ Z.

Going backwards, for any ideal J ⊆ Z[1
p
], contracting then extending yields

J ce = (J ∩ Z) = J.

©2024 Martin Frankland All Rights Reserved 52



University of Regina MATH 420/820 - Commutative Algebra

Example 8.2.5. Take p = 2 and consider the inclusion map ι : Z ↪→ Z[1
2
]. Taking the ideal

I = (120) ⊂ Z, its extension along ι is

(120)e = (
120

1
) = (

120

8
) = (

15

1
) ⊂ Z[

1

2
],

whose contraction is

(120)ec = (
15

1
) ∩ Z = (15) ⊂ Z.

Example 8.2.6. Now consider the p-local integers

Z(p) =
{a
b
∈ Q | p ∤ b

}
.

as in Example 5.1.5, along with the inclusion map ι : Z ↪→ Z(p). For any non-trivial ideal
(n) ⊆ Z, its extension is

(n)e = (
n

1
) = (

pνp(n)

1
) ⊆ Z(p)

since all the primes other than p are now invertible in Z(p). Taking the contraction yields

(n)ec = (pνp(n)) ⊆ Z.

Going backwards, for any ideal J ⊆ Z(p), contracting then extending yields

J ce = (J ∩ Z) = J.

Example 8.2.7. Again take p = 2 and consider the inclusion map ι : Z ↪→ Z(2). Taking the
ideal I = (120) ⊂ Z, its extension along ι is

(120)e = (
120

1
) = (

120

15
) = (

8

1
) ⊂ Z(2),

whose contraction is

(120)ec = (
120

1
) ∩ Z = (8) ⊂ Z.

Remark 8.2.8. In Chapter 3, we will see that Z[1
p
], the p-local integers Z(p), and the fraction

field Frac(Z) = Q are localizations of Z.

The ring Z[1
p
] is sometimes called the “p-inverted integers”, the “localization of Z by the ele-

ment p”, the “localization of Z away from p”, or “Z adjoin p inverse”. Note the prepositions!
The localization of Z away from p, which is Z[1

p
], is very different from the localization of Z

at p, which is Z(p).

Remark 8.2.9. The ring of p-local integers Z(p) with the p-adic valuation νp is an example of
discrete valuation ring, cf. Remark 3.2.9.
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8.3 Examples with polynomials

Example 8.3.1. Consider the polynomial ring Z[x] and the subring Z ⊂ Z[x] of constant
polynomials. Taking the principal ideal (x− 5) ⊂ Z[x], its contraction is

(x− 5)c = (x− 5) ∩ Z

= {(x− 5)f | f ∈ Z[x]} ∩ Z

= 0.

Indeed, looking at the degree of the polynomial

deg ((x− 5)f) = deg(x− 5) + deg(f) = deg(f) + 1,

the only way to obtain a constant polynomial (x− 5)f is by taking f = 0.

As another example, take the (non-principal) ideal J = (x − 1, x − 5) ⊂ Z[x]. To compute
its contraction, let us pick more convenient generators:

(x− 1, x− 5) = (x− 1, x− 1− (x− 5)) = (x− 1, 4).

The contraction is
J c = (x− 1, 4)c = (4) ⊂ Z.

Showing (a variant of) this is the content of Homework 5 Problem 2.

Proposition 8.3.2. Let R be a commutative ring and consider the inclusion R ⊂ R[x]
viewing R as the subring of constant polynomials. Let I ⊆ R be an ideal.

1. The extension of I is the ideal of polynomials with coefficients in I:

Ie = I[x] :=

{
n∑
i=0

cix
i ∈ R[x] | ci ∈ I for all i

}
⊆ R[x].

2. Extending then contracting I yields I again:

Iec = I.

Proof. Homework 5 Problem 3.
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8.4 Going back and forth

Proposition 8.4.1. Let f : R → S be a ring homomorphism. For any ideals I ⊆ R and
J ⊆ S, extension and contraction along f satisfy the following:

1. I ⊆ Iec

2. J ce ⊆ J

3. Iece = Ie

4. J cec = J c.

Proof. 1. Consider the inclusions of subsets of R:

I ⊆ f−1(f(I)) ⊆ f−1(Ie) = Iec.

2. Consider the inclusion of subsets of S

f(f−1(J)) = f(J c) ⊆ J.

Taking ideals generated by the subsets, we deduce

(f(J c)) = J ce ⊆ J.

3. Applying extension to the inclusion I ⊆ Iec yields

Ie ⊆ Iece.

On the other hand, applying part (2) to the ideal J = Ie yields

Iece ⊆ Ie,

hence the equality Iece = Ie. The same argument works for part (4).

Remark 8.4.2. The inclusions in Proposition 8.4.1 are strict in general.

As in Example 8.2.7, consider the inclusion map Z ↪→ Z(2), and take the ideal I = (6) ⊂ Z.
Extending then contracting yields

(6)ec = (2) ⊃ (6).

As in Example 8.3.1, consider the subring R ⊂ R[x], and take the ideal J = (x) ⊂ R[x].
Contracting then extending yields

(x)ce = (0)e = (0) ⊂ (x).

Corollary 8.4.3. Extension and contraction induce a bijection

{contracted ideals of R}

extension
..

∼= {extended ideals of S}

contraction

nn

{I ⊆ R | Iec = I} {J ⊆ S | J ce = J} .
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8.5 Gaussian integers

The inclusion Z ⊂ Z[i] of the integers into the Gaussian integers provides interesting examples
of extension and contraction.

Definition 8.5.1. The norm of a Gaussian rational a+ bi ∈ Q[i] is

N(a+ bi) = a2 + b2 ∈ Q.

Where does the formula come from? The norm of z = a + bi is the determinant of the
Q-linear transformation

λz : Q[i] → Q[i]

given by multiplication by z. Indeed, using the standard basis {1, i} of Q[i] as a Q-vector
space, the linear transformation λz has representing matrix[

a −b
b a

]
,

whose determinant is a2 − (−b2) = a2 + b2.

Warning 8.5.2. The norm in the sense of algebraic number theory (as above), also called a
field norm, is not a norm in the sense of normed vector spaces. The norm of z ∈ Q[i] is the
square of the usual Euclidean norm: N(z) = ∥z∥2.

Now we focus on Gaussian integers a + bi ∈ Z[i], in which case the norm is an integer
a2 + b2 ∈ Z.

Lemma 8.5.3. A Gaussian integer z ∈ Z[i] has norm 1 if and only if z is a unit:

N(z) = 1 ⇐⇒ z ∈ Z[i]×.

Proof. Consider the equivalent conditions on a Gaussian integer z = a+ bi:

N(z) = a2 + b2 = 1

⇐⇒ (a, b) = (±1, 0) or (a, b) = (0,±1)

⇐⇒ z ∈ {1,−1, i,−i} = Z[i]×.

Proposition 8.5.4. A prime number p ∈ Z remains irreducible in Z[i] if and only if p is not
a sum of squares a2 + b2.

Proof. ( =⇒ ) Assume that p is a sum of squares a2 + b2 for some a, b ∈ Z. This yields a
factorization in Z[i]

p = a2 + b2 = (a+ bi)(a− bi).

The factorization is non-trivial, i.e., both a + bi and a − bi are non-units, since they have
norm

N(a+ bi) = a2 + b2 = p > 1.

Thus p ∈ Z[i] is reducible.
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( ⇐= ) Let p = xy be a factorization in Z[i]. Taking norms yields

N(p) = N(xy)

⇐⇒ p2 = N(x)N(y).

By assumption, p is not a sum of squares, which ensures N(x) ̸= p. The only remaining
possible factorization of p2 is 1 · p2, i.e., the numbers N(x) and N(y) must be 1 and p2.
Hence one of x or y is a unit, by Lemma 8.5.3. Thus p ∈ Z[i] is irreducible.

We now interpret those factorizations in terms of extension of ideals.

Example 8.5.5. Consider the subring inclusion ι : Z ↪→ Z[i].

1. Taking the ideal I = (2) ⊂ Z, its extension is

(2)e = (ι(2))

= ((1 + i)(1− i))

= (1 + i)2.

The equality of ideals (1 + i) = (1− i) holds since 1 + i and 1− i are associate in Z[i]:

i(1− i) = i− i2 = i− (−1) = 1 + i.

Moreover, the ideal (1+i) ⊂ Z[i] is prime. Indeed, the element 1+i ∈ Z[i] is irreducible
since its norm is N(1 + i) = 12 + 12 = 2. Hence 1 + i is prime since Z[i] is a unique
factorization domain.

2. Taking the ideal I = (5) ⊂ Z, its extension is

(5)e = (ι(5))

= ((2 + i)(2− i))

= (2 + i)(2− i),

which is a product of distinct prime ideals.

3. Taking the ideal I = (3) ⊂ Z, its extension (3)e ⊂ Z[i] is still prime. Indeed, the
Gaussian integer 3 ∈ Z[i] is irreducible by Proposition 8.5.4, since 3 ∈ Z is not a sum
of squares.

Remark 8.5.6. Let us generalize the example p = 3. A square can only be congruent to 0 or
1 modulo 4:

a2 ≡ 0 or 1 mod 4 for all a ∈ Z.

Hence a sum of squares a2 + b2 can only be congruent to 0, 1, or 2 modulo 4. If a prime
p ∈ Z satisfies p ≡ 3 mod 4, then p is not a sum of squares, hence p remains irreducible in
Z[i] by Proposition 8.5.4.
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9 Constructions with modules

Throughout these notes, we work with modules over a commutative ring R.

9.1 Product of an ideal with a module

Definition 9.1.1. Let M be an R-module and I ⊆ R an ideal. The product of I and M is

IM :=

{
n∑
i=1

cixi | n ≥ 1, ci ∈ I, xi ∈M

}
⊆M.

Exercise 9.1.2. Check that IM ⊆M is a submodule of M .

Example 9.1.3. Consider the polynomial ring R[x] viewed as an R-module, and let I ⊆ R
be an ideal. The product of I with the R-module R[x] is

I(R[x]) = I[x] =

{
n∑
i=0

cix
i ∈ R[x] | ci ∈ I for all i

}
.

Example 9.1.4. If I is a principal ideal I = (a), then the submodule in question is

IM = aM = {ax | x ∈M}

= im
(
M

a−→M
)
.

Here M
a−→M denotes the endomorphism “multiply by the scalar a”, also denoted

λa : M →M

if there is a risk of confusion with the element a ∈ R itself.

Example 9.1.5. Consider the abelian group

M = Z⊕ Z/9⊕ Z/5.

The subgroup 5M is

5M = 5Z⊕ Z/9⊕ 0

= {(5k, b, 0) ∈ Z⊕ Z/9⊕ Z/5 | k ∈ Z}.

Indeed, any multiple of 5 in M is of that form, and any element of that form is a multiple of
5:

(5k, b, 0) = (5k, 5λ−1
5 b, 5 · 0)

= (5k, 5(2b), 5 · 0)

= 5(k, 2b, 0).

We used the fact that the endomorphism

λ5 : Z/9
∼=−→ Z/9

is invertible with inverse λ−1
5 = λ2.
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The argument used above can be streamlined using the following fact.

Proposition 9.1.6. For any ideal I ⊆ R and family of R-modules {Mα}α∈Λ, the following
submodules of the direct sum

⊕
α∈ΛMα are equal:

I(
⊕
α∈Λ

Mα) =
⊕
α∈Λ

IMα.

Proof. The left-hand side is generated by the subset

S = {c(mα1 + · · ·+mαk
) | c ∈ I, k ≥ 0, αi ∈ Λ, mαi

∈Mαi
} .

The right-hand side is generated by the subset

T = {cmα | c ∈ I, α ∈ Λ, mα ∈Mα} .

We have T ⊆ S. Also, the elements of S

c(mα1 + · · ·+mαk
) = cmα1 + · · ·+ cmαk

are generated by those of T . Therefore S and T generate the same submodule ⟨S⟩ = ⟨T ⟩.
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9.2 Annihilators

Definition 9.2.1. Let M be an R-module and N,P ⊆M submodules. Define the subset of
R

(N : P ) := {r ∈ R | rP ⊆ N}

= {r ∈ R | rp ∈ N for all p ∈ P}.

Exercise 9.2.2. Check that (N : P ) is an ideal of R.

Definition 9.2.3. The annihilator1 of an R-module M is

AnnR(M) := (0 :M) = {r ∈ R | rM = 0}

= {r ∈ R | rm = 0 for all m ∈M}.

We may write Ann(M) if the ground ring R is clear from the context.

More generally, for any subset S ⊆M , the annihilator of S is

Ann(S) = {r ∈ R | rs = 0 for all s ∈ S}.

This is not really a more general notion, because of the following fact.

Exercise 9.2.4. For any R-module M and subset S ⊆ M , show that the annihilator of S
equals the annihilator of the submodule ⟨S⟩ generated by S:

Ann(S) = Ann(⟨S⟩).

Lemma 9.2.5. The annihilator of a cyclic R-module R/I is

Ann(R/I) = I.

Proof. Let us check both inclusions separately.

(⊇) Let i ∈ I and let r ∈ R/I denote the equivalence class of r ∈ R. We have the equality
in R/I

i · r = ir = 0

since ir ∈ I holds. This shows i ∈ Ann(R/I).

1Also the name of a successful Canadian thrash metal band.
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(⊆) Let r ∈ Ann(R/I). In particular, r satisfies

r · 1 = r = 0,

so that r ∈ I holds.

Example 9.2.6. The annihilator of the abelian group M = Z/6⊕ Z/14 is

AnnZ(Z/6⊕ Z/14) = {n ∈ Z | n(a, b) = (0, 0) for all (a, b) ∈ Z/6⊕ Z/14}

= {n ∈ Z | na = 0 and nb = 0 for all a ∈ Z/6, b ∈ Z/14}

= AnnZ(Z/6) ∩ AnnZ(Z/14)

= (6) ∩ (14) by Lemma 9.2.5

= (lcm(6, 14))

= (42) .

The argument used in the example is an instance of the following fact.

Proposition 9.2.7. Let {Mα}α∈Λ be a family of R-modules.

1. The annihilator of the direct sum is the intersection of the annihilators:

Ann

(⊕
α∈Λ

Mα

)
=
⋂
α∈Λ

Ann(Mα).

2. The annihilator of the product is also the intersection of the annihilators:

Ann

(∏
α∈Λ

Mα

)
=
⋂
α∈Λ

Ann(Mα).

Proof. See Homework 6 Problem 2.

Proposition 9.2.8. Any R-moduleM is canonically a module over the quotient ring R/Ann(M).

Proof. Define the scalar multiplication by r ∈ R/Ann(M) on M by

r ·m = r ·m,

which is independent of the choice of representative r ∈ R. Indeed, any other representative
is of the form r′ = r + a for some a ∈ Ann(M), which acts on M by

r′m = (r + a)m

= rm+ am

= rm = 0 since a ∈ Ann(M)

= rm.

The formula r ·m still satisfies the properties of a scalar multiplication (bilinear, associative,
unital), inherited from the same properties for r ·m.
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Alternate proof. The structure of R-module of M corresponds to a ring homomorphism

λ : R → EndZ(M)

encoding the scalar multiplication λ(r)(m) = r ·m. By assumption, λ vanishes on the ideal
Ann(M). By the universal property of the quotient ring, there is a unique ring homomorphism

λ̃ : R/Ann(M) → EndZ(M) making the following diagram commute:

R

quotient ��
��

λ
// EndZ(M).

R/Ann(M)
λ̃

77

The induced ring homomorphism λ̃ : R/Ann(M) → EndZ(M) corresponds to anR/Ann(M)-module
structure on M .
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10 Direct sum and product of modules

Throughout these notes, we work with modules over a commutative ring R.

10.1 Direct sum of modules

Definition 10.1.1. The direct sum of R-modules M and N is the R-module

M ⊕N = {m+ n | m ∈M, n ∈ N}

with addition given by

(m+ n) + (m′ + n′) = (m+m′) + (n+ n′)

and scalar multiplication (necessarily) given by

r(m+ n) = rm+ rn.

The direct sum comes equipped with the inclusion maps from each summand{
iM : M →M ⊕N

iN : N →M ⊕N,

which are R-module homomorphisms.

Proposition 10.1.2. The direct sum of modules M ⊕N along with inclusion maps iM and
iN is the coproduct of R-modules, i.e., it satisfies the following universal property.

For any R-module P along with maps fM : M → P and fN : N → P , there is a unique map
f : M⊕N → P whose restrictions are f ◦iM = fM and f ◦iN = fN , i.e., making the following
diagram commute:

M

fM

++

iM ##

N

fN

ss

iN{{

M ⊕N

∃!f
��

P.

The map f is denoted in matrix notation as f = [ fM fN ] or sometimes fM + fN .

Slogan: “A map out of M ⊕N is the same data as a map out of M and a map out of N”.

Proof. Since the values of f are prescribed on M and N , the only possible formula for f is

f(m+ n) = f(m) + f(n)

= fM(m) + fN(n).

One readily checks that this formula defines an R-module homomorphism f : M⊕N → P .
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We can generalize the construction of direct sums to arbitrary (infinite) families of modules.

Definition 10.1.3. The direct sum of a family of R-modules {Mα}α∈Λ is the R-module⊕
α∈Λ

Mα = {mα1 + · · ·+mαk
| k ≥ 0, αi ∈ Λ, mαi

∈Mαi
}

where terms coming from the same summand can be added within the summand, but the
addition of terms from different summands is formal.

As before, the direct sum comes equipped with inclusion maps from each summand:

iβ : Mβ →
⊕
α

Mα.

Proposition 10.1.4. The R-module
⊕

αMα along with the inclusion maps iβ : Mβ →
⊕

αMα

is the coproduct of R-modules, i.e., it satisfies the following universal property.

For any R-module P along with maps fα : Mα → P for all α ∈ Λ, there is a unique map
f :
⊕

αMα → P whose restrictions are f ◦ iα = fα for all α ∈ Λ.
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10.2 Product of modules

This section will look suspiciously dual to the previous section.

Definition 10.2.1. The product of R-modules M and N is the R-module with underlying
set the Cartesian product

M ×N = {(m,n) | m ∈M, n ∈ N}

endowed with coordinatewise addition and scalar multiplication:

(m,n) + (m′, n′) = (m+m′, n+ n′)

r(m,n) = (rm, rn).

The product comes equipped with the projection maps onto each factor{
pM : M ×N →M

pN : M ×N → N,

which are R-module homomorphisms.

Proposition 10.2.2. The product of modules M ×N along with projection maps pM and pN
is the product of R-modules (in the categorical sense), i.e., it satisfies the following universal
property.

For any R-module L along with maps fM : L → M and fN : L → N , there is a unique map
f : L → M × N whose coordinates are pM ◦ f = fM and pN ◦ f = fN , i.e., making the
following diagram commute:

L

fM

��

∃!f
��

fN





M ×N
pM

{{

pN

##
M N.

The map f is denoted f = (fM , fN) or
[
fM
fN

]
.

Slogan: “A map into M ×N is the same data as a map into M and a map into N”.

Proof. Since the coordinates of f into M and N are prescribed, the only possible formula for
f is

f(x) = (fM(x), fN(x)) .

One readily checks that this formula defines an R-module homomorphism f : L→M×N .
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We can generalize the construction of products to arbitrary (infinite) families of modules.

Definition 10.2.3. The product of a family of R-modules {Mα}α∈Λ is the R-module with
underlying set the Cartesian product∏

α∈Λ

Mα = {(mα)α∈Λ | mα ∈Mα for all α ∈ Λ}

endowed with coordinatewise addition and scalar multiplication:

(mα) + (m′
α) = (mα +m′

α)

r(mα) = (rmα).

Here m = (mα)α∈Λ and m′ = (m′
α)α∈Λ denote elements of the product

∏
α∈ΛMα.

As before, the product comes equipped with projection maps onto each factor:

pβ :
∏
α

Mα →Mβ.

Proposition 10.2.4. The R-module
∏

αMα along with the projection maps pβ :
∏

αMα →
Mβ is the product of R-modules (in the categorical sense), i.e., it satisfies the following
universal property.

For any R-module L along with maps fα : L → Mα for all α ∈ Λ, there is a unique map
f : L→

∏
αMα whose coordinates are pα ◦ f = fα for all α ∈ Λ.
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10.3 Relationship between direct sum and product

For any family of R-modules {Mα}α∈Λ, there is a natural R-module homomorphism

ψ :
⊕
α∈Λ

Mα →
∏
α∈Λ

Mα (1)

whose restriction to the summand Mβ and coordinate into Mγ is the map ψβ,γ : Mβ → Mγ

given by

ψβ,γ =

{
idMβ

if β = γ

0 if β ̸= γ.

Proposition 10.3.1. The R-module homomorphism ψ in Equation (1) is injective, with
image consisting of the “finitely supported” elements of the product:

im(ψ) = {m ∈
∏
α∈Λ

Mα | mα ̸= 0 for finitely many α ∈ Λ}.

In particular, finite direct sums and products agree:

Corollary 10.3.2. For any R-modules M and N , the natural map

M ⊕N
∼=−→M ×N

m+ n 7→ (m,n)

is an isomorphism.

In fancier terminology, the direct sum of R-modules M ⊕N is a biproduct: simultaneously
the product and coproduct of M and N .

Example 10.3.3. The map of abelian groups

∞⊕
n=1

Z ↪→
∞∏
n=1

Z

is injective but not surjective, since its image does not contain elements such as (1, 1, 1, · · · ) ∈∏∞
n=1 Z.

It turns out that the target of the map in Example 10.3.3 is not isomorphic to the source.
More is true:

Theorem 10.3.4. The abelian group
∏∞

n=1 Z is not free.

Exercise 10.3.5. Let k be a field. Show that the k-vector space
∏∞

n=1 k has uncountably
infinite dimension. In other words, it is not isomorphic to

⊕∞
n=1 k as a k-vector space.
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11 Free modules, finitely generated modules

11.1 Free modules

Most of what you learned about vector spaces also works for free R-modules.

Definition 11.1.1. Let M be an R-module. A subset B ⊆M is called:

1. a generating set if every element m ∈M can be expressed as an R-linear combination
of elements of B:

m = r1b1 + · · ·+ rkbk

for some scalars ri ∈ R and elements bi ∈ B. In other words, the R-submodule
generated by B is all of M .

2. linearly independent if the only R-linear combination of elements of B that yields
zero

r1b1 + · · ·+ rkbk = 0

is the trivial combination r1 = · · · = rk = 0.

3. a basis if it is a linearly independent generating set.

Lemma 11.1.2. Let M be an R-module. For a subset B = {bi | i ∈ I} of M , the following
conditions are equivalent.

1. B is a basis of M .

2. Every element m ∈ M can be expressed uniquely as an R-linear combination of ele-
ments of B.

3. The R-module homomorphism that picks out the elements of B⊕
i∈I

R →M

ei 7→ bi

is an isomorphism.

Definition 11.1.3. An R-module M is called free if it admits a basis, i.e., if there is an
isomorphism M ∼=

⊕
i∈I R.

The module M is called finite free (as shorthand for finitely generated free) if it admits a
finite basis {b1, . . . , bd}, i.e., if there is an isomorphism M ∼= Rd. The number d ≥ 0 is called
the rank of M .

We will prove later that the rank is well-defined, that is:

Rm ∼= Rn =⇒ m = n

[AM69, §2 Exercise 11].
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Example 11.1.4. The abelian group Z3 is free of rank 3, with the standard basis B =
{e1, e2, e3}.

Example 11.1.5. Consider the Z[x]-module

M = Z[x]/(x3).

The underlying abelian group ofM is free of rank 3, with basis the monomials B = {1, x, x2}.
Note that M is not free as a Z[x]-module.

Example 11.1.6. In the abelian group Z, the subset {5} is linearly independent but not a
generating set. The Z-submodule generated by 5 is 5Z ⊂ Z, the set of multiples of 5.

This example illustrates the following. Unlike in vector spaces, not every linearly independent
subset of an R-module M can be completed to a basis, even if M happens to be free.

Example 11.1.7. In the abelian group Z/6, the subset {1} is a generating set but is not
linearly independent, due to the non-trivial linear combination

6 · 1 = 0,

with coefficient 6 ̸= 0 ∈ Z. In fact, the abelian group Z/6 is not free. However, if we view
Z/6 as a Z/6-module, then it is free with basis {1}. The equation

r · 1 = 0

with r ∈ Z/6 has as solution r = 6k for k ∈ Z, which ensures r = 0 ∈ Z/6.

This example illustrates that the notion of “linear independence” depends on the ground
ring R.

Example 11.1.8. The Q-vector space Q is free with basis {1}. However, Q is not free as
an abelian group; this can be shown using the fact that Q is divisible.

Note that the Z-submodule of Q generated by 1 is Z ⊂ Q, whereas the Q-submodule gener-
ated by 1 is all of Q.

This example illustrates that the notion of “generating set” also depends on the ground
ring R.

Proposition 11.1.9 (Universal property of free modules). LetM be a free R-module with ba-
sis B. For every R-module N and function of sets f : B → N , there exists a unique R-module
homomorphism φ : M → N extending f , i.e., making the following diagram commute:

B
� _

inclusion
��

function f
// N

M
∃! homomorphism φ

<<
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Proof. By Lemma 11.1.2, every element m ∈ M can be written uniquely as an R-linear
combination

m = r1b1 + · · ·+ rkbk.

If there exists an R-linear extension φ of f , it must be given by

φ(m) = φ(r1b1 + · · ·+ rkbk)

= r1φ(b1) + · · ·+ rkφ(bk)

= r1f(b1) + · · ·+ rkf(bk).

One readily checks that this formula defines an R-module homomorphism φ : M → N .

Remark 11.1.10. For psychological reasons, it might be convenient to write a basis B as an
indexed set B = {bi | i ∈ I}, as we did in Lemma 11.1.2. With that notation, a function
f : B → N amounts to a family {ni}i∈I of elements of N , writing f(bi) = ni.

The bi had to be distinct, so we could view B as a subset B ⊆ M . In contrast, the ni
may be repeated, so it is important to view them as a family of elements of N , indexed by
i ∈ I. As an extreme example, take ni = 0 for all i ∈ I, which yields the R-linear extension
φ = 0: M → N .
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11.2 Finitely generated modules

Definition 11.2.1. An R-module M is finitely generated if it admits a finite generating
set {x1, . . . , xk}.

That is, every element m ∈M can be expressed as an R-linear combination

m = r1x1 + · · ·+ rkxk

for some scalars ri ∈ R.

Example 11.2.2. The abelian group

M = Z2 ⊕ Z/4⊕ Z/9

is finitely generated, by the four generators

(e1, 0, 0), (e2, 0, 0), (0, 1, 0), (0, 0, 1),

where e1 =

[
1

0

]
and e2 =

[
0

1

]
denote the standard basis elements of Z2. By the Chinese

remainder theorem, M is in fact generated by the three generators

(e1, 0, 0), (e2, 0, 0), (0, 1, 1).

Indeed, the element (1, 1) ∈ Z/4⊕Z/9 corresponds to a generator of Z/36 via the isomorphism

Z/36
(q4,q9)

∼=
// Z/4⊕ Z/9.

Example 11.2.2 illustrates the general form of a finitely generated abelian group, written in
primary decomposition.

Theorem 11.2.3 (Fundamental theorem of finitely generated modules over a PID). Let R
be a principal ideal domain. Every finitely generated R-module M is a direct sum of cyclic
R-modules:

M ∼= Rd ⊕R/(a1)⊕ · · · ⊕R/(an)

for some d ≥ 0 and non-zero (and non-unit) elements ai ∈ R.

More precise statements can be found in [DF04, §12.1] as well as

https://en.wikipedia.org/wiki/Structure_theorem_for_finitely_generated_modules_

over_a_principal_ideal_domain

Lemma 11.2.4. For an R-module M , the following conditions are equivalent.

1. M is finitely generated.
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2. There is a surjective homomorphism from a finite free R-module Rk ↠M .

3. M is a quotient of a finite free R-module Rk.

Proof. (1) ⇐⇒ (2). Given elements x1, . . . , xk ∈M , consider the R-module homomorphism
that picks out those elements:

φ : Rk →M

ei 7→ xi.

The submodule ⟨x1, . . . , xk⟩ ⊆ M generated by the xi is the image of φ. Thus the xi are
generators of M if and only if φ is surjective.

(2) ⇐⇒ (3). By the first isomorphism theorem, given any surjective homomorphism
φ : Rk ↠M , the target is the quotient

M ∼= Rk/ ker(φ).

Proposition 11.2.5. 1. A quotient of a finitely generated R-module is finitely generated.

2. If the R-modules M and N are finitely generated, then so is their direct sum M ⊕N .

Proof. Exercise.

Warning 11.2.6. A submodule of a finitely generated module need not be finitely generated.
For example, let k be a field and consider the polynomial ring in countably infinitely many
variables

R = k[x1, x2, . . .].

Then R itself as an R-module is finitely generated, namely by the generator 1 ∈ R. However,
the ideal of polynomials with zero constant term

I = (x1, x2, . . .)

is not finitely generated as an R-module.

The problem here is that the ring R is not Noetherian. In Chapter 7, we will see that over
a Noetherian ring R, a submodule of a finitely generated module must be finitely generated.
This holds for instance over Z or a polynomial ring k[x1, . . . , xn].
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12 Maps between free modules

Throughout these notes, we work over a commutative ring R. We will review some linear
algebra and see that most of it goes through if we work with free modules. The main
difference is that... we can’t say “vector” anymore, although we want to.

Note that “R-linear map” is a synonym for “R-module homomorphism”.

12.1 Working in the standard basis

Let us write elements of the finite free R-module Rn as columns

x = (x1, . . . , xn) =

x1...
xn

 ∈ Rn.

Proposition 12.1.1. 1. For every R-linear map f : Rn → Rm, there is a unique m × n
matrix A with entries in R satisfying

f(x) = Ax

for all x ∈ Rn, given by the formula

A =
[
f(e1) . . . f(en)

]
. (2)

In other words, the columns of A are the values of f on the standard basis elements.
We call A the matrix representing f .

2. The correspondence in part (1) defines an isomorphism of R-modules

HomR(R
n, Rm)

∼=−→ Matm×n(R).

3. Said isomorphism is compatible with composition. That is, given maps g : Rp → Rn and
f : Rn → Rm represented by an n× p matrix B and an m× n matrix A, the composite
f ◦ g : Rp → Rm is represented by the m× p matrix AB, as illustrated in the diagram

Rp

f◦g

AB

BB

g

B

// Rn
f

A

// Rm

In other words, the following diagram of R-modules commutes:

HomR(R
n, Rm)⊗R HomR(R

p, Rn)

∼=
��

◦
// HomR(R

p, Rm)

∼=
��

Matm×n(R)⊗R Matn×p(R)
product

// Matm×p(R).
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In particular, for square matrices, we obtain an isomorphism of R-algebras

EndR(R
n)

∼=−→ Matn(R)

between the endomorphism algebra of Rn and the algebra of n× n matrices.

Example 12.1.2. Consider the map of abelian groups

f : Z2 → Z3

given in the standard basis by

f(e1) = 4e1 + e2 − 2e3

f(e2) = 3e1 + e3.

The map f is represented by the 3× 2 matrix with integer entries

A =
[
f(e1) f(e2)

]
=

 4 3

1 0

−2 1

 .
Remark 12.1.3. In light of Proposition 12.1.1, we sometimes identify anR-linear map f : Rn →
Rm with its representing matrix, saying that f is the matrix A in Equation (2). By default,
this means the matrix representing f with respect to the standard bases.

Warning 12.1.4. For an R-linear map f : Rn → Rm, the m × n matrix A representing f is
characterized by

f(ej) =
m∑
i=1

aijei,

i.e., we read off the value f(ej) in the jth column of A. Some authors also use the transpose
convention

f(ei) =
m∑
i=1

bijej.

In the transpose convention, elements of Rn are written as rows, f : Rn → Rm is repre-
sented by an n ×m matrix B whose ith row is the value f(ei) ∈ Rm, and matrices act by
multiplication on the right.

The two conventions are related by transposition: B = AT .
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12.2 Changing bases

Let V be a finite free R-module of rank n. From the notes from October 6, recall that a choice

of basis {v1, . . . , vn} of V is the same data as an isomorphism of R-modules φ : V
∼=−→ Rn,

which sends the basis {v1, . . . , vn} of V to the standard basis {e1, . . . , en} of Rn. In other
words, we have

φ : V
∼=−→ Rn

vi 7→ ei

v = c1v1 + . . .+ cnvn 7→

c1...
cn

 .
Definition 12.2.1. Let V be a finite free R-module of rank n. The coordinates of an
element v ∈ V with respect to a basis {v1, . . . , vn} of V are the coefficients c1, . . . , cn ∈ R
satisfying

v = c1v1 + . . .+ cnvn.

Denote the coordinates of v as a column

[v]{vi} :=

c1...
cn

 ∈ Rn.

As shorthand notation, let us name the basis A := {v1, . . . , vn} and then write [v]A for the
coordinates of v with respect to the basis A.

Note that the coordinates of v ∈ V depend on the choice of basis.

Theorem 12.2.2. Let V ∼= Rn and W ∼= Rm be finite free R-modules of rank n and m
respectively, and f : V → W an R-linear map. Let A = {v1, . . . , vn} be a basis of V and
B = {w1, . . . , wm} a basis of W . Then there is a unique m× n matrix A satisfying

[f(v)]B = A[v]A

for all v ∈ V , given by the formula

A =
[
[f(v1)]B · · · [f(vn)]B

]
.

We denote this matrix [f ]BA and call it the matrix representing f with respect to the bases
A and B.
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Proof. The choice of bases A and B defines isomorphisms φ : V
∼=−→ Rn and ψ : W

∼=−→ Rm.
There is a unique R-linear map A : Rn → Rm making the diagram

V

∼=φ
��

f
// W

∼= ψ
��

Rn

A

// Rm

commute, namely A = ψ ◦ T ◦ φ−1. By Proposition 12.1.1, the R-linear map A corresponds
to the m× n matrix A whose jth column is

(ψ ◦ f ◦ φ−1)(ej) = (ψ ◦ f)(vj) = [f(vj)]B.

Remark 12.2.3. In Proposition 12.1.1, the matrix A was the matrix representing f : Rm → Rn

with respect to the standard bases S of Rm and Rn, i.e., A = [f ]SS .

Example 12.2.4. Consider the map of abelian groups f : Z2 → Z3 from Example 12.1.2.
As a basis A = {v1, v2} of Z2, take

v1 =

[
3

2

]
, v2 =

[
2

1

]
.

As a basis B = {w1, w2, w3} of Z3, take

w1 =

10
2

 , w2 =

 1

−1

3

 , w2 =

12
1

 .
Find the matrix [f ]BA representing f with respect to the bases A and B.

Solution. The diagram

Z2
A

id [id]SA
��

f

[f ]BA

// Z3
B

id [id]SB
��

Z2
S

f

[f ]SS

// Z3
S
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provides the matrix factorization

[f ]BA = [id]BS [f ]SS [id]SA

= [id]−1
SB[f ]SS [id]SA

=

1 1 1

0 −1 2

2 3 1


−1  4 5

1 0

−2 7

[3 2

2 1

]

=

1 1 1

0 −1 2

2 3 1


−1 18 11

3 2

−4 −3



=

 7 −2 −3

−4 1 2

−2 1 1


18 11

3 2

−4 −3



=

132 82

−77 −48

−37 −23

 .
How to read this matrix? The first column says:

f(v1) = 132w1 − 77w2 − 37w3.

Let us check that this is correct:

f(v1) =

 4 5

1 0

−2 7

[3
2

]

=

183
−4


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132w1 − 77w2 − 37w3 = 132

10
2

− 77

 1

−1

3

− 37

12
1



=

1320
264

−

 77

−77

231

−

3774
37



=

5577
33

−

3774
37



=

183
−4

 . ✓
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12.3 Determinant and invertibility

Definition 12.3.1. Let V ∼= Rn be a finite free R-module of rank n. The determinant
of an endomorphism f : V → V is the determinant of the representing matrix [f ]BB for any
choice of basis B of V .

The determinant is well-defined since the representing matrices of f with respect to different
bases are conjugate and thus have the same determinant:

A = PBP−1

=⇒ det(A) = det(PBP−1)

= det(P ) det(B) det(P )−1

= det(B).

Proposition 12.3.2. Let V be a finite free R-module. An endomorphism f : V → V is
invertible if and only if its determinant is invertible in R, that is, det(f) ∈ R×.

Proof. ( =⇒ ) Assuming f is invertible, the equation ff−1 = idV in EndR(V ) yields the
equation in R

det(ff−1) = det(idV ) = 1

=⇒ det(f) det(f−1) = 1

=⇒ det(f−1) = det(f)−1

so that det(f) ∈ R is a unit.

( ⇐= ) Assume that det(f) is invertible. By choosing a basis of V , we may assume V = Rn

and f is an n× n matrix A. The adjugate matrix of A satisfies

A adj(A) = adj(A)A = det(A)I.

Since det(A) is a unit, the matrix A is invertible with inverse

A−1 = det(A)−1 adj(A).

Example 12.3.3. An endomorphism f : Zn → Zn is invertible if and only if its determinant
is det(f) = ±1.

Corollary 12.3.4. Elements b1, b2, . . . , bn ∈ Rn form a basis of Rn if and only if the n × n
matrix with the bi as columns

B =
[
b1 b2 · · · bn

]
has an invertible determinant det(B) ∈ R×.

Proposition 12.3.5. An element

[
a

b

]
∈ Z2 can be completed to a basis if and only if a and

b have no common factor.

©2024 Martin Frankland All Rights Reserved 79



University of Regina MATH 420/820 - Commutative Algebra

Proof. ( =⇒ ) Assume that a and b have a common factor p ≥ 2, so that we can write a = pa′

and b = pb′. Then for any

[
c

d

]
∈ Z2, the determinant

det

[
a c

b d

]
=

∣∣∣∣∣a c

b d

∣∣∣∣∣
=

∣∣∣∣∣pa′ c

pb′ d

∣∣∣∣∣
= p

∣∣∣∣∣a′ c

b′ d

∣∣∣∣∣
is a multiple of p, hence not a unit in Z. By Corollary 12.3.4, the set {

[
a

b

]
,

[
c

d

]
} is not a

basis of Z2.

( ⇐= ) Assume that a and b have no common factor. (If one of the two is 0, this forces the
other number to be ±1.) Then their greatest common divisor is gcd(a, b) = 1. By Bézout’s
identity, there exist s, t ∈ Z satisfying

sa+ tb = gcd(a, b) = 1.

But that number is the determinant∣∣∣∣∣a −t
b s

∣∣∣∣∣ = as− (−bt) = as+ bt = 1.

By Corollary 12.3.4, the set {

[
a

b

]
,

[
−t
s

]
} is a basis of Z2.
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12.4 Cayley–Hamilton theorem

Recall the following notion from linear algebra.

Definition 12.4.1. Let A be an n × n matrix with entries in R. The characteristic
polynomial of A is

pA(t) = det(A− tI).

The characteristic polynomial is a formal polynomial with coefficients in R, that is: pA ∈ R[t].
It has degree n, with leading term (−1)ntn.

Remark 12.4.2. Some authors prefer the convention det(tI − A), which agrees with our
convention up to a sign:

det(tI − A) = (−1)n det(A− tI).

The benefit of det(tI −A) is that it is always monic, i.e., its leading term is tn. The benefit
of det(A− tI) is that its computation introduces fewer signs and its constant term is always
det(A).

Definition 12.4.3. Let V ∼= Rn be a finite free R-module of rank n. The characteristic
polynomial of an endomorphism f : V → V is

pf (t) = det(f − t · idV ).

In other words, it is the characteristic polynomial of the representing matrix A = [f ]BB for
any choice of basis B of V :

pf (t) = pA(t).

Theorem 12.4.4 (Cayley–Hamilton theorem). Let V be a finite free R-module and f : V →
V an endomorphism. Then f satisfies its characteristic equation, i.e., the following equation
in EndR(V ) holds:

pf (f) = 0.

Proof. We may assume without loss of generality V = Rn and f is represented by an n× n
matrix A ∈ Mn(R). The characteristic matrix of A is A − tI ∈ Mn(R[t]). The adjugate
formula yields the equality in Mn(R[t])

(A− tI) adj(A− tI) = det(A− tI) · I =


pA(t) 0 · · · 0

0 pA(t) · · · 0
...

...
. . .

...

0 0 · · · pA(t)

 .
For the rest of the proof, see [AM69, Proposition 2.4], [Rei95, §2.6], [DF04, §12.2 Proposi-
tion 20], as well as:

https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem#Proofs
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Example 12.4.5. Let f : Z2 → Z2 be the map of abelian groups represented (in the standard
basis) by the matrix

A =

[
2 −1

1 3

]
.

Let us verify the Cayley–Hamilton in this example. The characteristic polynomial of f is

pA(t) = det(A− tI) =

∣∣∣∣∣2− t −1

1 3− t

∣∣∣∣∣
= (2− t)(3− t)− (−1)

= (t− 2)(t− 3) + 1

= t2 − 3t− 2t+ 6 + 1

= t2 − 5t+ 7.

Evaluating the polynomial pA(t) ∈ Z[t] at t = A in the endomorphism ring Mat2(Z) yields
the 2× 2 matrix

pA(A) = A2 − 5A+ 7I

=

[
2 −1

1 3

][
2 −1

1 3

]
− 5

[
2 −1

1 3

]
+ 7

[
1 0

0 1

]

=

[
3 −5

5 8

]
−

[
10 −5

5 15

]
+

[
7 0

0 7

]

=

[
−7 0

0 −7

]
+

[
7 0

0 7

]

=

[
0 0

0 0

]
= 0. ✓

Example 12.4.6. Let k be a field and consider the polynomial ring R = k[x]. Let f : k[x]2 →
k[x]2 be the map of k[x]-modules represented (in the standard basis) by the matrix

A =

[
x+ 2 x− 1

3x 5

]
.

Let us verify the Cayley–Hamilton in this example. Careful! The ground ring R = k[x]
happens to consist of polynomials, while the characteristic polynomial pA(t) is a formal
polynomial in R[t] = k[x][t] ∼= k[x, t]. In this setup, polynomials appear in two unrelated
ways.
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The characteristic polynomial of f is

pA(t) = det(A− tI) =

∣∣∣∣∣x+ 2− t x− 1

3x 5− t

∣∣∣∣∣
= (x+ 2− t)(5− t)− 3x(x− 1)

= 5(x+ 2)− (x+ 2)t− 5t+ t2 − 3x(x− 1)

= t2 − (x+ 7)t+ 5(x+ 2)− 3x(x− 1)

= t2 − (x+ 7)t+ 5x+ 10− 3x2 + 3x

= t2 − (x+ 7)t+ (−3x2 + 8x+ 10).

Evaluating the polynomial pA(t) ∈ R[t] at t = A in the endomorphism ring Mat2(R) yields
the 2× 2 matrix

pA(A) = A2 − (x+ 7)A+ (−3x2 + 8x+ 10)I

=

[
x+ 2 x− 1

3x 5

][
x+ 2 x− 1

3x 5

]
− (x+ 7)

[
x+ 2 x− 1

3x 5

]
+ (−3x2 + 8x+ 10)

[
1 0

0 1

]

=

[
4x2 + x+ 4 (x− 1)(x+ 7)

3x(x+ 7) 3x2 − 3x+ 25

]
−

[
(x+ 7)(x+ 2) (x+ 7)(x− 1)

3x(x+ 7) 5(x+ 7)

]

+

[
−3x2 + 8x+ 10 0

0 −3x2 + 8x+ 10

]

=

[
3x2 − 8x− 10 0

0 3x2 − 8x− 10

]
+

[
−3x2 + 8x+ 10 0

0 −3x2 + 8x+ 10

]

=

[
0 0

0 0

]
= 0. ✓

©2024 Martin Frankland All Rights Reserved 83



University of Regina MATH 420/820 - Commutative Algebra

13 Nakayama’s lemma

Throughout these notes, we work over a commutative ring R.

13.1 Nakayama’s lemma

Proposition 13.1.1. Let M be a finitely generated R-module, I ⊆ R an ideal, and φ : M →
M an R-module endomorphism satisfying φ(M) ⊆ IM . Then φ satisfies an equation of the
form

φn + cn−1φ
n−1 + · · ·+ c1φ+ c0id = 0

with coefficients ci ∈ I.

Proof. Let x1, . . . , xn ∈M be generators and let q : Rn ↠M be the corresponding surjective
R-module homomorphism, given by q(ei) = xi. For each generator xi, by assumption we
have φ(xi) ∈ IM , so that there is an R-linear combination

φ(xi) =
n∑
j=1

ajixj

with coefficients aji ∈ I. Those choices correspond to a lift ψ : Rn → Rn in the diagram

Rn

q

��

ψ
// Rn

q

��

M
φ
// M,

represented by the n× n matrix A = [aij]. The matrix A has characteristic polynomial

pA(t) = det(tI − A) = tn + cn−1t
n−1 + · · ·+ c0

with coefficients ci ∈ I, since all entries of A lie in I. By the Cayley–Hamilton theorem, the
endomorphism ψ satisfies its characteristic equation, i.e., the following equality holds in the
R-algebra EndR(R

n) ∼= Matn(R):

pψ(ψ) = pA(ψ) = ψn + cn−1ψ
n−1 + · · ·+ c0id = 0.

Postcomposing with q yields the equal maps Rn →M

qψn + cn−1qψ
n−1 + · · ·+ c0q = 0

⇐⇒ φnq + cn−1φ
n−1q + · · ·+ c0q = 0

⇐⇒ (φn + cn−1φ
n−1 + · · ·+ c0id)q = 0.

Since q : Rn ↠M is an epimorphism, the second step of the composite must be zero:

φn + cn−1φ
n−1 + · · ·+ c0id = 0.
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Corollary 13.1.2. Let M be a finitely generated R-module and I ⊆ R an ideal satisfying
IM =M . Then there is a scalar r ∈ R satisfying r ≡ 1 mod I and rM = 0.

Proof. By assumption, the identity endomorphism φ = idM satisfies idM(M) =M ⊆ IM . By
Proposition 13.1.1, there are coefficients ci ∈ I such that the following equality in EndR(M)
holds:

id + cn−1id + · · ·+ c0id = 0

⇐⇒ (1 + cn−1 + · · ·+ c0)id = 0.

Taking the scalar r = 1 + cn−1 + · · ·+ c0 yields the result.

Proposition 13.1.3 (Nakayama’s lemma). Let M be a finitely generated R-module and
I ⊆ R an ideal contained in the Jacobson radical Jac(R). Then the condition IM = M
implies M = 0.

Proof. Assuming IM =M , let r ∈ R be a scalar as in Corollary 13.1.2, i.e., satisfying r ≡ 1
mod I and rM = 0. The condition r ≡ 1 mod Jac(R) implies that r is a unit in R, which
yields:

r−1rM = 0 =⇒ M = 0.
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13.2 Application to generating sets

Nakayama’s lemma is useful for determining whether some elements x1, . . . , xn ∈ M in a
finitely generated module M are generators.

Corollary 13.2.1. Let M be a finitely generated R-module, N ⊆M a submodule, and I ⊆ R
an ideal contained in the Jacobson radical Jac(R). Then the condition M = IM +N implies
M = N .

Proof. In the quotient module M/N , we have the equality of submodules

I(M/N) = (IM +N)/N.

The condition M = IM +N then yields

I(M/N) =M/N

=⇒M/N = 0 by Proposition 13.1.3

=⇒M = N.

Corollary 13.2.2. Let M be a finitely generated R-module and x1, . . . , xn ∈ M , and let
I ⊆ R be an ideal contained in the Jacobson radical Jac(R). If the images in the quotient
module

x1, . . . , xn ∈M/IM

generate M/IM , then the elements x1, . . . , xn generate M .

Note: The converse is also true, by Homework 7 Problem 1.

Proof. Consider the submodule of M generated by the xi

N = ⟨x1, . . . , xn⟩ =
n∑
i=1

Rxi.

The assumption that the xi generate M/IM can be expressed as IM +N = M . By Corol-
lary 13.2.1, we conclude

M = N = ⟨x1, . . . , xn⟩.

Next, we focus on finding a generating set without redundant generators.

Definition 13.2.3. Let M be an R-module. A generating set X ⊆ M is minimal if any
proper subset X ′ ⊊ X does not generate M .

Example 13.2.4. Over a field k, a generating set (a.k.a. spanning set) B ⊂ V of a k-vector
space V is minimal if and only if it is a basis. Any two minimal generating sets B,B′ ⊂ V
have the same cardinality, namely the dimension of V over k.
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The analogous statement is not true over a general commutative ring R. A basis (if it exists)
is always minimal, but a minimal generating set need not be a basis, and different minimal
generating sets may have different cardinalities.

Example 13.2.5. 1. In the free abelian group Z, the subsets {1}, {2, 3}, and {6, 10, 15}
are minimal generating sets. Of those, only {1} is a basis.

2. In the abelian group Z/6, the subsets {1} and {2, 3} are minimal generating sets. The
abelian group Z/6 does not have a basis, since it is not free (as a Z-module). Note
however that {1} is a basis of Z/6 as a Z/6-module.

Proposition 13.2.6. Let M be a finitely generated R-module and x1, . . . , xn ∈ M , and let
I ⊆ R be an ideal contained in the Jacobson radical. Denote by x ∈M/IM the reduction of
x ∈M modulo I.

1. The set {x1, . . . , xn} generates M if and only if the set {x1, . . . , xn} generates the quo-
tient module M/IM .

2. The set {x1, . . . , xn} is a minimal generating set of M if and only if the set {x1, . . . , xn}
is a minimal generating set of M/IM .

Proof. (1) The statement was Corollary 13.2.2.

(2) By part (1), a proper subset X ′ ⊊ X = {x1, . . . , xn} generates M if and only if the
reduction X ′ generates M/IM . Therefore, X is a minimal generating set of M if and only if
X is a minimal generating set of M/IM .

The next statement is [AM69, §2 Exercise 10].

Proposition 13.2.7. Let f : M → N be an R-module homomorphism where N is finitely
generated, and let I ⊆ R be an ideal contained in the Jacobson radical. If the reduction of f
modulo I

f : M/IM → N/IN

is surjective, then f : M → N is surjective.

Proof. Denote the cokernel of f by C = coker(f) = N/ im(f). Since N is a finitely generated
module, so is the quotient module C. The reduction of the cokernel is the cokernel of the
reduction:

C/IC ∼= coker

(
M/IM

f−→ N/IN

)
.

(Show this as an exercise.) We deduce the equivalent conditions:

f is surjective

⇐⇒ C = coker(f) = 0

⇐⇒ C/IC = 0 by Nakayama

⇐⇒ coker((f)) = 0

f is surjective.
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13.3 Over local rings

The above statements are particular useful over a local ring (R,m), in which case the Jacobson
radical is the unique maximal ideal m ⊂ R. Specializing Proposition 13.2.6 to that setup
yields the following.

Proposition 13.3.1. Let (R,m) be a local ring with residue field k = R/m, M a finitely
generated R-module, and x1, . . . , xn ∈ M . Denote by x ∈ M/mM the reduction of x ∈ M
modulo the maximal ideal.

1. The set {x1, . . . , xn} generates M if and only if the set {x1, . . . , xn} spans the k-vector
space M/mM .

2. The set {x1, . . . , xn} is a minimal generating set of M if and only if the set {x1, . . . , xn}
is a basis of the k-vector space M/mM .

In particular, any two minimal generating sets of M have the same cardinality, namely
dimk(M/mM).

Remark 13.3.2. 1. If we pick any basis {b1, . . . , bn} of the k-vector space M/mM and any
lifts xi ∈ M with xi = bi, then Proposition 13.3.1 guarantees that {x1, . . . , xn} is a
minimal generating set of M .

2. Such a minimal generating set {x1, . . . , xn} of M need not be a basis, since M might
not be free. See for instance Homework 8 Problem 1.

Example 13.3.3. Let Z(5) denote the 5-local integers and consider the Z(5)-module

M = Z(5) ⊕ Z(5)/(5
8).

Show that the elements

a =

[
1
2
13
4

]
and b =

[
8
3
1
7

]
form a minimal generating set of M .

Solution. The ring Z(5) is local with maximal ideal (5) ⊂ Z(5) and residue field Z(5)/(5) ∼=
F5. SinceM is a finitely generated Z(5)-module, it suffices to show that the reductions modulo

the maximal ideal {a, b} form a basis of the F5-vector space M/5M to conclude that {a, b}
is a minimal generating set of M , by Proposition 13.3.1. Let us compute said vectors in
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M/5M ∼= F2
5:

a =

[
1
2
13
4

]

=

[
(1)(2−1)

(13)(4−1)

]

=

[
(1)(3)

(3)(4)

]

=

[
3

12

]

=

[
3

2

]

b =

[
8
3
1
7

]

=

[
(8)(3−1)

(1)(7−1)

]

=

[
(3)(3−1)

(1)(2−1)

]

=

[
1

3

]
.

The determinant ∣∣∣a b
∣∣∣ = ∣∣∣∣∣3 1

2 3

∣∣∣∣∣ = 9− 2 = 7 ≡ 2 ∈ F×
5

is invertible in F5. Therefore {a, b} is indeed a basis of the F5-vector space F2
5, by Corol-

lary 12.3.4.
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14 Exact sequences

Throughout these notes, we work with modules over a commutative ring R.

14.1 Exact sequences

Definition 14.1.1. A sequence of R-modules

· · · // An+1

fn+1
// An

fn
// An−1

// · · · (3)

is exact at An if the image of the previous map is the kernel of the next map:

im(fn+1) = ker(fn).

The sequence is called exact if it is exact at every position.

Remark 14.1.2. The inclusion im(fn+1) ⊆ ker(fn) says that two consecutive maps compose
to zero:

fn ◦ fn+1 = 0.

A sequence satisfying this weaker condition is called a chain complex, an important tool in
homological algebra and algebraic topology. See MATH 842 and MATH 843 for more details.

Example 14.1.3. 1. The sequence

0 // A // 0

is exact if and only if A = 0 holds.

2. The sequence

0 // A
f
// B

is exact if and only if f is a monomorphism, i.e., an injective map.

Note that exactness of the sequence means exactness at A, because that is the only
position where exactness makes sense. Exactness at B is not defined since the sequence
does not have a map out of B.

3. The sequence

B
g
// C // 0

is exact if and only if g is an epimorphism, i.e., a surjective map.

As before, exactness of the sequence means exactness at C, because that is the only
position where exactness makes sense. Exactness at B is not defined since the sequence
does not have a map into B.
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4. The sequence

0 // A
f
// B // 0

is exact if and only if f is an isomorphism.

Definition 14.1.4. A short exact sequence is an exact sequence of the form

0 // A
f
// B

g
// C // 0. (4)

More explicitly:

� Exactness at A says that f : A ↪→ B is injective.

� Exactness at C says that g : B ↠ C is surjective.

� Exactness at B says that the two maps are related by im(f) = ker(g).

Remark 14.1.5. A sequence that extends infinitely in both directions as in Equation (3) is
called a long exact sequence.

Example 14.1.6. Given any R-modules A and C, the sequence

0 // A �
� incA // A⊕ C

projC
// // C // 0 (5)

is a short exact sequence. Here incA denotes the inclusion of the summand A and projC
denotes the projection onto the factor C.

A short exact sequence isomorphic to one of the form (5) is called split.

I will resist the urge to mention the splitting lemma.

Example 14.1.7. 1. Any monomorphism of R-modules f : A ↪→ B extends to a short
exact sequence

0 // A �
� f

// B
q
// // coker(f) // 0.

Here q : B ↠ B/ im(f) = coker(f) denotes the quotient map.

2. Any epimorphism of R-modules g : B ↠ C extends to a short exact sequence

0 // ker(g) �
� inc // B

g
// // C // 0.

3. Since the maps appearing in a short exact sequence are of a special form, an arbitrary
map of R-modules f : A → B need not appear in a short exact sequence. The next
best thing is this: f extends to a 4-term exact sequence

0 // ker(f) �
� inc // A

f
// B

q
// // coker(f) // 0.

Note that this construction generalizes the previous two parts.
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Example 14.1.8. Let n ≥ 2 be an integer.

1. The sequence of abelian groups

0 // Z
n
// Z

q
// // Z/n // 0

is a short exact sequence, where q : Z ↠ Z/n denotes the quotient map.

2. The sequence of abelian groups

0 // Z/n
n
// Z/n2

q
// // Z/n // 0

is also a short exact sequence.

Neither of those two short exact sequences is split.

What’s that you say? You prefer polynomials rather than integers? Alright, here you go.

Example 14.1.9. Let k be a commutative ring and consider the polynomial algebra k[x].

1. The sequence of k[x]-modules

0 // k[x]
x
// k[x]

q
// // k // 0

is a short exact sequence. Here q : k[x] ↠ k[x]/(x) ∼= k denotes the quotient map.

2. The sequence of k[x]-modules

0 // k
x
// k[x]/(x2)

q
// // k // 0

is also a short exact sequence.

Neither of those two short exact sequences is split.

Warning 14.1.10. When saying that the sequence

A
f
// B

g
// C

is exact, we (and most authors) mean exact at B, because that is the only position where
exactness makes sense, cf. Example 14.1.3.
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14.2 Exact functors

For a commutative ring R, let ModR denote the category of R-modules.

Definition 14.2.1. A functor F : ModR → ModS is additive if it preserves the zero module
F (0) ∼= 0 and preserves direct sums:

F (A⊕B) ∼= F (A)⊕ F (B).

Lemma 14.2.2. A functor F : ModR → ModS is additive if and only if it preserves the
addition on each hom module, i.e., for all R-modules A and B, the induced map on hom sets

FA,B : HomR(A,B) → HomS(FA, FB)

satisfies F (f + g) = F (f) + F (g), and thus is a map of abelian groups.

In the next lecture, we will see that Hom functors and tensors products provide many exam-
ples of additive functors.

Example 14.2.3. The (Cartesian) square functor

F (A) = A2 = A× A

is additive. Indeed, the fact that finite products coincide with finite direct sums yields:

F (A⊕B) = (A⊕B)× (A⊕B)

∼= (A⊕B)⊕ (A⊕B)

∼= (A⊕ A)⊕ (B ⊕B)

∼= (A× A)⊕ (B ×B)

= F (A)⊕ F (B).

In fact, this functor F is given by tensoring with the free R-module R2:

F (A) = A× A

∼= A⊕ A

∼= (R⊗R A)⊕ (R⊗R A)

∼= (R⊕R)⊗R A

∼= (R×R)⊗R A

= R2 ⊗R A.

Example 14.2.4. The tensor square functor

F (A) = A⊗2 = A⊗R A
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is not additive. Indeed, the fact that the tensor product preserves direct sums in each
variable yields:

F (A⊕B) = (A⊕B)⊗R (A⊕B)

∼= (A⊗R A)⊕ (A⊗R B)⊕ (B ⊗R A)⊕ (B ⊗R B)

∼= F (A)⊕ F (B)⊕ (A⊗R B)⊕ (B ⊗R A).

The extra terms (A⊗R B)⊕ (B ⊗R A) are not always zero.

Lemma 14.2.5. Consider a long exact sequence of R-modules

· · · // An+2

fn+2
// An+1

fn+1
// An

fn
// An−1

fn−1
// An−2

// · · ·

1. For each index n ∈ Z, we can extract a short exact sequence centered at the object An:

0 // coker(fn+2)
f̃n+1

// An
f ′n
// ker(fn−1) // 0. (6)

Here f ′
n : An → im(fn) = ker(fn−1) denotes the corestriction of fn onto its image,

whereas f̃n+1 denotes the (unique) map induced by fn+1 out of the quotient:

An+1

q ��
��

fn+1
// An.

coker(fn+2)
∃! f̃n+1

99

2. Conversely, given the short exact sequences (6) for all n ∈ Z, we can recover the long
exact sequence by expressing each map fn as a composite

An
fn

//

f ′n $$

An−1.

ker(fn−1)

inc

99

Proof. Exercise.

Definition 14.2.6. An additive functor F : ModR → ModS is exact if it preserves exact
sequences, i.e., for every long exact sequence of R-modules (3), the induced sequence of
S-modules

· · · // F (An+1)
F (fn+1)

// F (An)
F (fn)

// F (An−1) // · · ·

is also exact.
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Lemma 14.2.7. For an additive functor F : ModR → ModS, the following conditions are
equivalent.

1. F is exact.

2. F preserves short exact sequences, i.e., for every short exact sequence of R-modules
(4), the induced sequence of S-modules

0 // F (A)
F (f)

// F (B)
F (g)

// F (C) // 0

is also exact.

3. For every exact sequence of R-modules A
f−→ B

g−→ C (see Warning 14.1.10), the induced
sequence of S-modules

F (A)
F (f)

// F (B)
F (g)

// F (C)

is also exact.

Proof. The equivalence (1) ⇐⇒ (2) follows from Lemma 14.2.5. The remaining implications
are left as an exercise.

Definition 14.2.8. An additive functor F : ModR → ModS is:

1. left exact if for every short exact sequence of R-modules (4), the induced sequence of
S-modules

0 // F (A)
F (f)

// F (B)
F (g)

// F (C) (7)

is also exact. In particular, a left exact functor preserves injective maps.

2. right exact if for every short exact sequence of R-modules (4), the induced sequence
of S-modules

F (A)
F (f)

// F (B)
F (g)

// F (C) // 0 (8)

is also exact. In particular, a right exact functor preserves surjective maps.

Lemma 14.2.9. Let F : ModR → ModS be an additive functor.

1. F is left exact if and only if for every exact sequence of R-modules of the form

0 // A
f
// B

g
// C,

the induced sequence of S-modules (7) is also exact.
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2. F is right exact if and only if for every exact sequence of R-modules of the form

A
f
// B

g
// C // 0,

the induced sequence of S-modules (8) is also exact.

Proof. Exercise.

In the next lecture, we will learn that tensoring with a moduleM⊗R− is right exact, whereas
the Hom functors HomR(M,−) and HomR(−,M) are left exact.
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14.3 Snake lemma

Proposition 14.3.1. Consider a morphism of short exact sequences of R-modules, i.e., a
commutative diagram

0 // A

α
��

f
// B

β
��

g
// C

γ
��

// 0

0 // A′
f ′

// B′
g′

// C ′ // 0

where the rows are exact. There is an induced 6-term exact sequence

0 // ker(α)
f1

// ker(β)
g1

// ker(γ)

δ

ww

coker(α)
f0
// coker(β)

g0
// coker(γ) // 0

where:

� The maps f1 and g1 are the restrictions of f and g to the kernels;

� The maps f0 and g0 are the maps induced on cokernels by f ′ and g′;

� The connecting homomorphism δ : ker(γ) → coker(α) is defined as follows.

Given an element x ∈ ker(γ), pick a preimage of x under g, apply β, then pick a (unique)
preimage under f ′, then take the equivalence class modulo im(α). The formula is illustrated
schematically here:

x̃
_

β
��

x
g−1

oo

x
_

q

��

β(x̃)
(f ′)−1

oo

q(x) = δ(x) ∈ coker(α).

Proof. Do it! It’s a fun diagram chase.

By mathematical law, I am obligated to refer you to the following explanation:

https://www.youtube.com/watch?v=aXBNPjrvx-I
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Example 14.3.2. Consider the diagram of abelian groups with exact rows

0 // 0

��

// Z

[−1
1 ]��

1
// Z //

��

0

0 // Z2
id
// Z2 // 0 // 0

The middle map β = [ −1
1 ] : Z → Z2 has kernel 0 and cokernel

Z2/⟨

[
−1

1

]
⟩ ∼= Z

generated by the equivalence classes [e1] = [e2]. In this case, the 6-term exact sequence from
the snake lemma

0 // ker(α) // ker(β) // ker(γ)
δ
// coker(α) // coker(β) // coker(γ) // 0

(9)
becomes

0 // 0 // 0 // Z
δ=[−1

1 ]
// Z2

[ 1 1 ]
// Z // 0 // 0.

Example 14.3.3. Consider the diagram of abelian groups with exact rows

0 // Z

2

��

4
// Z

1

��

q
// // Z/4 //

q

��

0

0 // Z
2
// Z

q
// // Z/2 // 0

The left map 2: Z → Z is injective with cokernel Z/2. The middle map 1: Z → Z is an
isomorphism. The right map q : Z/4 → Z/2 is surjective with kernel ⟨2⟩ ∼= Z/2. The 6-term
exact sequence (9) becomes

0 // 0 // 0 // Z/2
δ=1
// Z/2 // 0 // 0 // 0.

In this case, exactness of the sequence forces δ = 1. Nevertheless, we can compute the
connecting homomorphism δ explicitly using the formula. It is given on the generator 2 ∈
ker(Z/4 q−→ Z/2) by δ(2) = 1, as illustrated schematically here:

2
_

1
��

2
q−1

oo

1
_

q
��

2
2−1

oo

1 = δ(x) ∈ coker(Z 2−→ Z) = Z/2.
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15 Hom modules

We introduced Hom modules in the lecture from September 29. In these notes, we look at
more properties and examples of Hom modules, as well as the exactness properties of Hom
functors.

15.1 Definitions and properties

Definition 15.1.1. Let R be a (not necessarily commutative) ring, and let M and N be left
R-modules. The Hom module from M to N is the set of R-module homomorphisms from
M to N :

HomR(M,N) = {f : M → N | f is R-linear}.
Proposition 15.1.2. Let R be a (not necessarily commutative) ring, and let M and N be
left R-modules.

1. Pointwise addition of homomorphisms

(f + g)(x) := f(x) + g(x)

makes HomR(M,N) into an abelian group.

2. If the ring R is commutative, then pointwise scalar multiplication

(rf)(x) := r · f(x)

makes HomR(M,N) into an R-module.

Proof. 1. Exercise.

2. It suffices to show that for any scalar r ∈ R and R-linear map f : M → N , the pointwise
scalar multiple rf : M → N is still R-linear. First, rf preserves addition:

(rf)(x+ y) = r · f(x+ y)

= r · (f(x) + f(y))

= r · f(x) + r · f(y)

= (rf)(x) + (rf)(y).

Next, rf preserves scalar multiplication by R. For any scalar c ∈ R and x ∈M , we have:

(rf)(cx) = r · f(cx)

= r · (c · f(x))

= (rc) · f(x)

= (cr) · f(x) since R is commutative

= c · (r · f(x))

= c · ((rf)(x)) .
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Proposition 15.1.3. Let R be a (not necessarily commutative) ring, and let M , N , and P
be left R-modules.

1. Composition of homomorphisms is Z-bilinear, thus inducing a composition map

HomR(N,P )⊗Z HomR(M,N)
◦
// HomR(M,P )

g ⊗ f � // g ◦ f

2. If the ring R is commutative, then composition of homomorphisms is R-bilinear, thus
inducing a composition map

HomR(N,P )⊗R HomR(M,N)
◦
// HomR(M,P )

Corollary 15.1.4. Let R be a (not necessarily commutative) ring, and let M be a left R-
module.

1. The composition product ◦ makes EndR(M) := HomR(M,M) into a ring, called the
endomorphism ring of M .

2. If the ring R is commutative, then EndR(M) is an R-algebra (usually non-commutative).

As you can see, there are two stories running in parallel, depending whether R is assumed
commutative or not. For the rest of the notes, let us focus on the case whereR is commutative.

Proposition 15.1.5. Let R be a commutative ring.

1. Given R-modules M1, M2, and N , restriction to the two summands yields a natural
isomorphism of R-modules

HomR(M1 ⊕M2, N)
∼=
// HomR(M1, N)× HomR(M2, N)

f � // (f |M1 , f |M2).

More generally, given a family of R-modules {Mi}i∈I , restriction to the summands
yields a natural isomorphism of R-modules

HomR(
⊕

i∈IMi, N)
∼=
//
∏

i∈I HomR(Mi, N)

f � // (f |Mi
)i∈I .

(10)
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2. Given R-modules M , N1, and N2, let pr1 : N1×N2 → N1 denote the projection onto the
factor N1. Projection onto the two factors yields a natural isomorphism of R-modules

HomR(M,N1 ×N2)
∼=
// HomR(M,N1)× HomR(M,N2)

f � // (pr1 ◦ f, pr2 ◦ f).

More generally, given a family of R-modules {Ni}i∈I , projection onto the factors yields
a natural isomorphism of R-modules

HomR(M,
∏

i∈I Ni)
∼=
//
∏

i∈I HomR(M,Ni)

f � // (pri ◦ f)i∈I .

Proof. Let us prove the first part; the second part is dual. For each index i ∈ I, restriction
onto the ith summand

inc∗i : HomR(
⊕

j∈IMj, N) // HomR(Mi, N)

f � // f |Mi
= f ◦ inci

is anR-module homomorphism. As i varies, those restriction maps assemble into anR-module
homomorphism (10). Since the direct sum

⊕
i∈IMi is the coproduct in R-modules, the

map (10) is a bijection, hence an isomorphism.

Warning 15.1.6. Since the infinite direct sum
⊕

i∈I Ni is not a product of R-modules in
general, the Hom module

HomR(M,
⊕
i∈I

Ni)

could be strange. Dually, since the infinite product
∏

i∈IMi is not a coproduct of R-modules
in general, the Hom module

HomR(
∏
i∈I

Mi, N)

could be strange.

For example, Specker’s theorem says that

HomZ(
∞∏
i=1

Z,Z) ∼=
∞⊕
i=1

Z

is a free abelian group with basis the projection maps pri :
∏∞

j=1 Z → Z, a fact that still
blows my mind to this day. I felt the need to express my feelings publicly:

https://uregina.ca/~franklam/Frankland_HawaiianEarring_20170222.pdf
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15.2 Some examples

Lemma 15.2.1. Let R be a commutative ring, let M and N be R-modules, and m ∈M any
element. Then evaluation at m

evm : HomR(M,N) // N

f � // f(m)

is an R-module homomorphism.

Proposition 15.2.2. Let R be a commutative ring. For any R-module M , there is a natural
isomorphism of R-modules

HomR(R,M)
∼=−→M.

Proof. Evaluation at 1 ∈ R

ev1 : HomR(R,M)
∼=−→M

is the desired isomorphism. Checking the details is left as an exercise.

Now let us generalize Proposition 15.2.2.

Proposition 15.2.3. Let R be a commutative ring and F a free R-module with basis {bi}i∈I .
For any R-module M , there is an isomorphism of R-modules

HomR(F,M)
∼=−→
∏
i∈I

M (11)

which is natural in M .

In particular, we have
HomR(R

n,M) ∼= Mn.

Proof. For each index i ∈ I, evaluation at the basis element bi

evbi : HomR(F,M) →M

is an R-module homomorphism, by Lemma 15.2.1. As i varies, those evaluation maps as-
semble into an R-module homomorphism (11). By the universal property of free modules,
the map (11) is a bijection, hence an isomorphism.

Remark 15.2.4. Given a free R-module F , a choice of basis {bi}i∈I is the same data as an
isomorphism of R-modules

φ :
⊕

i∈I R
∼=
// F

ei
� // bi.
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The isomorphism in Proposition 15.2.3 is the composite of the three isomorphisms

HomR(F,M)
φ∗

∼=
// HomR(

⊕
i∈I R,M)

(inc∗i )i∈I

∼=
//
∏

i∈I HomR(R,M)

∏
i∈I ev1

∼=
//
∏

i∈IM

from Propositions 15.1.5 and 15.2.2.

Example 15.2.5. Let R be a commutative ring. In the notes from October 13 §1, we saw
there there is an isomorphism of R-modules

HomR(R
n, Rm) ∼= Matm×n(R)

between maps Rn → Rm and m×n matrices with entries in R. As an R-module, the module
of matrices is free of rank mn:

HomR(R
n, Rm) ∼= (Rm)n ∼= Rmn

by Proposition 15.2.3. However, matrix notation allows us to express the composition product
from Proposition 15.1.3 as matrix multiplication. In particular, the isomorphism

EndR(R
n) ∼= Matn(R)

is an isomorphism of R-algebras.

Proposition 15.2.6. For any integer n ≥ 1 and abelian group A, there is a natural isomor-
phism of abelian groups

HomZ(Z/n,A) ∼= {a ∈ A | na = 0},

the n-torsion subgroup of A.

Proof. By the universal property of the quotient module:

Z
n
// Z

f   

q
// // Z/n

f̃
��

A

a map Z/n → A is the same as a map Z → A that vanishes on the submodule nZ. This
yields natural isomorphisms:

HomZ(Z/n,A) ∼= {f : Z → A | f ◦ n = 0}
∼= {a ∈ A | na = 0} by Proposition 15.2.2

= ker
(
A

n−→ A
)
.

Remark 15.2.7. The n-torsion subgroup of A is sometimes denoted nA, a notation I picked
up in classic work of Cartan [Car54].
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The same proof shows the following more general fact.

Proposition 15.2.8. Let R be a commutative ring. For any scalar r ∈ R and R-module M ,
there is a natural isomorphism of R-modules

HomR(R/r,M) ∼= {x ∈M | rx = 0}

= ker
(
M

r−→M
)
,

the r-torsion submodule of M .

Example 15.2.9. Working over R = Z, let us compute some Hom abelian groups.

1. Hom(Z/n,Z) = 0, since Z is torsion-free.

2.
Hom(Z/2,Z/6) ∼= 2(Z/6) = 3(Z/6) ∼= Z/2.

Alternately, we can use the Chinese remainder theorem:

Hom(Z/2,Z/6) ∼= Hom(Z/2,Z/2⊕ Z/3)
∼= Hom(Z/2,Z/2)⊕ Hom(Z/2,Z/3) by Proposition 15.1.5

∼= 2(Z/2)⊕ 2(Z/3) by Proposition 15.2.6

= Z/2⊕ 0 since 2 acts invertibly on Z/3
∼= Z/2.

3.
Hom(Z/6,Z/10) ∼= 6(Z/10) = 5(Z/10) ∼= Z/2.

Alternately, we can use the Chinese remainder theorem:

Hom(Z/6,Z/10) ∼= Hom(Z/2⊕ Z/3,Z/2⊕ Z/5)
∼= Hom(Z/2,Z/2)⊕ Hom(Z/2,Z/5)⊕ Hom(Z/3,Z/2)⊕ Hom(Z/3,Z/5)
∼= 2(Z/2)⊕ 2(Z/5)⊕ 3(Z/2)⊕ 3(Z/5)
∼= Z/2⊕ 0⊕ 0⊕ 0

∼= Z/2.

Proposition 15.2.10. The Hom abelian group between cyclic abelian groups is

HomZ(Z/m,Z/n) ∼= Z/ gcd(m,n)

for all integers m,n ≥ 1.
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Proof. The Hom abelian group in question is the m-torsion subgroup of Z/n. Writing d :=
gcd(m,n), we have:

Hom(Z/m,Z/n) ∼= m(Z/n)

= ⟨n
d
⟩ as a submodule of Z/n

∼= Z/d,

since n
d
∈ Z/n has (additive) order d.

Example 15.2.11. HomZ(Q,Z) = 0, since no integer is infinitely divisible. More precisely,
let f : Q → Z be a linear map. For any rational number r ∈ Q, the value of f is

f(r) = f(
n

n
r) = nf(

r

n
)

for any integer n ̸= 0, since f is Z-linear. Hence f(r) is divisible by every integer n ̸= 0,
which forces f(r) = 0.

Exercise 15.2.12. Compute the Hom abelian group

HomZ(Z⊕ Z/9⊕Q,Z2 ⊕ Z/15).
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15.3 Left exactness of Hom

The Hom functor is left exact in each variable, in the following sense.

Proposition 15.3.1. Let R be a commutative ring, let M and N be R-modules, and

0 // A
f
// B

g
// C // 0

a short exact sequence of R-modules.

1. The sequence of R-modules

0 // HomR(M,A)
f∗
// HomR(M,B)

g∗
// HomR(M,C)

is exact. In other words, the covariant Hom functor HomR(M,−) : ModR → ModR is
left exact.

2. The sequence of R-modules

0 // HomR(C,N)
g∗

// HomR(B,N)
f∗

// HomR(A,N)

is exact. In other words, the contravariant Hom functor HomR(−, N) : Modop
R → ModR

is left exact.

Proof. Let us prove the first statement; the proof of the second statement is similar.

Exactness at HomR(M,A). We want to show that f : A ↪→ B being a monomorphism
ensures that the postcomposition map f∗ : HomR(M,A) → HomR(N,B) is also a monomor-
phism. Let φ ∈ M → A be a map satisfying f∗(φ) = fφ = 0: M → B. Since f is a
monomorphism, we deduce:

f(φ(x)) = 0 for all x ∈M

=⇒ φ(x) = 0 for all x ∈M

=⇒ φ = 0,

which shows that f∗ is a monomorphism.

Exactness at HomR(M,B). We will prove im(f∗) = ker(g∗) by showing the two inclusions
separately.

(im(f∗) ⊆ ker(g∗)) Because of the relation gf = 0, for any map φ ∈M → A, we have

g∗(f∗(φ)) = gfφ = 0

and thus f∗(φ) ∈ ker(g∗).
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(ker(g∗) ⊆ im(f∗)) Let φ : M → B be a map whose postcomposition by g vanishes: g∗(φ) =
gφ = 0: M → C. Then φ lands in the kernel of g:

g(φ(x)) = 0 for all x ∈M

=⇒ φ(x) ∈ ker(g) for all x ∈M

=⇒ im(φ) ⊆ ker(g).

But exactness of the original sequence at B says ker(g) = im(f). Moreover, f : A ↪→ B is an
isomorphism onto its image im(f) ⊆ B, since f is a monomorphism. Therefore φ : M → B
lifts (uniquely) to a map φ̃ : M → A, as illustrated in the diagram

M∃ ! φ̃

��
∃ !
��

φ

��

A
f

∼=
// im(f) �

� inc // B,

where f : A → im(f) denotes the corestriction of f (by abuse of notation). The equation
φ = fφ̃ = f∗(φ̃) shows φ ∈ im(f∗).

Remark 15.3.2. The statement holds more generally for any (not necessarily commutative)
ring R and (say) left R-modules, as long as we view the Hom modules HomR(M,A) merely
as abelian groups, as in Proposition 15.1.2. I didn’t feel like using the word “left” in two
completely different ways in the same sentence.

Example 15.3.3. Consider the short exact sequence of abelian groups

0 // Z
n
// Z

q
// // Z/n // 0 (12)

where q : Z ↠ Z/n denotes the quotient map. Applying the functor HomZ(Z/n,−) yields
the sequence

0 // HomZ(Z/n,Z)
n∗
// HomZ(Z/n,Z)

q∗
// HomZ(Z/n,Z/n)

∼=��

// 0

0 0 Z/n

which is not exact at the third object HomZ(Z/n,Z/n). This shows that the functor
HomZ(Z/n,−) is not exact.

Now apply the functor HomZ(−,Z) to (12), yielding the sequence

0 // HomZ(Z/n,Z)
q∗

// HomZ(Z,Z)
∼=��

n∗
// HomZ(Z,Z)

∼=��

// 0

0 Z
n

// Z

which is not exact at the third object HomZ(Z,Z). This shows that the functor HomZ(−,Z)
is not exact.
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For some modules, Hom functors happen to be exact.

Example 15.3.4. Given a short exact sequence of R-modules 0 → A
f−→ B

g−→ C → 0,
applying the functor HomR(R,−) yields a sequence

0 // HomR(R,A)

∼=��

f∗
// HomR(R,B)

∼=��

g∗
// HomR(R,C)

∼=��

// 0

A
f

// B
g

// C

which is isomorphic to the original sequence, hence still exact. This shows that the functor
HomR(R,−) is exact.

This holds more generally for HomR(F,−) for any free R-module F , by Proposition 15.2.3
and the fact that products of exact sequences are exact.

Definition 15.3.5. An R-moduleM is projective if the functor HomR(M,−) is exact. The
module M is injective if the functor HomR(−,M) is exact.

Example 15.3.3 shows that the abelian group Z/n is not projective and Z is not injective.
Example 15.3.4 shows that Z is projective, as is any free abelian group

⊕
i∈I Z.

Projective modules and injective modules play an important role in homological algebra. See
MATH 843 for more details.
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16 A note on lim1

These notes supplement a presentation on completions. More details about lim1 can be found
in [BK72, §IX.2], [MP12, §2.2–2.4], [Wei94, §3.5], as well as here:

https://ncatlab.org/nlab/show/lim%5E1+and+Milnor+sequences

and the references therein.

16.1 Diagrams of abelian groups

Notation 16.1.1. For a small category I and a category C, denote by CI = Fun(I, C) the
category of I-shaped diagrams in C, i.e., functors I → C and natural transformations between
them.

Example 16.1.2. Consider the natural numbers N as a totally ordered set {1 < 2 < 3 <
· · · }, viewed as a category. Then CN is the category of sequences in C:

X1

f1
// X2

f2
//// X3

// · · ·

A morphism of sequences φ : X → Y is a commutative diagram

X1

φ1

��

f1
// X2

φ2

��

f2
//// X3

φ3

��

// · · ·

Y1
g1
// Y2

g2
//// Y3 // · · ·

Example 16.1.3. Taking the opposite order Nop, the category CNop
is the category of towers

in C:

X1 X2

f1
oo X3

f2
oo · · ·oo

For psychological reasons, I like to display towers vertically:

...

��

X3

f2
��

X2

f1
��

X1.
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Notation 16.1.4. Denote by c : C → CI the constant diagram functor, also called the di-
agonal functor and denoted ∆. More explicitly, the constant diagram c(X) has the object
c(X)i = X at every index i ∈ I and idX as transition maps.

Assuming that C admits I-shaped limits, the limit functor limI is right adjoint to the constant
functor:

c : C ⇄ CI : lim
I
.

For the rest of this note, let us specialize to the category of abelian groups Ab. Since Ab is
a complete and cocomplete abelian category, so is any diagram category AbI .

Proposition 16.1.5. The limit functor

lim
I
: : AbI → Ab

is left exact.

Proof. Since the functor limI is a right adjoint, it preserves all limits, in particular finite
limits. Hence limI is additive and left exact.

Definition 16.1.6. The functor lims
I : : Ab

I → Ab is the sth right derived functor of limI .
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16.2 The lim1 functor

Now we specialize further to towers of abelian groups, taking the indexing category Nop. We
will write lim or limn instead of lim

Nop
.

Proposition 16.2.1. The functors lims : AbNop → Ab are trivial for s ≥ 2.

Proposition 16.2.2. Given a tower of abelian groups A =
(
· · · f2−→ A2

f1−→ A1

)
, consider the

map of abelian groups ∏∞
n=1An

∂
//
∏∞

n=1An

(an)
� // (an − fn(an+1)).

Then we have

ker(∂) ∼= lim
n
An

coker(∂) ∼= lim1
nAn.

Note that ker(∂) is the standard construction of the limit as a subset of the product. The
content of the proposition is providing an explicit construction of lim1A.

Definition 16.2.3. A tower of abelian groups A =
(
· · · f2−→ A2

f1−→ A1

)
satisfies the Mittag-

Leffler condition if for all k ≥ 1, the images in Ak stabilize, i.e., there exists an index
i = i(k) such that for all j ≥ i, the following equality holds:

im(Aj → Ak) = im(Ai → Ak).

Example 16.2.4. If the transition maps fn : An+1 → An are surjective for n large enough,
then the tower A satisfies the Mittag-Leffler condition.

Proposition 16.2.5. If a tower of abelian groups A satisfies the Mittag-Leffler condition,
then its lim1 is trivial: lim1A = 0.
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16.3 A small example

For an integer p ≥ 2, denote by Z[p] the tower with Z in every degree and the multiplication
map p : Z → Z as transition maps:

...

��

Z
p

��

Z
p

��

Z.

Proposition 16.3.1. lim1 Z[p] ∼= Zp/Z, where Zp denotes the p-adic integers.

Proof. Consider the short exact sequence of towers of abelian groups

0 → Z[p] → c(Z) → Z/p• → 0,

displayed more explicitly in the diagram of abelian groups with exact rows

...

��

...

��

...

��

0 // Z

p

��

p3

// Z

1

��

q
// Z/p3

q

��

// 0

0 // Z

p

��

p2

// Z

1

��

q
// Z/p2

q

��

// 0

0 // Z
p
// Z

q
// Z/p // 0

where each map labeled q is the canonical quotient map. Applying the left exact functor lim
yields a long exact sequence of abelian groups

0 → limZ[p] → lim c(Z) → limZ/p• → lim1 Z[p] → lim1 c(Z) → lim1 Z/p• → 0. (13)

The first term vanishes:
lim
n

Z[p] = 0,

since no integer is infinitely divisible by p. The next terms are

lim
n
c(Z) ∼= Z
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and the p-adic integers
lim
n

Z/pn = Zp.

The last two terms are

lim1 c(Z) = 0

lim1 Z/p• = 0

by Proposition 16.2.5, since both towers c(Z) and Z/p• = {Z/pn}n≥1 have surjective transi-
tion maps. The six-term exact sequence (13) thus simplifies to

0 → 0 → Z → Zp → lim1 Z[p] → 0 → 0 → 0,

which yields the isomorphism
lim1 Z[p] ∼= Zp/Z

as claimed.

Remark 16.3.2. The example in Proposition 16.3.1 is found in [BK72, Example IX.2.5] and
[Wei94, Example 3.5.5]. It also appears in topology; see for instance:

https://math.stackexchange.com/questions/766364/is-there-any-simple-example-that-

lim1-terms-appear

Next, we revisit the calculation above using a more hands-on method.

Alternate proof. Proposition 16.2.2 gives a formula lim1 Z[p] ∼= coker(∂). For the tower Z[p],
the map ∂ is ∏∞

n=1 Z
∂

//
∏∞

n=1 Z

(an)
� // (an − pan+1).

Writing ek ∈
∏∞

n=1 Z for the sequence with a 1 in the kth coordinate, we have

∂(ek) = (0, . . . ,

k−1︷︸︸︷
−p ,

k︷︸︸︷
1 , 0, . . .)

which is modded out in coker(∂). This imposes the following relation in coker(∂):

(0, . . . ,

k−1︷︸︸︷
p , 0, . . .) = (0, . . . ,

k︷︸︸︷
1 , 0, . . .).

These relations for all k ≥ 2 are the same as those imposed on p-adic expansions

∞∑
n=1

bnp
n−1.
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Let us describe the image of ∂. For general a = (an) and b = (bn) in
∏∞

n=1 Z, the equation
∂(a) = b is equivalent to

an − pan+1 = bn

⇐⇒ an = bn + pan+1

for all n ≥ 1. Applying these equations recursively yields

a1 = b1 + b2p+ b3p
2 + · · ·

a2 = b2 + b3p+ b4p
2 + · · ·

a3 = b3 + b4p+ b5p
2 + · · ·

...

Since the an must be integers, the p-adic expansion

a1 =
∞∑
n=1

bnp
n−1

must stop. The argument shows that the (surjective) map

∏∞
n=1 Z

φ
// Zp

(bn)
� //

∑∞
n=1 bnp

n−1

satisfies φ(im(∂)) = Z, equivalently, im(∂) ⊆ φ−1(Z). The reverse inclusion also holds:
im(∂) = φ−1(Z). By the first and third isomorphism theorems, we obtain

coker(∂) =

(
∞∏
n=1

Z

)
/ im(∂)

=

(
∞∏
n=1

Z

)
/φ−1(Z)

∼= Zp/Z.
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