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1 Introduction
In this note, we try to shed some light on the relationships between the Hopf
invariant, Kervaire invariant, and Whitehead square. More specifically, we prove
two classical results (theorems 2.1 and 3.1) in a way that seems more transparent
(at least to the author) than what is found in the literature. No new results are
claimed, only a different exposition. In addition to the references cited, most of
the ideas in section 3 come from discussions with Michael Hopkins, for which the
author is grateful.

Notation. We will use the standard notation ιn ∈ πn(S n) for the class of the iden-
tity map, and by Whitehead square we mean the Whitehead product [ιn, ιn] ∈
π2n−1(S n).

2 Hopf invariant and Whitehead square
In this section we tackle the Hopf invariant problem as a warm-up to the Kervaire
invariant problem.

Theorem 2.1. For n ≥ 2, there is an element of Hopf invariant one in π2n−1(S n)
iff the Whitehead square [ιn−1, ιn−1] is zero.

Here is the more streamlined proof which uses facts about the EHP sequence
([7], section XII.2). It is essentially Whitehead’s proof in [6] (claim 3.49, proved
at the end of section 7). First recall what the EHP long exact sequence looks like:

π3m−2(S m)→ · · ·

· · · → πq(S m)
E
→ πq+1(S m+1)

H
→ πq+1(S 2m+1)

P
→ πq−1(S m)→ · · ·
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Proof. Assume n ≥ 3. The relevant part of the EHP sequence is

· · · → π2n−2(S n−1)
E
→ π2n−1(S n)

H
→ π2n−1(S 2n−1)

P
→ π2n−3(S n−1)

E
→ π2n−2(S n)→ · · ·

From this we get the following chain of equivalent statements.
There is an element of Hopf invariant one in π2n−1(S n)
iff H : π2n−1(S n)→ π2n−1(S 2n−1) is surjective
iff P : π2n−1(S 2n−1) � Z→ π2n−3(S n−1) is zero
iff P(ι2n−1) = [ιn−1, ιn−1] is zero.
Alternate to this last line: iff ker

(
E : π2n−3(S n−1)→ π2n−2(S n)

)
is zero. But

this kernel is generated by [ιn−1, ιn−1]. �

Remark 2.2. Perhaps With enough care, we can extract more information from
the EHP sequence to cover the case n = 2. Alternately, one easily checks that
[ι1, ι1] is zero and that the Hopf map η ∈ π3(S 2) has Hopf invariant 1.

Now we give a slightly different proof, reformulating the problem in terms
of cohomological properties. The purpose is to use ideas that can be generalized
or adapted to the Kervaire invariant problem. First, we present the theorem in a
different way.

Theorem 2.3. For n ≥ 2, the following are equivalent.

1. There is an element of Hopf invariant one in π2n−1(S n).

2. There exists a two-cell complex K with an m-cell, an (m + n)-cell, and

Sqn : Hm(K;Z/2)→ Hm+n(K;Z/2)

is non-zero, i.e. is an iso Z/2
�
→ Z/2.

3. The Whitehead square [ιn−1, ιn−1] is zero.

For a thorough overview of the Hopf invariant problem, see section 1.1 of
Adams’s paper [1].

Remark 2.4. For n = 1, part (3) doesn’t make sense, but the statement still holds
in that (1) and (2) are both true: 2ι ∈ π1(S 1) has Hopf invariant 1 and its mapping
coneRP2 satisfies (2). We exclude the case n = 1 from now on, since the arguments
don’t work for it (and we’ve just settled it!).

2



Remark 2.5. Part (1) is equivalent to there being an element of odd Hopf invari-
ant. If n is even, then all elements of π2n−1(S n) have Hopf invariant zero, and if
n is odd, there are elements of any even Hopf invariant. In fact, [ιn, ιn] has Hopf
invariant ±2.

Proof. (1 ⇒ 2) If f ∈ π2n−1(S n) has Hopf invariant 1, then its mapping cone C f

satisfies (2). Indeed, for some generators u ∈ Hn(C f ;Z) and v ∈ H2n(C f ;Z), we
have u2 = v. Reducing mod 2, we obtain:

Sqn(u) = u2
= v , 0.

(2 ⇒ 1) Let f : S m+n−1 → S m be the attaching map of the (m + n)-cell
of K. Let’s desuspend K (or equivalently f ) to produce the map we’re looking
for. Going to the bottom of the stable range, we can uniquely desuspend f to
f : S 2n → S n+1. By Freudenthal, we can desuspend once more (non-uniquely) to
f̃ : S 2n−1 → S n, since that’s the critical dimension where suspension is surjective
but in general not an iso. Since Steenrod squares are stable operations, we have
an iso

Sqn : Hn(C f̃ ;Z/2)
�
→ H2n(C f̃ ;Z/2)

Hence f̃ has odd Hopf invariant.
(2 ⇒ 3) Let K be our complex and f the attaching map as above. By desus-

pending, we can assume m = n and f : S 2n−1 → S n has Hopf invariant 1 (so really,
we’re showing 1⇒ 3). We know f does not desuspend further, since its mapping
cone supports a Sqn, but more is true. Let’s see why it doesn’t desuspend, i.e. look
at the adjoint map f ′:

S 2n−2

@ ##G
G

G
G

G
f ′ // ΩS n H // ΩS 2n−1

S n−1

;;xxxxxxxxx

Saying that f has Hopf invariant 1 is saying that the top composite is adjoint to
the identity of S 2n−1. Here, the Hopf invariant is equal to the “degree” of that
composite, i.e. its effect on H2n−2(−;Z) (or H2n−2(−;Z)). Up to homotopy, f ′

factors through the (2n − 2)-skeleton of ΩS n, which is S n−1 ∪[ι,ι] e2n−2. Hence we
get:

S 2n−2
f ′ // S n−1 ∪[ι,ι] e2n−2 collapse// S 2n−2

S n−1

incl

OO
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and the top composite has degree 1 i.e. is an equivalence. Hence the mapping
cone S n−1 ∪[ι,ι] e2n−2 is actually a wedge 1, so the attaching map [ιn−1, ιn−1] is null.

(3 ⇒ 1) Do the steps in reverse. If [ιn−1, ιn−1] is zero, use the summand inclu-
sion

S 2n−2 ↪→ S n−1 ∪[ι,ι] e2n−2 → ΩS n

and take the adjoint map:
S 2n−1 → S n.

As remarked above, this map has Hopf invariant 1. �

In this proof, we haven’t used the reformulation in terms of cohomological proper-
ties (part 2) in an essential way. However, the analogous strategy for the Kervaire
invariant problem will be more useful.

3 Kervaire invariant and Whitehead square
Recall the strong form of the Kervaire invariant problem [4]: Is there an element
θ j ∈ π

S
2 j+1−2 of Kervaire invariant 1 and of order 2, i.e. such that 2θ j = 0? This

problem is related to the Whitehead square.

Notation. From now on, write N for 2 j+1 − 2, and j ≥ 1 throughout.

Theorem 3.1. There is a Kervaire class θ j of order 2 iff [ιN+1, ιN+1] is divisible by
2, i.e. is equal to 2α for some element α ∈ π2N+1(S N+1).

More precisely:

• (⇒) desuspending a Kervaire class θ j of order 2 yields an α which is half
the Whitehead square;

• (⇐) If α is non-zero, then stably it is a Kervaire class θ j of order 2. (We
exclude the cases α = 0 by hand.)

The theorem is proved in [4], corollary 3.2.

1Indeed, assuming n ≥ 3, the induced map S n−1 ∨ S 2n−2 → S n−1 ∪[ι,ι] e2n−2 is a homology
iso between simply-connected CW-complexes, hence a homotopy equivalence. A more subtle
argument could cover the case n = 2, but as mentioned in (2.2), we can treat it separately and
assume n ≥ 3.
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Remark 3.2. Though it’s not clear in the statement, theorem 3.1 holds in other
dimensions as well, in the sense that the Whitehead square [ι2m+1, ι2m+1] cannot be
halved unless 2m + 2 is a power of 2. We already know it is zero iff 2m + 2 is 2,4,
or 8.

To prove theorem 3.1, we reformulate the strong Kervaire invariant problem
in terms of cohomological properties, like we did for the Hopf invariant problem
in section 2.

Theorem 3.3. There is a Kervaire class θ j of order 2 iff there exists a 3-cell com-
plex (spectrum) with the following mod 2 cohomology:

◦

◦

Sq1

◦

Sq2 j+1

i.e. the three non-zero cohomology groups are Z/2 and the indicated Steenrod
squares are isomorphisms.

More precisely, the attaching map from the middle cell to the bottom cell is the
Kervaire class. For a detailed exposition of 3.3, see notes by Haynes Miller [5].
Let us only mention the key ingredient: in the 2-local Adams spectral sequence
for the sphere, there is a differential

d2(h j+1) = h0h2
j

when j ≥ 3. Now we prove 3.1.

Proof. (⇒) Assume there is a Kervaire class θ j ∈ π
S
2 j+1−2 of order 2. This means

the map θ j extends to a Moore spectrum and we get a map between complexes:

◦

2

◦

θ j

��1
11

11
11

11
11

11

◦
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Taking its mapping cone, the resulting 3-cell complex has the following cohomol-
ogy:

◦

◦

Sq1

◦

Sq2 j+1

(1)

by the more precise formulation of theorem 3.3. Now let’s try to realize this
complex as a space, which is where the Whitehead square will appear. Going to
the bottom of the stable range, we have:

θ j ∈ π
S
2 j+1−2 = π2 j+2−2(S 2 j+1

)

so we get a map between spaces:

2 j+2 − 1 ◦

2

2 j+2 − 2 ◦

θ j

��0
00

00
00

00
00

00
0

◦ 2 j+1

(2)

and its mapping cone is a space whose stabilization is the 3-cell complex above,
with similar cohomology:

◦ 2 j+2

◦

Sq1

2 j+2 − 1

◦

Sq2 j+1

2 j+1
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Observe that we can’t desuspend further since the bottom class in dimension 2 j+1

supports a Sq2 j+1
. Let’s identify the obstruction to desuspending, by looking at the

adjoint map
θ′j : M → ΩS 2 j+1

= ΩΣS 2 j+1−1

where the left-hand side is still a Moore space but shifted down one dimension.
Remembering the cell structure of the right-hand side, we can write this schemat-
ically as

...

2 j+2 − 2 ◦

2

θ′j //

@

��2
2

2
2

2
2

2
2

2
2

2
2 ◦

[ι,ι]

2 j+2 − 2

2 j+2 − 3 ◦

θ̃ j

��=
==

==
==

==
==

==
==

==

◦ 2 j+1 − 1

The restriction of θ′j to the bottom cell on the LHS lands into the bottom cell in
the RHS, and that factorization is a desuspension θ̃ j of θ j (which we knew existed,
by Freudenthal). The fact that θ̃ j does not extend to the Moore space means 2θ̃ j

is non-zero. However, after including the bottom cell S 2 j+1−1 into ΩΣS 2 j+1−1, the
map

S 2 j+2−3 θ̃ j
−→ S 2 j+1−1 ↪→ ΩΣS 2 j+1−1

does extend to the Moore space, hence twice it is zero. But this composite is
precisely E(θ̃ j), where

E : π2 j+2−3(S 2 j+1−1)→ π2 j+2−2(S 2 j+1
)

is the suspension map. Thus we have 2E(θ̃ j) = E(2θ̃ j) = 0, i.e. 2θ̃ j ∈ ker E � Z/2,
generated by [ι, ι] (see [6], claim 3.49). We conclude [ι, ι] = 2θ̃ j.

(⇐) Recall that [ιN+1, ιN+1] is zero iff j is 0, 1, or 2. If j is 1 or 2, then there
are Kervaire classes θ1 = η2 and θ2 = ν2 of order 2, where η ∈ πS

1 and ν ∈ πS
3 are

the Hopf maps. Now assume j ≥ 3 and [ιN+1, ιN+1] = 2α for some α (and 2α is
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not zero). Stably, we have 2α = 0, so there is a map of spectra:

◦

2

◦

α

��1
11

11
11

11
11

11

◦

We want to show that its mapping cone has the desired cohomology (1). Then
theorem 3.3 would imply that α is a Kervaire class (of order 2).

Going to the bottom of the stable range, we realize this diagram as a map of
spaces:

2N + 3 ◦

2

2N + 2 ◦

Σα

��0
00

00
00

00
00

00

◦ N + 2

Following an argument of Cohen ([2], proposition 11.4, (3) is equivalent to (4)),
it suffices to check that the adjoint map

(Σα)′ : M(2N + 1)→ ΩS N+2

is non-zero in mod 2 homology (or cohomology). As above, write the map
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schematically as

...
...

2N + 2 ◦

2

(Σα)′ //

@

��3
3

3
3

3
3

3
3

3
3

3
3 ◦

[ι,ι]

collapse
◦ 2N + 2

2N + 1 ◦

α

��>
>>

>>
>>

>>
>>

>>
>>

>

◦ N + 1

The non-existent arrow comes from the fact that 2α is non-zero. In this range,
the cofiber sequence given by collapsing the bottom cell of ΩS N+2 acts as a fiber
sequence, so the non-existent arrow tells us the composite is non-null. By the
Hopf-Whitney theorem, (pointed) homotopy classes of maps from M(2N + 1) to
ΩS N+2/S N+1 are parametrized by

H2N+2
(
M(2N + 1); π2N+2(ΩS N+2/S N+1)

)
= H2N+2 (M(2N + 1);Z)
=Z/2

and hence the map (Σα)′ is non-zero on H2N+2(−;Z/2). �

4 Conclusion
We presented the fact that the strong Kervaire invariant problem is equivalent
to the divisibility of the Whitehead square by 2. In fact, the Whitehead square
is a classic object of study in homotopy theory and is related to various other
problems. For more information, see for example [2], sections 11 and 12, or [3],
section 9.
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