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Persistent homology has become a fundamental tool in topological data analysis, providing a robust

way to extract multi-scale topological features from complex data; see for instance [EH10; Oud15; CV22].

In this work, we first review the basic concepts of persistent homology, including the construction of

filtered complexes, barcodes and persistence diagrams. We then explore its applications in two distinct

settings: time series analysis and knot theory.

In Section 3, following Perea and Harer’s work on sliding windows and persistence [PH15], we develop

a Matlab implementation to verify the periodicity of time series data via sliding window embedding

and one-dimensional persistence. In Section 4, following the work of Celoria and Mahler [CM22], we

apply persistent homology to study geometric and statistical properties of knots.

Our main contribution lies in the practical realization of these methods through Matlab programs

that enable visualization and verification of topological features in both temporal and geometric datasets.

All related code and implementation details can be found at:

https://github.com/wiliiiii/Persistence_Homology
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1 Filtered simplicial complexes

Given a simplicial complex K, a subcomplex of K is a subset of its simplices that is closed under the

face relation. A filtration of K is a nested sequence of subcomplexes that starts with an empty complex

and ends with a complete complex

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K.

1.1 Different complexes

Suppose that X = {p1, · · · , pn} is a finite point cloud in the Euclidean space Rd.

Definition 1.1.1. The Čech complex of X is the filtered simplicial complex

C(X) = {Cr(X) : r > 0}

where

Cr(X) = {σ ⊂ X :
⋂
x∈σ

B(x, r) ̸= ∅}.

Definition 1.1.2. The Vietoris–Rips complex of X is the filtered simplicial complex

V R(X) = {V Rr(X) : r > 0}

where

V Rr(X) = {σ ⊂ X : diam(σ) ≤ r}.

If r = 0, V Rr(X) is discrete and 0-dimensional, that is, only has 0-simplices. If r >> 0, V Rr(X) is

the full simplex.

Before introducing the alpha complex (subcomplexes of the Delaunay complex), we begin with some

necessary background. More details can be found in these notes by Edelsbrunner: https://courses.

cs.duke.edu/fall06/cps296.1/Lectures/sec-III-4.pdf

Denote

Union(r) = {x ∈ Rd : ∃p ∈ X, ||x− p|| ≤ r}.

For each p ∈ X, we can create its Voronoi cell:

Vp = {x ∈ Rd : ||x− p|| ≤ ||x− q||,∀q ∈ X}.

We can see that the Voronoi cell is convex. Let Hi,j be the half-space:

Hi,j = {x ∈ Rd : ||x− pi|| ≤ ||x− pj ||}.

Clearly, Vpi
=
⋂

j ̸=i Hi,j . Since eachHi,j is closed and convex, Vp is also closed and convex. To decompose

the union, we intersect each ball with the corresponding Voronoi cell, Rp(r) = Bp(r) ∩ Vp. Since balls

and Voronoi cells are convex, Rp(r) is also convex. Any two of them are disjoint or overlap along a

common piece of their boundaries. If Rp1
(r) ∩Rp2

̸= ∅, then

∃x ∈ Rp1
(r) = Bp1

(r) ∩ Vp1
, x ∈ Rp2

(r) = Bp2
(r) ∩ Vp2

2

https://courses.cs.duke.edu/fall06/cps296.1/Lectures/sec-III-4.pdf
https://courses.cs.duke.edu/fall06/cps296.1/Lectures/sec-III-4.pdf


so x ∈ Vp1
∩ Vp2

. From the definition of the Voronoi cell, x can only fall on the boundary. Together the

Rp(r) cover the entire union, as in the Figure 1.

Definition 1.1.3. The alpha complex of X is

Alpha(X) = {Alphar(X) : r > 0}

where

Alphar(X) = {σ ⊂ X :
⋂
p∈σ

Rp(r) ̸= ∅}.

Figure 1: The union of disks is decomposed into convex regions by the Voronoi cells. The corresponding

alpha complex is superimposed. Image source: Herbert Edelsbrunner.

Next, we introduce the relationships among these three different simplicial complexes.

Proposition 1.1.4. Suppose that r > 0, then

V Rr(X) ⊂ Cr(X) ⊂ V R2r(X).

Since Rp(r) = Vp(r) ∩Bp(r), we have the following property.

Proposition 1.1.5. Suppose that r > 0, then Alphar(X) ⊂ Cr(X).

Then we need to use the nerve theorem to prove the homotopy relation.

Definition 1.1.6. Let I be a set of indices and C be a family of sets {Ui}i∈I . The nerve of C is a set

of finite subsets of the index set I defined as follows. It contains all finite subsets J ⊂ I such that the

intersection of the Ui whose subindices are in J is non-empty:

N(C) := {J ⊂ I :
⋂
j∈J

Uj ̸= ∅, J finite set}.

Theorem 1.1.7. If any intersection of sets in N(C) is contractible, then N(C) is homotopy equivalent

to
⋃
C.

Since each ball is convex, hence there finite intersection is convex and contractible. Applying the

nerve theorem to the Čech complex, we obtain the following proposition.
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Proposition 1.1.8. Suppose that r > 0, Cr(X) ≃ Union(r).

Similarly, the intersection of finite Rp(r) is also contractible. Apply the nerve theorem to the alpha

complex, and notice that homotopy equivalence is an equivalence relation.

Proposition 1.1.9. Suppose that r > 0, Cr(X) ≃ Alphar(X).

Since homology is a homotopy invariant, we can obtain the homology of the Čech complex by calcu-

lating the homology of the alpha complex.

1.2 Persistent homology

We next define persistence, persistent homology, and the persistence diagram for a simplicial complex

K. We have obtained a filtered complex V R(X) = {V Rr}r≥0, which can be regarded as a functor:

V R : R≥0 → Top(Simp).

If we apply Hi(−; k), where k is a field, then:

R≥0 → Top → Vectk.

This also holds for the Čech complex and alpha complex.

Definition 1.2.1. A persistence module is a diagram of vector spaces indexed by N or R≥0.

A filtration of a simplicial complex K is:

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K.

A homology class α is born at Ki if it is not in the image of map induced by the inclusion Ki−1 ⊂ Ki. If

α is born at Ki, then we say that it dies entering Kj if the image of the map induced by Ki−1 ⊂ Kj−1

does not contain the image of α but the image of the map induced by Ki−1 ⊂ Kj does. The persistence

of alpha is j − i.

We encode birth and death information in persistence diagrams, one for each dimension. The diagram

dgm(q) has a point (i, j) for every q−homology class that is born at Ki and dies entering Kj .

2 Persistence modules

2.1 Structure theorem

Theorem 2.1.1. Any diagram of finite-dimensional k−vector spaces:

V : Rr≥0 → Vectk

is a direct sum of the interval modules:

I[a,b)(t) =

k t ∈ [a, b)

0 otherwise

, I[a,b)(s ≤ t) =

idk s, t ∈ [a, b)

0 otherwise.
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Example 2.1.2. For the vertex set {a, b, c}, consider the filtered simplicial complex

K0 ⊂ K1 ⊂ K2 ⊂ K3.

Figure 2: The filtration on a simplicial complex

Definition 2.1.3. A barcode is a multiset of intervals. The barcode of a persistence module is

the list of intervals appearing in the interval decomposition.

Figure 3: A barcode

2.2 Coefficient field

In this section, we follow [OY23].

When we compute a persistence diagram, we need to select a coefficient field before computation. If

all coefficient fields k yield the same persistence diagram, this represents the most ideal case. However,

this is not practical, because the dimensions of homology vector spaces for the space topological space

are different when Z-homology group of the spaces has non-zero torsion. Let’s first consider the example

of the Möbius strip.

Example 2.2.1 (The Möbius strip).

Let M be a Möbius strip and ∂M be its boundary. Both H1(∂M ;Z) and H1(M ;Z) are isomorphic

to Z, and the homomorphism

H1(∂M ;Z) → H1(M ;Z)

is isomorphic to

n 7→ 2n.
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Consider the following filtration:

X : ∅ = X0 ⊂ X1 = ∂M ⊂ X2 = M

the decomposition on Z2 is

H1(X;Z2) = [1, 2)⊕ [2,∞).

However, the decomposition on R is

H1(X;R) = [1,∞).

In this example, both H1(∂M ;Z) and H1(M ;Z) are free, but H1(M,∂M ;Z) ∼= Z2 and this is not free.

We may guess this is the key to the different diagrams.

Independent We use X to denote a filtration of a complex

X : ∅ = X0 ⊂ X1 ⊂ · · · ⊂ XN = X.

Use Dq(X; k) to denote the qth persistence diagram.

Theorem 2.2.2. The qth persistence diagram Dq(X; k) is independent of the choice of k if Hq(Xn, Xm;Z)

is free for any 0 ≤ m < n ≤ N and Hq−1(Xn;Z) is free for any 0 ≤ n ≤ N .

Since X0 = ∅, the first assumption includes the freeness of Hq(Xn;Z) = Hq(Xn, X0;Z).

Corollary 2.2.3. D0(X; k) is always independent of the choice of k.

Corollary 2.2.4. When X is a filtration of finite cell/simplicial/cubical complexes embedded in Rd, the

(d− 1)th persistent homology gives the same persistence diagram among any fields k.

The above two corollaries ensure that if a filtration is embedded in R2, all non-trivial persistence

diagrams D0 and D1 do not depend on the choice of the coefficient field.

Dependent A natural question is that when Dq(X, k) changes depending of the choice of k, how does

it change?

In the above example about a Möbius strip, a long interval [1,∞) is split into two shorter intervals,

[1, 2) and [2,∞), when k changes from R to Z2. From the example, we expect that a long interval

indecomposable tends to be split into shorter intervals when k changes from R to Zp.

Theorem 2.2.5. Let q be a positive integer and we consider an R-parameterized filtration X = {Xt}t∈R.

Assume that Xt is finite, that is, for sufficiently large t, Xt is a finite simplicial complex. We also

assume that Xt = ∅ for sufficiently small t and Hq(Xt) = 0 for sufficiently large t. Let f be a C2 convex

function on [0,∞) with f(0) = 0. Then the following inequality holds if Hq(Xt;Z) and Hq−1(Xt;Z) are

free for all t: ∑
(b,d)∈Dq(X;R)

f(d− b) ≥
∑

(b,d)∈Dq(X;Zp)

f(d− b).

When f is strictly convex, the equality holds if and only if Dq(X;R) = Dq(X;Zp).

Therefore, Dq(X;R) contains richer information than Dq(X;Zp) under the condition of the theorem.

However, this is not true for higher dimensional filtrations in general.
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3 Application to time series

In this section, we follow [PH15].

For a discrete variable t, we have a point st in a metric space (R2, d). We may view the sequence

{si}ni=0 as sampled from a real-valued function f by cubic spline interpolation.

Supposed that {si = (xi, yi)}ni=0 are n + 1 knots of the spline interpolation. There’ll be a cubic

polynomial qi(x) = y between each successive knots (xi−1, yi−1) and (xi, yi) connecting to both of them,

where i = 1, 2, . . . , n. There will be n polynomials, with the first one starting at (x0, y0), and the last

one ending at (xn, yn).

We already know that the curvature of any curve y = y(x) is

κ =
y′′(

1 + (y′)2
)3/2 .

We will define both y′ and y′′ to be continuous everywhere, including at the knots, which is to say that
qi(xi) = qi+1(xi) = yi

q′i(xi) = q′i+1(xi)

q′′i (xi) = q′′i+1(xi)

1 ≤ i ≤ n− 1.

We can require f has degree 3, then these equations can be achieved. Moreover, f ∈ C2.

Definition 3.0.1. Choose an integer M and a real number τ , both greater than 0. The sliding-window

embedding of f based at t ∈ R into RM+1 is the point

SWM,τf(t) =


f(t)

f(t+ τ)
...

f(t+Mτ)

 .

Choosing different values of t gives a collection of points called a sliding-window point cloud for f .

A critical parameter for this embedding is the window size Mτ .

It turns out that in general, periodic functions trace out ellipses in RM+1, so it is very meaningful to

study its persistent homology.

7



3.1 Cosine function

Let n ∈ N and f(t) = cos(nt). Then

SWM,τf(t) =


cos(nt)

cos(nt+ nτ)
...

cos(nt+ nMτ)



= cos(nt)


1

cos(nτ)
...

cos(nMτ)

− sin(nt)


0

sin(nτ)
...

sin(nMτ)


:= cos(nt)un − sin(nt)vn.

Similarly, g(t) = sin(nt). Then

SWM,τg(t) =


sin(nt)

sin(nt+ nτ)
...

sin(nt+ nMτ)



= sin(nt)


1

cos(nτ)
...

cos(nMτ)

+ cos(nt)


0

sin(nτ)
...

sin(nMτ)


= sin(nt)un − cos(nt)vn.

Hence the sliding-window embeddings of cosine and sine are linear combination of u and v, satisfying:

⟨un,vn⟩ =
1

2

M∑
m=0

sin(2nmτ) =
sin(n(M + 1)τ) sin(nMτ)

2 sin(nτ)
,

∥un∥2 − ∥vn∥2 =
M∑

m=0

cos(2nmτ) =
sin(n(M + 1)τ) cos(nMτ)

sin(nτ)
,

∥un∥2 + ∥vn∥2 = M + 1.

3.2 Approximation structure

In this subsection, we show that one can study SWM,τf and the persistence of the point cloud it generates

for a generic function f ∈ L2(T = R/2πZ) by using its Fourier series approximation.

Let C(X,Y ) denote the set of continuous functions from X to Y equipped with the sup norm. The

sliding-window embedding includes a mapping

SWM,τ : C(T,R) → C(T,RM+1).
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Proposition 3.2.1. For all M ∈ N and τ > 0, the map SWM,τ is a bounded linear operator with norm

∥SWM,τ∥ ≤
√
M + 1.

We now consider approximating a function f by its Fourier polynomials. In particular, let

f(t) = SNf(t) +RNf(t)

where

SNf(t) =

N∑
n=0

an cos(nt) + bn sin(nt).

We can easily compute that

SWM,τf(t) =

N∑
n=0

cos(nt) (anun + bnvn) + sin(nt) (bnun − anvn) + SWM,τRNf(t).

The vector un and vn form a fundamental basis. We introduce the notation

ϕτ (t) =

N∑
n=0

cos(nt) (anun + bnvn) + sin(nt) (bnun − anvn).

Proposition 3.2.2. Let Mτ < 2π. Then u0 = 1,u1,v1, . . . ,uN ,vN are linearly independent if and

only if M ≥ 2N.

Given N ∈ N, we will always set M = 2N and require τ > 0 to be such that Mτ < 2π.

Definition 3.2.3. We say that a function f is L-periodic on [0, 2π], L ∈ N, if

f(t+
2π

L
) = f(t)

for all t.

If we let an + ibn = rne
iαn , with αn = 0 whenever rn = 0, then rn ̸= 0 implies n ≡ 0 (mod L). This

is because if we set g(t) = f(
t

L
), then g(t+ 2π) = g(t) and therefore has a Fourier series expansion

g(t) =

∞∑
r=0

a′r cos(rt) + b′r sin(rt)

with equality almost everywhere. Thus,

f(t) = g(tL) =

∞∑
r=0

(
a′r cos(rLt) + b′r sin(rLt)

)
=

∞∑
n=0

(
an cos(nt) + bn sin(nt)

)
.

for almost every t, and the result follows from the uniqueness of the Fourier expansion in L2(T).

Proposition 3.2.4. Let f be L-periodic, and let τ =
2π

L(M + 1)
. Then the vectors in

{un,vn | 0 ≤ n ≤ N, n ≡ 0 (mod L)}

are mutually orthogonal, and we have ∥un∥ = ∥vn∥ =
√

M+1
2 for n ≡ 0 (mod L).

We then define the centering map C : RM+1 → RM+1 :

C(x) = x− ⟨x,1⟩
∥1∥2

1 where 1 =


1
...

1

 ∈ RM+1.

Later we will set after centering and normalizing, the persistence diagram will have good properties.
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3.3 Convergence

First we can control the pointwise distance of SWM,τf(t) and ϕτ (t) by the following proposition.

Proposition 3.3.1. Let k ∈ N. If f ∈ Ck(T,R), then for all t ∈ T

∥∥SWM,τf(t)− ϕτ (t)
∥∥
RM+1 ≤

√
4k − 2

∥∥RNf (k)
∥∥
2
·

√
M + 1

(N + 1) k−
1
2

.

From the stability theorem:

dB(dgm(X),dgm(Y )) ≤ 2dGH(X,Y ) ≤ 2dH(X,Y ).

Let X,Y be the images of T ⊂ T through SWM,τf and ϕτ , respectively. It follows that if f ∈ Ck(T,R),

dB
(
dgm(X),dgm(Y )

)
≤ 2

√
4k − 2

∥∥RNf (k)
∥∥
2
·

√
M + 1

(N + 1) k−
1
2

.

Moreover, if M and N satisfy some conditions, the basis {un} and {vm} are linearly independent. Then

SNf can be recovered from ϕτ (t), that is, there is no loss of information.

Then we will consider the bottleneck distance of respective persistence diagrams. We require T ⊂ T

to be finite since the persistence diagram with bottleneck distance is complete under the finite set.

Proposition 3.3.2. Let f be L-periodic, N < N ′, M = 2N , M ′ = 2N ′, and

τ =
2π

L(M + 1)
, τ ′ =

2π

L(M ′ + 1)
.

If T ⊂ T is finite, Y = SWM,τSNf(T ) and Y ′ = SWM,τ ′SN ′f(T ), then

dB

(
dgm(Y )√
M + 1

,
dgm(Y ′)√
M ′ + 1

)
≤ 2

∥∥SNf − SN ′f
∥∥
2
,

where λ · dgm(Z) is defined as {(λx, λy)|(x, y) ∈ dgm(Z)} for λ ≥ 0.

Let ȲN be the set resulting from pointwise centering and normalizing the point cloud SW2N,τNSNf(T ).

Then we have following proposition.

Proposition 3.3.3. For any field of coefficients, the sequence dgm(ȲN ) of persistence diagrams is

Cauchy with respect to dB.

Completeness of the set, allows us to state the convergence of this Cauchy sequence. Let w =
2π

L
,

and denote by dgm∞(f, T, w) the limit in the bottleneck distance of the sequence dgm(ȲN ). Here, the

window size Mτ =
M

M + 1
w → w, as N =

1

2
M → ∞ We have following convergence theorem.

Theorem 3.3.4. Let f ∈ C1(T) be an L-periodic function, N ∈ N, τN =
2π

L(2N + 1)
, T ⊂ T finite

and let ȲN be as before. Let X̄N be the set resulting form pointwise centering and normalizing the point

cloud SW2N,τN f(T ) ⊂ R2N+1. Then for any field of coefficients, the sequence dgm(X̄N ) of persistence

diagrams is Cauchy with respect to dB, and

lim
N→∞

dgm(X̄N ) = lim
N→∞

dgm(ȲN ) = dgm∞(f, T, w).
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Next we will show that there is also convergence when T tends to T with respect to the Hausdorff

distance on subspace of T.

Theorem 3.3.5. Let T, T ′ ⊂ T be finite, and let f ∈ C1(T) be L-periodic with modules of continuity

ω : [0,∞] → [0,∞]. If w =
2π

L
, then

dB(dgm∞(f, T, w),dgm∞(f, T ′, w)) ≤ 2 ∥f − f̂(0)∥2 ω
(
dH(T, T ′)

)
and thus there exists a persistence diagram dgm∞(f, w) so that

lim
T→T

dgm∞(f, T, w) = dgm∞(f, w).

3.4 Classification

We can use various methods to classify whether a time series is periodic or not. In this subsection, we

use Maincodes.py.

3.4.1 Giotto-tda

Takens embedding

Construct complex

Calculate persistent...

Has a significant...

Periodic

Yes

Nonperiodic

No

Pick embedding...

Figure 4: Steps of giotto-tda

The Giotto tutorials can be found here: https://giotto-ai.github.io/gtda-docs/latest/notebooks/

tutorials.html
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Step 1: Pick embedding dimension and time delay

We use mutual information to determineτ , and false nearest neighbours to determine d.

To determine an optimal value for τ , we first calculate the maximum xmax and minimum xmin values

of the time series, and divide the interval [xmin, xmax] into a large number of bins. We let pk be the

probability that an element of the time series is in the kth bin and let pj,k be the probability that xi is

in the jth bin while xi+τ is in the kth bin. Then the mutual information is defined as:

I(τ) = −
nbins∑
j=1

nbins∑
k=1

pj,k(τ) log
pj,k(τ)

pjpk
.

The first minimum of I(τ) gives the optimal time delay since there we get the most information by

adding ti+τ .

The false nearest neighbours algorithm is based on the assumption that “unfolding” or embedding

a deterministic system into successively higher dimensions is smooth. In other words, points which are

close in one embedding dimension should be close in a higher one. More formally, if we have a point pi

and neighbour pj , we check if the normalised distance Ri for the next dimension is greater than some

threshold Rth:

Ri =
|xi+mτ − xj+mτ |

∥pi − pj∥
> Rth.

If Ri > Rth then we have a “false nearest neighbour” and the optimal embedding dimension is obtained

by minimising the total number of such neighbours.

Step 2: Takens embedding

Given a time series f(t), we first extract a sequence of vectors of the form

SWd−1,τf(t) = [f(t), f(t+ τ), · · · , f(t+ (d− 1)τ)] ∈ Rd

where d is the embedding dimension and τ is the time delay. Since t is a discrete variable, denoted as

{ti}ni=0. We can obtain a sequence of vector in Rd:

[f(ti), f(ti + τ), · · · , f(ti + (d− 1)τ)], 0 ≤ i ≤ n.

Step 3: Construct complex

Then we denote the finite point cloud in Rd by X. We create the Vietoris–Rips complex from X,

denoted as V R(X).

Step 4: Calculate persistence diagram

Use gitto-tda, we can easily compute the persistence diagram of V R(X).

Example 3.4.1 (Periodic function). Let’s begin with a periodic function

f(t) = cos(5t), {ti =
i

1000
}1001i=0 .
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0.25
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0.75

1.00

y

Periodic Signal

cos(5x)

Figure 5: the periodic function

Use the search functions in Step1, optimal embedding dimension is 6 and time delay is 28. So τ = 28,

d = 6 and let stride to be 3, which means we have following vectors in R6:

[f(t0), f(t28), · · · , f(t140)],

[f(t3), f(t31), · · · , f(t143)],
...

To visualize the Takens embedding obtained in higher dimensions, we applied Principal Component

Analysis (PCA) to project the embedding into three dimensions. The first three principal components

(PC1, PC2, PC3) capture most of the variance of the embedded trajectory, allowing us to inspect its

geometry in a 3D plot.

Figure 6: First figure of the point cloud Figure 7: Second figure of the point cloud

The next step is to calculate the persistence diagrams associated with the point cloud. Let’s first set

the coefficient field to be F2 = Z/2Z.
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Figure 8: The persistence diagram for a periodic function

We can see that this persistence diagram has an important 1-class, which is away from the diagonal

line. And there’s no important 2-class, which means that there’s no void in the complex.

Example 3.4.2 (Nonperiodic function). Then we consider a nonperiodic function

g(t) = cos(t) + cos(πt), {ti =
i

20
}1001i=0 .
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Figure 9: The nonperiodic function g(t)

Use the search functions in Step1, optimal embedding dimension is 6 and time delay is 30. So τ = 30,

d = 6 and let stride to be 3.

Then the point cloud has the following shape:
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Figure 10: First figure of the point cloud Figure 11: Second figure of the point cloud

In the second figure, we can see that the point cloud looks like a hypertorus. We verify this by

computing its persistent homology. Let’s first set the coefficient field to be Z2 = Z/2Z.

Figure 12: The persistence diagram for a nonperiodic function

The non-periodic signal reveals two 1-classes and one 2-class, which is the signature of a hypertorus!

At this point, it is natural to investigate how different choices of stride and the coefficient field

may influence the results, as these parameters play distinct roles in the embedding and homological

computation processes.

Time delay and embedding dimension We may feel curious about the importance of choosing the

optimal time delay τ and embedding dimension d. Let’s consider the periodic function:

h(t) = cos(5t) + sin(7t), {ti =
i

20
}1001i=0

with the stride fixed to be 4 and coefficient field set to Z2.
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Figure 13: The PCA embedding
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Figure 14: The persistence diagrams
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From the search function, the best parameters for h(t) are τ = 16 and d = 8. Figures 13 and 14

consistently show that τ is the key hyperparameter: at τ = 16 the dominant H1 (and H2) classes are

relatively longest-lived and near-diagonal clutter is reduced, and the delay-embedding clouds are the

cleanest and least folded. By contrast, varying the embedding dimension from d = 6 to d = 10 has only

a minor effect once d is moderately large, indicating reconstruction stability. Moving τ away from 16

(e.g., to 14 or 18) weakens persistence and yields more tangled PCA projections. Thus, d only needs

to be sufficiently large, while τ governs the topological and geometric clarity. This tells us picking the

optimal embedding dimension and time delay is necessary.

Next we try to quantify the signals in the persistence diagram, using Quantities.py. We first

quantify the signal strength in the q-th persistence diagram dgmq by the L2 norm of the barcode lengths.

Let pers(x) = d− b for x = [d, b) ∈ dgmq. Then

∥dgmq ∥2 :=

( ∑
x∈Dq(X) finite

pers(x)2

)1/2

.

Table 1: The L2 norm of the barcodes

H1 H2

d = 6 d = 8 d = 10 d = 6 d = 8 d = 10

τ = 14 3.154 3.726 3.965 1.369 2.110 2.201

τ = 15 3.151 3.721 3.916 1.670 1.933 2.303

τ = 16 3.111 3.721 3.930 1.624 2.035 2.308

τ = 17 3.032 3.737 3.910 1.283 2.040 2.333

τ = 18 3.881 4.603 5.154 0.248 0.485 0.449

Next, we quantify the signal strength by the L3 norm of the barcode lengths.

∥dgmq ∥3 :=

( ∑
x∈Dq(X) finite

pers(x)3

)1/3

.

Table 2: The L3 norm of the barcodes

H1 H2

d = 6 d = 8 d = 10 d = 6 d = 8 d = 10

τ = 14 2.649 3.219 3.429 1.292 2.005 2.140

τ = 15 2.700 3.189 3.381 1.576 1.844 2.213

τ = 16 2.659 3.253 3.384 1.545 1.955 2.207

τ = 17 2.524 3.288 3.359 1.195 1.970 2.216

τ = 18 2.747 3.245 3.665 0.159 0.308 0.292

The third one is the maximum persistence, which can be regarded as the signal strength by the L∞
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norm of the barcode lengths.

max(dgmq) := max
x∈Dq(X) finite

|pers(x) |.

Table 3: The maximum persistence of the barcodes

H1 H2

d = 6 d = 8 d = 10 d = 6 d = 8 d = 10

τ = 14 2.364 2.812 3.013 1.288 1.999 2.138

τ = 15 2.339 2.789 2.900 1.572 1.840 2.209

τ = 16 2.298 2.909 2.903 1.542 1.952 2.202

τ = 17 2.295 2.982 2.862 1.183 1.968 2.211

τ = 18 2.471 2.921 3.324 0.096 0.198 0.185

From Table 1, the L2 norms change little with the embedding dimension: for τ ∈ {14, 15, 16, 17},

∥ dgm1 ∥2 varies only slightly across d ∈ {6, 8, 10}, and ∥ dgm2 ∥2 stays in a similar range (about 1.9−2.3).

By contrast, the time delay has a pronounced effect: at τ = 18 the H1 norm increases markedly while

the H2 norm collapses (to < 0.5), indicating that 2D classes are no longer significant. Overall, these

trends support our earlier conclusion that τ is the critical hyperparameter, whereas d only needs to be

moderately large. We can draw the same conclusion from Table 2 and Table 3.

We may notice that there is a huge jump between when τ = 17 and τ = 18. The reason may be

the ratio
2π

18 ∗ 0.05
= 6.98 ≈ 7. The same phenomonen occurs when τ = 21, then the ratio becomes

2π

21 ∗ 0.05
= 5.98 ≈ 6. However, there are also some cases strange. For example, when τ = 12, the ratio

is not close to a integer, but the quantities of H2 are super low.

Stride Actually, if the stride is not large enough, it has little effect on the persistence diagram. However,

if the stride is not so small, the calculation will be much faster. We’ll show this by choosing different

stride in the nonperiodic function(since it’s more complex). For the nonperiodic function

g(t) = cos(t) + cos(πt), {ti =
i

20
}1001i=0 .

We already know that the optimal embedding dimension is 6 and time delay is 14.

(a) stride=2 (b) stride=4 (c) stride=8

Figure 15: The persistence diagram when the stride is small
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From Figure 15, we observe that all three cases exhibit two prominent 1-dimensional homology classes

and one prominent 2-dimensional homology class. Nevertheless, the 1-dimensional classes in the cases

with stride 2 and 4 appear to be more dominant compared to those obtained with stride 8.

(a) stride=16 (b) stride=32 (c) stride=48

Figure 16: The persistence diagram when the stride is large

Comparing Figure 15 and Figure 16, we observe that although both exhibit two significant 1-

dimensional homology classes and one 2-dimensional class when the stride is small, the persistence

of these features is less pronounced in Figure 15a. In particular, as the stride increases, the topologi-

cal signatures become weaker and gradually vanish; at stride 48, the 1-dimensional and 2-dimensional

classes are barely visible, indicating that an excessively large stride results in a severe loss of topological

information.

Next we use the L2 norm of the barcodes and the maximum persistence to to quantify how persistence

changes as the stride varies.

Table 4: The L2 norm of the barcodes(d = 6, τ = 14, coffe = Z2)

stride 2 3 4 5 6 7 8

∥ dgm1 ∥2 3.848 3.786 3.596 3.640 3.545 3.187 3.935

∥ dgm2 ∥2 2.273 2.047 1.873 1.688 1.437 1.523 1.191

Table 5: The maximum persistence(d = 6, τ = 14, coffe = Z2)

stride 2 3 4 5 6 7 8

max(dgm1) 2.949 2.316 2.348 2.373 1.928 1.914 2.383

max(dgm2) 2.231 1.986 1.809 1.598 1.326 1.421 0.996

From Tables 4 and 5, for strides s ∈ {2, 3, 4} the L2 norm and the maximum persistence in dimensions

1 and 2 vary only slightly. However, as the stride increases to s ∈ {6, 7, 8}, the H2 signal collapses—bars

in the 2D persistence diagram become negligible—so the diagram carries little information.

Coefficient field In giotto-tda, the default coefficient field for homology computation is Z2 = Z/2Z.

A natural question is whether the resulting persistence diagrams exhibit substantial changes when com-
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puted over different fields. To investigate this, using VerifyCoeffiDependence.py, we first consider the

periodic function

h(t) = cos(5t) + sin(7t), {ti =
i

20
}1001i=0

fix the stride parameter at 4 and choose the optimal embedding dimension 8 and time delay 16. Compute

the corresponding persistence diagrams under several choices of coefficient fields.

(a) coeff=5 (b) coeff=7 (c) coeff=11

Figure 17: The persistence diagram of a periodic function under different coefficient fields

For the periodic function, the persistence diagrams computed with different coefficient fields(e.g.,Z5,Z7,Z11)are

almost identical. In all cases, we observe one significant 1-class and one significant 2-class, which are

stable across different fields. This indicates that the topological features of periodic signals are robust

and their detection does not depend on the choice of the coefficient field.

Table 6: The L2 norm of the barcodes(d = 8, τ = 16, stride = 4)

characteristic 2 3 5 7 11 13 17

∥ dgm1 ∥2 3.721 3.721 3.704 3.721 3.721 3.721 3.721

∥ dgm2 ∥2 2.035 2.035 2.035 2.035 2.035 2.035 2.035

Table 7: The maximum persistence(d = 8, τ = 16, stride = 4)

characteristic 2 3 5 7 11 13 17

max(dgm1) 2.909 2.909 2.815 2.909 2.909 2.909 2.909

max(dgm2) 1.952 1.951 1.951 1.951 1.951 1.951 1.951

We find that except Z5, the other quantities are same under different coefficient field. Moreover, the

difference of different quantities under field Z2 and Z5 is very small:
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Table 8: The different quantities of the barcodes

∥ dgm1 ∥2 ∥ dgm1 ∥3 max(dgm1) ∥ dgm2 ∥2 ∥dgm2 ∥3 max(dgm2)

characteristic=2 3.720851 3.253383 2.909238 2.035045 1.954654 1.951770

characteristic=3 3.720851 3.253383 2.909238 2.035045 1.954654 1.951770

characteristic=5 3.703549 3.222506 2.815436 2.035045 1.954654 1.951770

characteristic=7 3.720851 3.253383 2.909238 2.035045 1.954654 1.951770

From Table 8, we find the 1th persistence diagram is independent of the choice of k, except k =

Z5. The 2th persistence diagram is independent of the choice of k. Recall Theorem2.2.2.: The

qth persistence diagram Dq(X; k) is independent of the choice of k if Hq(Xn, Xm;Z) is free for any

0 ≤ m < n ≤ N and Hq−1(Xn;Z) is free for any 0 ≤ n ≤ N . We consider the independence of dgm1

here. Since H0(Xn;Z) are always free, the only dangerous is the torsion of Hq(Xn, Xm;Z).

We can verify this claim computationally by implementing in Python the procedure specified by the

pseudocode below: construct the delay embedding, optionally subsample the embedded points, compute

Vietoris–Rips persistent homology over each prime field Zp(p ≤ 13), and compare the resulting H1

persistence diagrams against a baseline to detect any field dependence.

Algorithm 1: Field-dependence for H1 persistence

Input : Scalar time series y(1:N); Takens parameters (τ, d, stride); prime set

P = {2, 3, 5, 7, 11, 13}; tolerance ε > 0; user-chosen cap m ∈ N (maximum number of

embedded points used for homology).

Output: Set ∆ ⊆ P of primes where the H1 persistence diagram differs from the baseline, and a

per-prime summary.

(1) Takens embedding. Construct the delay embedding Xt ∈ Rd from y with time delay τ ,

dimension d, and stride. This yields a point cloud X = {Xt}nt=1 ⊂ Rd.

(2) Optional subsampling. If n > m, choose indices 1 ≤ t1 < · · · < tm ≤ n uniformly at

random without replacement, and set X̃ = {Xti}mi=1 ⊂ X; else set X̃ := X.

(3) Diagram on a field. For p ∈ P , compute the Vietoris–Rips persistent homology over Fp

on X̃ and extract the H1 diagram

dgm1,Fp
= {(b(p)i , d

(p)
i )}Np

i=1,

removing points with d
(p)
i = +∞, and sorting by (b, d) lexicographically.

(4) Baseline comparison. Fix a baseline p0 ∈ P (e.g. p0 = 2). For every p ∈ P \ {p0}:

1. If Np ̸= Np0
, record p ∈ ∆ with summary “bar count differs”.

2. Else compute δp = max
1≤i≤Np

∥(b(p)i , d
(p)
i )− (b

(p0)
i , d

(p0)
i )∥∞. If δp > ε, record p ∈ ∆ with summary

“same count, max diff = δp”.

Return ∆ and the associated summaries.

Using Algorithm 1, we find that—at the optimal embedding dimension and time delay—the 1-

dimensional persistence diagram is independent of the coefficient field k for all tested fields except
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k = Z5. For the time series

x1(t) = cos(5t) + sin(3t), ti =
i
20 , i = 0, . . . , 1001

the 1-dimensional persistence of the Takens embedding is independent of the choice of k (except k = Z3).

We verified this conclusion by comparing the L2- and L3-norms of the barcodes and the maximum

persistence across fields, which agree with the output of the code. However, for the time series

x2(t) = cos(5t) + sin(11t), ti =
i
20 , i = 0, . . . , 1001

the 1-dimensional persistence of the Takens embedding is independent of the choice of k.

It is worth noting that even a slight variation in the coefficients can alter the dependency behavior.

For instance, for

x2(t) = cos(5t) + sin(11t), ti =
i
20 , i = 0, . . . , 1001

the 1-dimensional persistence of the Takens embedding is independent of the choice of the coefficient

field. However, for

x3(t) = 0.6 cos(5t) + 0.8 sin(11t), ti =
i
20 , i = 0, . . . , 1001

the persistence becomes dependent on the coefficient field (with the special characteristic being 3). In

contrast, for

x4(t) =
1
2 cos(5t) +

√
3
2 sin(7t), ti =

i
20 , i = 0, . . . , 1001

the 1-dimensional persistence remains independent of the coefficient field. For nonperiodic function

g(t) = cos(t) + cos(πt), ti =
i
20 , i = 0, . . . , 1001,

fix the stride parameter at 4, and compute the corresponding persistence diagrams under several choices

of coefficient fields.

(a) coeff=5 (b) coeff=7 (c) coeff=11

Figure 18: The persistence diagram of a nonperiodic function under different coefficient fields

In the case of the nonperiodic function g(t) = cos(t) + cos(πt), the persistence diagrams still exhibit

prominent and relatively stable one- and two-dimensional homology classes, reflecting the quasi-periodic

structure of the signal. However, when we change the coefficient field(e.g.,Z5,Z7,Z11), the resulting

diagrams remain largely consistent. This indicates that, although nonperiodic, the signal gives rise
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to robust topological features whose detection is not sensitive to the choice of coefficient field. Using

Algorithm 1, we verified computationally that the 1-dimensional persistence diagram is independent of

the choice of coefficient field k (up to numerical tolerance).

Advantages and disadvantages It’s noticeable that the optimal time delay and embedding dimen-

sion depend on the stride, while the dependence of coefficient field seems unrelated to the stride.

Giotto-tda makes it easy to construct complexes and compute the corresponding persistence diagrams.

However, it becomes challenging to determine whether a function is periodic when the function has a

more complicated form (not simply cosine-like). Let’s consider the following periodic function:

h(t) = cos(5t) + sin(7t), {ti =
i

20
}1001i=0

use the search functions, the optimal embedding dimension is 8 and the time delay is 16. Let stride be

4.

Figure 19: The persistence diagram for a periodic function

In comparison with Figure 12, it is difficult to distinguish whether the corresponding function is

periodic.

3.4.2 SW1Pers

We now introduce a way to quantify the periodicity of sampled signals. To begin with, we associate to

each sampled signal S = [s1, s2, · · · , sJ ] a real-valued function fS by cubic spline interpolation, construct

its centered and normalized sliding-window point cloud XS . We denote the maximum persistence of a

1D-persistence diagram dgm by mp(dgm), and let

mp(dgm(XS))√
3

= Score(S).

be its periodicity score. In the original MATLAB implementation of SW1PerS, the score is defined as

Scorematlab = 1− mp(dgm(XS))√
3

.

This is an inverted version of the theoretical score defined. Hence, in the MATLAB code, smaller values

indicate stronger periodicity, while in the theoretical definition, larger values indicate stronger periodicity.

Both conventions are equivalent up to this inversion.
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In MATLAB, we set the Fourier degree N = 7, the coefficient fieldk = Z11, the embedding dimension

M = 2N + 1, and the time delay τ =
2π

(M + 1) · num clycles
.

Algorithm 2: SW1PerS: Periodicity Scoring Procedure for Time Series (Simplified Version)

Input: Time series s; number of cycles ncyc; feature type feature type.

Output: Score score ∈ [0, 1], where a higher value indicates stronger periodicity.

Step 1. Signal smoothing and preprocessing: Optionally perform exponential moving

average, moving average, or spline smoothing to remove noise and trends.

Step 2. Sliding window embedding: Map s into an (M+1)-dimensional point cloud

X = {x1, . . . ,xnp}, where each xi is a time-delay vector; then apply mean-centering and ℓ2

normalization.

Step 3. Post-processing of the point cloud: If mean-shift is enabled, smooth the point

cloud using cosine distance to further reduce noise.

Step 4. Persistent homology computation: Construct the Vietoris–Rips complex of X over

the coefficient field Z/pZ, and compute persistence intervals for H0 and H1.

Step 5. Periodicity scoring:

If H1 is empty, set score = 1; otherwise, depending on the chosen feature type, compute the

normalized persistence from the 1-dimensional intervals ∆ℓ = d
(1)
ℓ − b

(1)
ℓ to obtain the final

score.

return score

User Guide We illustrate how to use the provided MATLAB code to analyze the periodicity of time

series. Run the following command in the MATLAB Command Window:

Listing 1: Launching the main GUI (TDA TimeSeries GUI.m)

1 TDA_TimeSeries_GUI

The left panel of the interface serves as the input and parameter control area, while the right panel

is used for visualization and result display. The overall layout mainly consists of the following parts:

(1) Top-left: giotto-tda input panel

Responsible for importing time series data and setting embedding parameters, including the file

path, number of points, value range, maximum embedding dimension max dim, maximum time

delay max delay, and stride stride.

(2) Middle-left: SW1PerS parameter panel

Controls the options related to sliding-window embedding, signal smoothing, and periodicity scoring.

(3) Bottom-left: Operation panel

Provides three main buttons:

25



1. Generate Random Time Series: Creates a random signal and displays it in the upper-left

plot;

2. Compute Persistence Diagram (Takens→VR): Performs sliding-window embedding

and constructs the Vietoris–Rips complex, showing the combined H0/H1/H2 persistence

diagram in the upper-right plot;

3. SW1PerS Score: Computes the periodicity score for the current signal.

(4) Right panel: Displays the time series and the corresponding persistent homology results.

(5) Bottom status bar: Shows the current computation status (e.g., “Ready”, “Processing”, etc.).

After computing the SW1PerS score, the result is also displayed here.

Table 9: Description of input parameters for SW1PerS

Parameter Type Description

num cycles int Number of cycles to detect; for example, 2 means

detecting two complete periods.

feature type int (1–5) Type of feature extraction method; different values

correspond to different persistence-based scoring for-

mulas. Usually, 3 is recommended.

num points int Number of sampled points in the point cloud; larger

values capture more topological features.

movingavg win int Window size for moving average smoothing; a larger

value produces stronger smoothing.

allow trending bool Whether to allow mean-centering to remove linear

trends.

use meanshift bool Whether to enable mean-shift smoothing to reduce

noise perturbation.

ms epsilon float Radius parameter for mean-shift; defines the similar-

ity range of neighboring points.

expavg bool Whether to apply exponential moving average filter-

ing.

expavg alpha float Smoothing factor α for exponential moving average.

movingavg bool Whether to enable standard moving average filtering.

smoothspline bool Whether to apply smoothing spline fitting.

smoothspline sigma float Smoothing parameter for spline fitting, controlling

the smoothness level.

Users can perform topological analysis and periodicity scoring of time series according to the following

steps:
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Step 1: Import or Generate a Time Series

Click the “Browse” button next to the “TXT Path” field to select an existing time series file,

or click “1 Generate Random Time Series” to automatically create a random signal. The

generated signal will be displayed in the upper-left plot window.

Step 2: Set Embedding Parameters

In the “giotto-tda Input” panel, specify the number of points, range, maximum embedding

dimension max dim, maximum time delay max delay, and sliding step stride, which determine

the time-delay structure for the Takens embedding.

Step 3: Compute Persistent Homology

Click the “2 Compute Persistence Diagram (Takens→VR)” button to automatically perform

sliding-window embedding and Vietoris–Rips complex construction. The combined H0/H1/H2

persistence diagram will be shown in the upper-right plot.

Step 4: Adjust SW1PerS Parameters

In the “SW1PerS Input” panel, adjust parameters such as the number of cycles num cycles,

feature type feature type, and smoothing parameters (e.g., movingavg win). Optional filters

like exponential moving average, mean-shift, or spline smoothing can be enabled as needed. In

most cases, the default parameter settings work best.

Step 5: Compute the Periodicity Score

Click the “SW1PerS Score” button to calculate the periodicity score under the current signal

and parameter settings. The score ranges within [0, 1], where values closer to 1 indicate stronger

periodicity.

Step 6: View and Save Results

The output includes: (1) the time-series curve; (2) the corresponding persistence diagram; and

(3) the SW1PerS numerical score. Users can take screenshots or export the results for further

analysis or publication.

Example 3.4.3. Click Button 1 to generate a random time series consisting of 800 values within the

range [−7, 1]. Keep the parameters max dim=30,max tau=30, and stride=4.
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Figure 20: Example of random time series

We can make a preliminary observation that this random time series exhibits a certain degree of

periodicity. Next, let us verify this by clicking Button 2 to compute its persistence diagram.

Figure 21: Persistence Diagram

From Figure 21, we can observe that the corresponding persistence diagram shows a prominent one-

dimensional homology class, while no significant two-dimensional homology classes appear. This indicates

that the time series possesses noticeable periodicity. By clicking Button 3, the computed SW1PerS score

is 0.7406, which confirms that the time series exhibits a very strong periodicity, validating our initial

hypothesis.

4 Application to knot theory

Persistence homology can also be used in knot theory. For example, we consider that does the topology

of a random knot influence how it ‘occupies’ space. Similar ideas have previously been considered often

with the main goal of understanding the mechanism of DNA.
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We call a knot K in the image of a PL embedding of S1 in S3. Use the notation ℓ(K) to denote the

length of a knot K. In this section, we follow [CM22].

We denote by vt(K) the metric neighborhood of K of radius t > 0. The injectivity radius IR(K)

is the supremum among all radii t ≥ 0 for which the tubular neighborhood vt(K) is regular. In other

words, IR(K) is the smallest value of the neighborhood’s radius such that vt(K) comes into contact with

itself. We use RS(K) to denote the radius of the circumscribing sphere of K. It’s easy to see that IR(K)

depends on the embedding way of the knot K, so it’s not an invariant under the equivalence class of

knot type. However, for the length over diameter ratio of K:

L/D(K) =
ℓ(K)

2IR(K)
.

We use K to denote the knot type of K, then infK∈KL/D(K) is a knot invariant. We denote that an

ideal knot is an embedded knot that minimizes the L/D ratio within its knot types.

4.1 Correlation

To obtain random polygonal knots used in this study, we employed the Topoly library to generate

equilateral random closed polygons of a prescribed number of vertices. Specifically, we used the func-

tion topoly.generate loop(N, 1, bond length) to sample random loops in three–dimensional space,

where each edge has fixed length and the closure condition is automatically enforced by Topoly.

For each parameter setting (e.g., N = 40), we generated multiple independent realizations using the

following command:

1 python GenRandomKnot.py --length 40 --count 500

Each polygonal chain was saved in .xyz format under the output coordinate/ directory, with co-

ordinates centered and without any topological filtering or classification.

Hence, the resulting dataset consists of 500 equilateral random polygonal loops of length N = 40,

representing unbiased random knots generated purely by stochastic geometric sampling.

4.1.1 Random PL knots

Generation and Calculation The random polygonal knots were generated using GenRandomKnot.py

For each prescribed length ranging from 5 to 100 (in increments of 5), we generated 500 random equilateral

polygonal knots.

For each knot, several geometric and topological quantities were computed, including the volume of

its minimal enclosing sphere, the volume of its convex hull, the total curvature, torsion, and radius of

gyration. We then computed the persistence barcodes corresponding to the Alpha filtrations associated

with the knots using the efficient library gudhi.

To approximate the topology of the neighbourhoods of the generated embeddings as closely as pos-

sible, we interpolated each unit segment of the polygonal embedding with ten equidistant points and

computed the Alpha filtration on the resulting dense point cloud. Using ten points per linear segment
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provides a sufficiently fine sampling of each embedding, yielding an Alpha filtration that closely approx-

imates the growth of the knot’s tubular neighbourhood for most cases. From the resulting persistence

diagrams, we extracted the maximum bar lengths in dimensions 1 and 2, denoted by H1,max and H2,max,

as well as the integrals of the first and second Betti curves, denoted by I1 and I2, respectively. All these

quantities were calculated using ComputeQuantities.py.

The average crossing number (ACN) is computed by ACN.py, using pyknotid.

We then used the Pearson correlation coefficient to quantify the relationships between the geometric

structures of the embeddings and the quantities derived from persistent homology, and plotted the

corresponding correlation figures.

Result It can be observed that the correlations of H1,max with the curvature, and of I1 with the radius

of gyration, as well as with the volumes of the convex hull and the circumscribing sphere, depend on

the length of the knots. In contrast, the correlations between other geometric and topological quantities

appear to be independent of knot length.

Figure 22: H1 max vs curvature Figure 23: I1 vs radius of gyration

Figure 24: I1 vs Volume of sphere Figure 25: I1 vs Volume of convex hull

However, we may observe that H1,max is strongly positively correlated with the radius of gyration.
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This can be explained by the fact that a long H1 bar in the persistence diagram indicates a simpler

topological structure, and thus the knot tends to be more spatially extended, resulting in a larger radius

of gyration. By contrast, when I1 is relatively large, the knot is topologically more complex, exhibiting

a greater number of H1 bars; consequently, the embedding becomes more compact and the radius of

gyration is smaller. Therefore, I1 is negatively correlated with the radius of gyration. Similar reasoning

can be applied to interpret the sign and magnitude of the correlation coefficients for other pairs of

quantities.

Figure 26: H1 max vs radius of gyration Figure 27: I1 vs radius of gyration

Unfortunately, the correlations between the second-dimensional topological quantities and the geo-

metric structures of the embeddings are generally weak.

(a) H2 max vs radius of gyration (b) H2 max vs torsion (c) H2 max vs Vol of convex hull

Figure 28: H2 max vs some geometric structures
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(a) I2 vs radius of gyration (b) I2 vs torsion (c) I2 vs Vol of convex hull

Figure 29: I2 vs some geometric structures

4.1.2 Specifc PL knots

We aimed to study the correlations between the quantities derived from persistent homology and the

geometric descriptors of specific types of knots.

Generation and Calculation To generate knots of prescribed types, we first produced millions of

random polygonal knots using Topoly, and then classified them according to their Jones and Alexander

polynomials, using GenSpecificKnot.py.

Since these two invariants are complete for knots with relatively small crossing numbers, we restricted

our attention to simpler knot types, including the unknot (01), the trefoil (31), the figure-eight knot (41),

the torus knot K5,2 (51), and the knots 52, 61, 62, and 63.

We display the values of the average integral for the various knot types as a function of length, using

Compute AvgBetti Stats.py.

Result In the first two figures, the relationship appears to be almost perfectly linear.

Figure 30: average integral(dim1) Figure 31: average integral(dim2)

However, the average maximum Betti numbers in dimensions 1 and 2 show a clear approximate trend,

rather than an exact linear dependence.
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Figure 32: average of maxima Betti number(dim1) Figure 33: average of maxima Betti number(dim2)

4.2 Deviation

We may consider that for a given knot, ‘how much’ it deviates from being ideal.

Persistent homology Persistent homology can be effectively used to compute IR. To be more pre-

cisely, given a knot K, for small enough t, the homology of the embedded neighborhood is of rank 1 in

dimension 1. The topology changes as soon as we get to t = IR(K), where the rank of the homology of

vt(K) increases by one. Note that for values of t greater than RS(K), the radius of the circumscribing

sphere, H1(vt(K)) vanishes, and the only non-trivial homology is of rank 1 in degree 0.

We use the alpha filtration on a point cloud P (K) constructed from a PL knot embedding K to

approximate its metric neighborhood for growing radii, and define a Betti curve on the rank of the

homology of the alpha filtration on a point cloud. We compute the integrals of such Betti curves∫∞
0

β1(P (K))dt by summing the lengths of all bars in the corresponding barcode, denoted by I(K).

Since β1(vt(K)) vanishes for t ≥ RS(K), I(K) is well-defined.

Table 10: Notation

Symbol Meaning

ℓ(K) length of K

IR(K) injectivity radius of K

vt(K) metric neighborhood of K of radius t > 0

RS(K) radius of the circumscribing sphere of K

I(K) the interval of Betti curves

L/D(K) the length over diameter ratio of K

We can see that for two knots K1,K2 with the same length, if IR(K1) ≤ IR(K1), then L/D(K1) ≤

L/D(K2), that is, K1 deviates less from being ideal.
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Quantification We aim to quantify the deviation from the ideal configuration. For knots of fixed

length, we observe that a larger injectivity radius corresponds to a smaller ratio, indicating that the

embedding is closer to the ideal knot. It is important to note that our proposed measure captures the

deviation of a given embedding from all possible ideal embeddings, rather than restricting the comparison

to those within the same knot type.

Denote by S(K) = max{t ≥ 0 : β1(K) ̸= 0}, and let ε > 0 be a small and real number. Call

fR,ε : [0, R] → R≥0

the unique function by considering the linear function taking value 1 on 0, and value 0 on R − ε, and

defined to be identically 0 after R− ε. Then define

δε(K) =
1

S(K)

∫ S(K)

0

fS(K),ε(t) ·max{β1(K)(t)− 1, 0}dt.

We claim that the δε(K) defines a sensible quantification of the ’distance’ between the given embedding

and the ideal ones. For sufficiently small choice of the ε threshold, if 0 < δε(K1) < δε(K2), K1 deviates

less to the ideal ones than K2.

Example 4.2.1. We input 100 fixed length PL knots with specific types, generated by GenSpecifcKnot.py,

plot their Betti number curves and calculate δε(K), by deviation.py.

Table 11 lists several representative values of the deviation measure δε(K) computed for embeddings

of the 52 knot with length N = 50, using ε = 0.02 and min pers = 0.05.

Table 11: Quantified deviation values δε(K) for the 5 2 knot (N = 50, ε = 0.02, min pers = 0.05).

Knot sample Label δε(K)

1 5 2 N50 00001 0.3970

3 5 2 N50 00003 0.6683

4 5 2 N50 00004 0.0153

6 5 2 N50 00006 0.2279

7 5 2 N50 00007 0.4221

10 5 2 N50 00010 0.0405

(a) 5 2 N50 00001 (b) 5 2 N50 00003 (c) 5 2 N50 00004

Figure 34: Samples 1, 3, 4
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(a) 5 2 N50 00006 (b) 5 2 N50 00007 (c) Knot-5 2 N50 00010

Figure 35: Samples 6, 7, 10

Although sample 7 attains the largest injectivity radius within the knot type 5 2—hence deviates

least from the ideal knot in that class—sample 10 achieves the smallest δε overall, indicating the least

deviation from ideal knots across all knot types.
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