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1. Simplicial enrichment of chain complexes

1.1. Background.

Notation 1.1. Let R be a ring and let Ch≥0(R) denote the category of non-negatively
graded chain complexes of (left) R-modules. Let sModR denote the category of simplicial
R-modules.

One would think that there is an “obvious” enrichment of Ch≥0(R) in simplicial sets via
the Dold–Kan correspondence, but there there are two such constructions.

(a) Use Dold–Kan locally. Use the mapping chain complexes in Ch≥0(R) — i.e., the fact
that Ch≥0(R) is enriched in Ch(R) — to produce the mapping spaces via Dold–Kan,
as explained in [Lur17, Construction 1.3.1.13].

(b) Use Dold–Kan globally. Transport the simplicial enrichment from sModR via the
equivalence of categories

N : sModR � Ch≥0(R) : Γ,

as explained in [nLa17, Remark 2.8].

1.2. Project. The project encompasses three aspects.

(1) Show that the two simplicial enrichments on Ch≥0(R) are not the same. Show that
they are related by a natural map. Study the properties of that comparison map.

(2) Study how the two enrichments interact with the projective model structure on
Ch≥0(R). Understand why the enrichment (b) makes Ch≥0(R) into a simplicial model
category. Check whether the enrichment (a) does.

(3) Work out a formula for the tensoring of Ch≥0(R) over simplicial sets based on the
combinatorics of ∆n viewed as a simplicial complex (as opposed to a simplicial set).

1.3. References. [Qui67, §II], [GJ09, §II], [Wei94, §8], [SS03, §2].
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2. May’s convergence theorem for the homology of DG-algebras

2.1. Background. Differential graded algebras (DG-algebras for short) are important both
in algebra and in topology. Given a DG-algebra A, one often wants to compute its homology
H∗A. A filtration on A yields a spectral sequence that computes H∗A starting from the
homology of the filtration quotients. In seminal work, May analyzed the behavior of products
and Massey products in the spectral sequence [May69]. Massey products provide the algebra
H∗A with a richer algebraic structure.

2.2. Project. The goals of the project are the following.

(1) Compute examples of May’s convergence theorem, in particular examples that illus-
trate why the technical assumptions are important.

(2) Compute the spectral sequence for the DG-algebra carrying the universal 3-fold
Massey product in given degrees.

(3) Compute examples using different filtrations on the same DG-algebra, in particular
Adams-style filtrations induced by projective classes. Find criteria for a filtration to
have better convergence properties than others.

One of my motivations for the project is that May’s convergence theorem should be an
instance of a generalization of Moss’ convergence theorem to triangulated categories. Under-
standing concrete examples with DG-algebras should shed light on the general statement.

2.3. References. [Car54], [GM03, §V.3], [May69], [GM74, §5], [BMR14, §10].
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3. Relative derived category of the derived category of a ring

3.1. Background. Relative homological algebra goes back to the 1960s, in work of MacLane
[ML63, §IX], Eilenberg, and Moore [EM65]. A projective class P specifies certain objects
that will play the role of projective objects in an abelian category. This allows much more
general resolutions than the usual projective resolutions.

Christensen and Hovey constructed model categories that refine certain relative derived
categories, at least when starting from an abelian category [CH02]. Chachólski et al. have a
different construction of certain relative derived categories starting from an abelian category
with an injective class [CNPS18]. Their construction remains within the realm of triangulated
categories without using model categories, but the input is an abelian category, not an
arbitrary triangulated category.

A less studied construction is that of the P-relative derived category DP(T ) starting from
a triangulated category T equipped with a projective class P . A motivation for studying
DP(T ) is that it provides a natural home for P-relative Ext groups, which appear as the E2

term of the P-relative Adams spectral sequence [Chr98].

3.2. Project.

Notation 3.1. Let R be a ring and let T = D+(R) denote the bounded below derived
category of R, viewed as a triangulated category. Let P denote the ghost projective class in
T , i.e., the stable projective class generated by R[0] (the chain complex with R concentrated
in degree 0).

The project consists of the following problems.

(1) Describe the P-relative bounded below derived category D+
P (T ). Check whether it

is equivalent (as a triangulated category) to the homotopy category of some model
category of bicomplexes of R-modules constructed by Muro and Roitzheim [MR19]
or by Cirici et al. [CESLW20].

(2) Show that Ch(T ) admits Spaltenstein-style resolutions relative to P , providing a
construction of hom-sets in DP(T ).

(3) Check what happens when we start with the triangulated category T = D(R), the
unbounded derived category of R. Compare the triangulated categories D+

P (D(R))
and DP(D+(R)).

3.3. References. [Chr98], [CH02], [CNPS18].
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4. Near-rings up to homotopy

4.1. Background. Algebraic structures up to homotopy arise commonly in topology and
algebra. Notably, loop spaces are associative up to coherent homotopies encoded by Stasheff’s
associahedra, which assemble into an A∞ operad [Sta70]. Likewise, the structure of n-fold
loop spaces is governed by an En operad [May72].

In the study of higher order cohomology operations, composition is bilinear up to homotopy—
which is why the Steenrod algebra is an algebra—but not strictly. Linearity with respect to
the right variable only holds up to coherent homotopies a(x + y) ∼ ax + ay. This higher
distributivity was described in [BF17]. Unlike higher associativity for loop spaces, higher dis-
tributivity for cohomology operations is not governed by an operad. The goal of this project
is to show that higher distributivity is governed by a (topologically enriched) Lawvere theory.

4.2. Project. For our purposes here, let us introduce non-standard terminology.

Definition 4.1. A near-ring is defined similarly to a (unital) ring, except that multiplication
is not assumed linear with respect to the right variable. That is, the distributivity axiom
a(x+ y) = ax+ ay is not assumed, though we do assume x0 = 0.

Notation 4.2. Let Tring denote the (one-sorted Lawvere) theory of rings, and Tnear the theory
of near-rings.

There is a canonical map of theories π : Tnear → Tring. Restriction along π induces on
models the inclusion of the full subcategory of rings into near-rings.

The goals of the project are the following.

(1) Construct a topologically enriched theory TD∞ whose models are the ∞-distributive
topological near-rings in the sense of [BF17] (or rather the one-sorted analogue thereof).
This means that multiplication is right linear up to coherent homotopy.

(2) Exhibit maps of topologically enriched theories

Tnear // TD∞
∼ // Tring

where the last step is a Dwyer–Kan equivalence. This would imply that every ∞-
distributive topological near-ring is strictifiable (i.e., weakly equivalent to a topolog-
ical ring).

(3) Work out some consequences for the topological near-ring of self-maps of a generalized
Eilenberg–MacLane space.

4.3. References. [BF17], [BV73, §II], [Sta70], [May72], [Bor94, §3.1–3.3].
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5. Classifying rational homotopy types with a given homotopy Lie algebra

5.1. Background. Given a space X, its homotopy groups π∗X admit primary homotopy
operations, an algebraic structure known as a Π-algebra. One would like to classify the
homotopy types with a given Π-algebra: find all spaces Y satisfying π∗Y ∼= π∗X (as Π-
algebras). There is an obstruction theory building up the moduli space of all such spaces
[BDG04]. The obstructions live in Quillen cohomology of the Π-algebra π∗X. Answering the
problem in general is difficult. In special cases where most of the obstruction groups vanish,
one can compute the moduli space explicitly [Fra11].

The problem becomes simpler if we want to classify all rational homotopy types with a
given rational Π-algebra. For a simply-connected rational space X, its Π-algebra consists
only of the graded Q-vector space π∗X together with Whitehead products, in other words,
the homotopy Lie algebra π∗(ΩX). Quillen cohomology of a graded Lie algebra L corresponds
to the usual Lie algebra cohomology. By the work of Quillen [Qui69], the problem becomes
the following: Find all differential graded Lie algebras L over Q with homology H∗L ∼= L (as
graded Lie algebras). There is always at least one realization, namely, endowing L with the
zero differential. Every realization of L can be obtained as a perturbation of the trivial one,
and there is a deformation theory controlling the possible perturbations [Zaw16].

5.2. Project. The project consists of classifying the realizations of certain graded Lie alge-
bras L over Q. The approach is to use the obstruction theory where the obstructions live in
the Lie algebra cohomology of L [Bla99, §4.22], [Bla04, §6].

The goals of the project are the following.

(1) Check that Quillen cohomology of graded Lie algebras corresponds to Lie algebra
cohomology in the sense of Chevalley–Eilenberg, in other words, the graded analogue
of [Qui70, Proposition 3.7].

(2) Find conditions on the graded Lie algebra L for all obstruction groups to vanish. Such
an L admits only the trivial realization.

(3) Find conditions on the graded Lie algebra L for most of the obstruction groups to
vanish. Compute the moduli space of realizations for some of those examples.

(4) Compare the results to those obtained using the deformation theory of Zawodniak.

5.3. References. [Bla99, §4.22], [Bla04, §6], [Zaw16], [FHT01, §IV].
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6. Distinguishing rational homotopy types via secondary operations

6.1. Background. The cohomology algebra H∗X of a space rarely determines the homotopy
type of X. Two inequivalent spaces X 6' Y can have isomorphic cohomology algebras
H∗X ∼= H∗Y . Likewise, the homotopy groups π∗X rarely determine the homotopy type of
X. Two inequivalent spaces can have isomorphic homotopy groups π∗X ∼= π∗Y with the same
Whitehead products, in other words, isomorphic homotopy Lie algebra π∗(ΩX) ∼= π∗(ΩY ).

This is also true in rational homotopy theory. In fact, the cohomology algebra H∗X and
the homotopy Lie algebra π∗(ΩX) together still don’t determine the rational homotopy type
of X. Lemaire and Sigrist found an infinite family of distinct rational homotopy types that
all share the same cohomology algebra and the same homotopy Lie algebra [LS78].

6.2. Project. Rationally, the cohomology algebraH∗X and the homotopy Lie algebra π∗(ΩX)
contain all the primary algebraic structure. The idea is to look at the finer structure of sec-
ondary operations to distinguish the homotopy types in the Lemaire–Sigrist example.

The goals of the project are the following.

(1) For each homotopy type X in the Lemaire–Sigrist example, compute the secondary
cohomology operations, namely the 3-fold Massey products in H∗(X).

(2) Compute the secondary homotopy operations, namely the 3-fold Lie–Massey brackets
in π∗(ΩX).

(3) Check to what extent the secondary information is enough to distinguish those ratio-
nal homotopy types.

This project was inspired by discussions with David Blanc.

6.3. References. [LS78], [Fél80], [Tan83, §V], [FHT01].
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7. Quillen cohomology of modules over groups

7.1. Background. André–Quillen cohomology is a cohomology theory for commutative rings,
based on simplicial resolutions, due independently to André and Quillen [And67] [Qui70]. It
was used to solve problems in commutative algebra. The construction of Quillen cohomology
is available more generally in an algebraic category, recovering for instance group cohomol-
ogy, Lie algebra cohomology, and Shukla cohomology of associative algebras. It has found
various applications in algebra, deformation theory, and topology [GS07].

7.2. Project. The project consists of computing Quillen cohomology in the category ModGp
of modules over groups, where an object (G,M) consists of a group G and a G-module M .
The category ModGp is the same as the category of 2-truncated Π-algebras, which was my
original motivation for studying it.

In my thesis, I carried out some ground work towards computing Quillen cohomology
in ModGp [Fra10, §7]. I described Beck modules, abelianizations, pushforwards, and some
reduction steps towards the computation.

The goals of the project are the following.

(1) Complete the calculations outlined in the reduction steps of [Fra10, §7.4].
(2) Specialize to the case where we start with a 3-truncated Π-algebra A, and the object

of interest is its 2-truncation P2A = (A1, A2) with coefficient module ΩA = (A2, A3).
(3) Compute some explicit examples.

7.3. References. [Qui67, §II.5], [Qui70], [GS07], [Fra10, §7], [Fra15].
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8. Pointed Reedy categories and model structures

8.1. Background. Given a model category C, one often needs a homotopy theory of
I-shaped diagrams in C, for I a small category, where the weak equivalences are objectwise.
If C is a nice enough model category, then the diagram category CI admits the projective
model structure, where the fibrations are objectwise and the cofibrations are cumbersome
to work with. Dually, CI admits the injective model structure, where the cofibrations are
objectwise and the fibrations are cumbersome.

If the indexing category I is Reedy, then the diagram category CI also admits the Reedy
model structure, where both the cofibrations and fibrations are somewhat computable. For
example, the simplex category ∆ and its opposite ∆op are Reedy, which yields a Reedy model
structure on cosimplicial spaces and simplicial spaces, respectively. As another example,
taking I = N, the Reedy model structure on the category of filtered objects CN coincides
with the projective model structure. Dually, the Reedy model structure on the category of
towers CNop

coincides with the injective model structure.
Enriched model categories often arise in homotopy theory. Given a symmetric monoidal

(model) category V , a V-Reedy category I and a V-model category C, the enriched diagram
category CI admits the V-Reedy model structure, by work of Angeltveit [Ang08]. Under
suitable assumptions, the enriched diagram category CI admits the projective and injective
model structures, by work of Moser [Mos19].

8.2. Project. The project consists of specializing the enriched Reedy, projective, and injec-
tive model structures when the enrichment category is V = Set∗, the category of pointed
sets (with the smash product ∧ as monoidal structure). This case is simple enough to make
all the structure explicit, yet useful since Set∗-enriched categories (a.k.a. pointed categories)
abound in nature.

For instance, chain complexes in a pointed category do not form a diagram category, since
the chain complex condition ∂2 = 0 is not diagrammatic. However, chain complexes do form
an enriched diagram category, enriched over Set∗. As an example of application, (co)chain
complexes of spaces can be used to build certain (co)simplicial resolutions of spaces [BS18]
[BJT19].

The goals of the project are the following.

(1) Spell out the data of a Set∗-Reedy category.
(2) Spell out the Set∗-Reedy, Set∗-projective, and Set∗-injective model structures.
(3) Work out the examples of chain complexes, cochain complexes, and truncated (co)chain

complexes in a nice enough pointed model category C.

8.3. References. [Ang08], [Mos19], [GJ09, §VII], [Hir03, §15], [Rie14, §14].
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9. Change of enrichment for enriched model categories

9.1. Background. A simplicial model category is a model category C that is enriched in
simplicial sets and satisfies a compatibility condition between the enrichment and the model
structure — Quillen’s axiom SM7. One salient feature is that for cofibrant X and fibrant Y ,
the mapping space C(X, Y ) is also the derived mapping space, which is harder to compute
without the enrichment.

Many model categories in nature are enriched over a monoidal category V which is itself a
model category, for example simplicial sets, topological spaces, chain complexes, or spectra.
Given a lax monoidal functor U : V → W and a V-enriched category C, the change of
enrichment along U produces a W-enriched category given by the formula

(UC)(X, Y ) := U (C(X, Y )) .

For enriched model categories, one would hope that the change of enrichment is compatible
with the model structures. This happens if U is the right adjoint in a (strong) monoidal
Quillen pair [Dug06, Lemma A.5] [GM20, Proposition 3.8], for example the singular set
functor Sing : Top→ sSet.

9.2. Project. The goals of the project are the following.

(1) Find (useful) sufficient conditions such that the change of enrichment along a lax
monoidal functor U : V → W sends a V-model category to a W-model category.

(2) For the following lax monoidal functors U : V → W , determine whether the change
of enrichment along U sends a V-model category to a W-model category:
(a) The normalized chain complex N : sAb→ Ch≥0(Z).
(b) The denormalization Γ: Ch≥0(Z)→ sAb.
(c) The good truncation τ≥0 : Ch(Z)→ Ch≥0(Z).
(d) The forgetful functor U : sAb→ sSet.
(e) Geometric realization |·| : sSet→ Top.
(f) Various models of the zeroth space functor Ω∞ : Sp→ Top.

9.3. References. [Qui67, §II.2], [GJ09, §II.3], [Hov99, §4.2], [RSS01], [Dug06, §A], [MP12,
§16.4], [GM20, §3.1].
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