
Realization problems in algebraic topology

Martin Frankland

University of Western Ontario

mfrankla@uwo.ca

Wayne State University
Mathematics Colloquium

November 3, 2014

Martin Frankland (UWO) Realization problems Wayne State 2014 1 / 41



Outline

1 Background

2 Obstruction theory

3 Quillen cohomology

4 Classification results

5 Realizability results

6 Related work

Martin Frankland (UWO) Realization problems Wayne State 2014 2 / 41



Algebraic invariants

Topology { Algebra

Let X be a space.

H∗(X ;Fp) is an unstable algebra over the Steenrod algebra A.
H∗(X ;Fp) is an unstable coalgebra over A.
π∗X is a Π-algebra, i.e., graded group with action of primary
homotopy operations.

Let X be a spectrum and R a ring spectrum, e.g., R = HFp.

R∗X is an R∗R-module.
R∗X is an R∗R-comodule.
π∗X is a πS

∗ -module, where πS
∗ = π∗(S) is the stable homotopy ring.
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Π-algebras

Π-algebra ≈ graded group with additional structure which looks like the
homotopy groups of a space.

Definition
Π := full subcategory of the homotopy category of pointed spaces
consisting of finite wedges of spheres

∨
Sni , ni ≥ 1.

Π-algebra := product-preserving functor A : Πop → Set∗.

Example
π∗X = [−,X ]∗ for a pointed space X .

Notation
Write An := A(Sn).
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Realizations

Realization Problem
Given a Π-algebra A, is there a space X satisfying π∗X ' A as
Π-algebras?

Classification Problem
If A is realizable, can we classify all realizations?
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Some examples

Simplest Π-algebras: Only one non-trivial group An.
Answer: Always realizable (uniquely), by an Eilenberg-Maclane
space K (An,n).
Next simplest case: Only 2 non-trivial groups An,An+k . Assume
n ≥ 2.
Answer: Not always realizable...

Warm-up
Case k = 1: Always realizable (classic).
Case k = 2: Always realizable (a bit of work).
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Classify?

Naive: List of realizations = π0TM(A).
Better: Moduli space TM(A) of realizations.

Remark
Relative moduli space TM′(A): Realizations X with identification
π∗X ' A. Have fiber sequence:

TM
′(A)

forget
−−−−→ TM(A)→ B Aut(A)

and TM(A) ' TM′(A)h Aut(A).
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Moduli Space

TM(A) = nerve of the category with
Objects: Realizations X .
Morphisms: Weak equivalences X → X ′.

TM(A) '
∐
〈X 〉

B Auth(X ).
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Building TM(A)

Blanc–Dwyer–Goerss (2004): Obstruction theory for building
TM(A).
Successive approximations TMn(A), 0 ≤ n ≤ ∞.

TM

TM∞

∼

77

∼
// holimn TMn

��
...

��
TM1

��
TM0
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Building TM(A)

TM0(A) ' B Aut(A).
TMn(A)→ TMn−1(A) related by a fiber square.
For Y in TMn−1 andM(Y ) ⊆ TMn−1 its component, we have:

Hn+1(A; ΩnA)→ TMn(A)Y →M(Y )

where fiber = Quillen cohomology “space”.

Obstruction to lifting ∈ HQn+2(A; ΩnA)

Lifts classified by π0(fiber) = HQn+1(A; ΩnA).

Problem
Can we compute the obstruction groups?
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Beck modules

Definition
Let C be an algebraic category and X an object in C. A (Beck) module
over X is an abelian group object in the slice category over X :

(C/X )ab.

Example
C = Groups. A Beck module over G is a split extension:

G nM � G.

Note: (g,m)(g′,m′) = (gg′,m + gm′).
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Beck modules (cont’d)

Example
C = Commutative rings. A Beck module over R is a square-zero
extension:

R ⊕M � R.

Note: (r ,m)(r ′,m′) = (rr ′, rm′ + mr ′).
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Quillen cohomology

Definition
Quillen cohomology of X with coefficients in a module M is:

HQ∗(X ; M) := π∗Hom(C•,M)

where C•
∼
−→ X is a cofibrant replacement in sC, the category of

simplicial objects in C.

Example
For C = Commutative rings, this is the classic André-Quillen
cohomology.
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Truncated Π-algebras

Definition
A Π-algebra A is n-truncated if it satisfies Ai = ∗ for all i > n.

Postnikov truncation Pn : ΠAlg→ ΠAlgn
1.

Pn is left adjoint to inclusion ι : ΠAlgn
1 → ΠAlg.

Unit map ηA : A→ PnA.
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Truncation Isomorphism

Theorem (F.)
Let A be a Π-algebra and N a module over A which is n-truncated.
Then the natural comparison map

HQ∗ΠAlgn
1
(PnA; N)

�
−→ HQ∗ΠAlg(A; N).

induced by the Postnikov truncation functor Pn is an isomorphism.
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Highly connected Π-algebras

Definition
A Π-algebra A is n-connected if it satisfies Ai = ∗ for all i ≤ n.

n-connected cover Cn : ΠAlg→ ΠAlg∞n+1.
Cn is right adjoint to inclusion ι : ΠAlg∞n+1 → ΠAlg.
Counit map εA : CnA→ A.
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Connected Cover Isomorphism

Theorem (F.)
Let B be an n-connected Π-algebra and M a module over ιB. Then the
natural comparison map

HQ∗ΠAlg(ιB; M)
�
−→ HQ∗ΠAlg∞n+1

(B; CnM)

induced by the connected cover functor Cn is an isomorphism.

Remark
More general comparison theorem for adjunctions F : C� D : G
between algebraic categories.
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2-stage Example

Take Ai = 0 for i , 1,n.
A is realizable, e.g., Borel construction

BA1(An,n) := EA1 ×A1 K (An,n)→ BA1.

Theorem

TM(A) ' MapBA1
(BA1,BA1(An,n + 1))h Aut(A) .

Upshot
Classification by a k -invariant is promoted to a moduli statement: The
moduli space of realizations is the mapping space where the
k -invariant lives.
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2-stage Example (cont’d)

Corollary

π0TM(A) ' Hn+1(A1; An)/Aut(A)

For any choice of basepoint in TM(A), we have:

πiTM(A) '


0, i > n
Der(A1,An), i = n
Hn+1−i(A1; An), 2 ≤ i < n

and π1TM(A) is an extension by Hn(A1; An) of a subgroup of
Aut(A) corresponding to realizable automorphisms.
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Stable 2-types

Take Ai = 0 for i , n,n + 1, for some n ≥ 2.
A is realizable.

Theorem
TM

′(A) is connected and its homotopy groups are:

πiTM
′(A) '


0, i ≥ 3
HomZ(An,An+1), i = 2
ExtZ(An,An+1), i = 1.
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Stable 2-types (cont’d)

Corollary
TM(A) ' TM′(A)h Aut(A) is connected; its homotopy groups are:

πiTM(A) '

0, i ≥ 3
HomZ(An,An+1) i = 2

and π1TM(A) is an extension of Aut(A) by ExtZ(An,An+1). In
particular, all automorphisms of A are realizable.

Remark
Few higher automorphisms.
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Homotopy operation functors

A Π-algebra A concentrated in degrees n,n + 1, . . . ,n + k can be
described inductively by abelian groups and structure maps:

An

η1 : Γ1
n(An)→ An+1

η2 : Γ2
n(An, η1)→ An+2

. . .

ηk : Γk
n(πn, η1, . . . , ηk−1)→ An+k .

Example

Γ1
n(An) =

Γ(An) for n = 2
An ⊗Z Z/2 for n ≥ 3.

and η1 : Γ1
n(An)→ An+1 is precomposition by the Hopf map

η : Sn+1 → Sn.
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2-stage case

A 2-stage Π-algebra A consists of the data

An

ηk : Γ̃k
n(An) := Γk

n(An,0, . . . ,0)→ An+k .

Example

Γ̃2
3(A3) = Λ(A3) = A3 ⊗ A3/(a ⊗ a), the exterior square, and
η2 : Λ(A3)→ A5 encodes the Whitehead product.
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2-stage case (cont’d)

Notation
Qk ,n := indecomposables of πn+k (Sn)
In the stable range k ≤ n − 2, we have Qk ,n = QS

k , where QS
∗ :=

indecomposables of the graded ring πS
∗ .

Proposition
Assuming k , n − 1, we have

Γ̃k
n(An) = An ⊗Z Qk ,n.

In particular, in the stable range we have Γ̃k
n(An) = An ⊗Z QS

k .
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Criterion for realizability

Theorem (Baues,F.)

The 2-stage Π-algebra given by ηk : Γ̃k
n(An)→ An+k is realizable if and

only if the map ηk factors through the map γK (An,n):

Hn+k+1K (An,n)

��
Γ̃k

n(An)

γK (An ,n)
77

ηk
// An+k .
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Criterion for realizability (cont’d)

Corollary
Fix n ≥ 2 and k ≥ 1. Then an abelian group An has the property that
“every Π-algebra concentrated in degrees n,n + k with prescribed
group An is realizable” if and only if the map

γK (An,n) : Γ̃k
n(An)→ Hn+k+1K (An,n)

is split injective.
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Non-realizable example

First few stable homotopy groups of spheres πS
∗ and their

indecomposables QS
∗ .

k πS
k QS

k
0 Z Z

1 Z/2 〈η〉 Z/2 〈η〉
2 Z/2

〈
η2
〉

0
3 Z/24 ' Z/8 〈ν〉 ⊕ Z/3 〈α〉 Z/12 ' Z/4 〈ν〉 ⊕ Z/3 〈α〉
4 0 0
5 0 0
6 Z/2

〈
ν2
〉

0
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Non-realizable example (cont’d)

Look at stem k = 3.

Proposition
Let n ≥ 5. The (stable) Π-algebra concentrated in degrees n,n + 3
given by An = Z and An+3 = Z/4 with structure map

η3 : An ⊗Z QS
3 � Z/4 〈ν〉 ⊕ Z/3 〈α〉� Z/4

sending ν to 1 is not realizable.

Proof.
HZ4HZ ' Z/6
γ : QS

3 ' Z/4 〈ν〉 ⊕ Z/3 〈α〉 → HZ4HZ sends 2ν to 0. �
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Infinite families

Look at Greek letter elements in the stable homotopy groups of
spheres πS

∗ .

Proposition
Assume p ≥ 3.

1 The first alpha element α1 ∈ QS
2(p−1)−1 is not in the kernel of γ.

2 Higher alpha elements αi ∈ QS
2i(p−1)−1 for i > 1 are in the kernel of

γ.
3 Generalized alpha elements αi/j ∈ QS

∗ for j > 1 satisfy pαi/j , 0 but
γ(pαi/j) = 0.

Proof.
(3) αi/j has order pj in πS

∗ .
The p-torsion in HZ∗HZ is all of order p (and not p2, p3, etc.). �
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Infinite families (cont’d)

Upshot
This provides infinite families of non-realizable 2-stage (stable)
Π-algebras.
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Goerss-Hopkins obstruction theory (2004)

Let E be a homotopy commutative ring spectrum.
X an E∞ ring spectrum { E∗X is an E∗-algebra in
E∗E-comodules.
Realizations of E∗E correspond to E∞ ring structures on E .
Applications to chromatic homotopy theory. Morava E-theory En
admits a unique E∞ ring structure.
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Steenrod problem and variations

Realizing unstable algebras over the Steenrod algebra as
H∗(X ;Fp) for some space X .
Realizing unstable coalgebras over the Steenrod algebra as
H∗(X ;Fp) for some space X . [Blanc (2001),
Biedermann–Raptis–Stelzer (2014)]
Stable analogues.
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Power operations

Let E be an H∞ ring spectrum.
X an H∞ E-algebra { π∗X is an E∗-algebra with power operations.
E = HFp: Dyer-Lashof operations, e.g., acting on the mod p
homology of an infinite loop space.
E = K∧p : θ-algebras over the p-adic integers Zp.
E = Morava E-theory En: power operations have been studied.
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Higher order operations

X a space or spectrum { H∗(X ;Fp) a module over the Steenrod
algebra (primary cohomology operations)
+ secondary operations
+ tertiary operations
+ etc.

With all higher order cohomology operations, we can recover the
p-type of X .
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Thank you!
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