
Eilenberg–MacLane mapping algebras and higher
distributivity up to homotopy

Hans-Joachim Baues1 Martin Frankland*2

1Max-Planck-Institut für Mathematik

2Universität Osnabrück

Homotopy Theory: Tools and Applications
University of Illinois at Urbana-Champaign

July 19, 2017

Baues, Frankland (MPIM and Osnabrück) Higher distributivity UIUC, July 2017 1 / 31



Outline

1 Background

2 Mapping theories

3 Higher distributivity

4 Main results

5 Examples in mod 2 cohomology

Baues, Frankland (MPIM and Osnabrück) Higher distributivity UIUC, July 2017 2 / 31



Some history: A∞-spaces

Stasheff (1963): Higher associativity via associahedra.

Loop spaces

Existence

$$
(group-like) A∞-spaces

Recognition

dd

Homotopy invariance: Assume X ' Y . Then X admits an
An-structure if and only if Y does.
Strictification: An A∞-space is weakly equivalent to a topological
monoid.
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Stable cohomology operations

Slogan: Higher distributivity via cubes.

Let X be a spectrum. Cohomology Hn(X ;Fp) = [X ,ΣnHFp] is given by
homotopy classes of maps to Eilenberg–MacLane spectra.

Primary stable cohomology operations are given by homotopy classes
of maps between Eilenberg–MacLane spectra.

The mod p Steenrod algebra A∗ is given by

Ak = [HFp,Σ
kHFp].

For example, Sqk : HF2 → ΣkHF2.

More generally, consider maps between finite products

A = Σn1HFp × . . . × Σnk HFp.
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Higher order operations

Higher order cohomology operations are encoded by the mapping
spaces between Eilenberg–MacLane spectra.

Example
The 3-fold Toda brackets 〈b,a, x〉 ⊆ [X ,ΩC] define a secondary
cohomology operation 〈b,a,−〉.

X x //

0

��
KS

α

A a //
DD

0

�� β

B b // C
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Distributivity up to homotopy

In the homotopy category of spectra, composition is bilinear.

This does not hold in a Top∗-enriched category of spectra.

X
x ,x ′ // A

a,a′ // B

The equation
(a + a′)x = ax + a′x

holds strictly in map(X ,B), because of pointwise addition. That is, left
linearity holds.

The equation
a(x + x ′) ∼ ax + ax ′

holds up to coherent homotopy in map(X ,B).

Goal
Describe the higher distributivity laws satisfied by maps between
Eilenberg–MacLane spectra.
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Maps between Eilenberg–MacLane spectra

Work in a simplicial model category of spectra Sp (e.g.
Bousfield–Friedlander).

Important ingredient: A model of the Eilenberg–MacLane spectrum
HFp which is an abelian group object, fibrant, and cofibrant. (Hat tip:
Marc Stephan.)

⇒ Each mapping space map(X ,A) is a topological abelian group.

Notation
Let EM denote the full Top∗-enriched category of Sp consisting of the
finite products

A = Σn1HFp × . . . × Σnk HFp.

Note that EM is a small category.
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Left linear mapping theories

Salient features of EM:

1 Top∗-enriched.
2 Has finite products (i.e., is a theory).
3 Each mapping space EM(A,B) is an topological abelian group,

with basepoint 0 : A→ B.
4 Composition is strictly left linear: (a + a′)x = ax + a′x .

Definition
A left linear mapping theory T is defined by (1)–(4).
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Examples

Example
EM is a left linear mapping theory, called the Eilenberg–MacLane
mapping theory.

Example
Consider models of Eilenberg–MacLane spaces K (Fp,n) as
topological abelian groups. Let EMunstable be the full subcategory of
Top∗ consisting of finite products

K (Fp,n1) × . . . × K (Fp,nk )

with ni ≥ 1. Then EMunstable is a left linear mapping theory.
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Enriched cohomology

For a spectrum X , the functor

map(X ,−) : EM → Top∗

preserves products strictly, i.e., is a model of EM. It is called the
(stable) Eilenberg–MacLane mapping algebra of X .

For our purposes: It suffices to focus on EM itself.
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What about right linearity?

Stably, finite products become coproducts, more precisely in the
homotopy category of spectra:

A ∨ B
�
−→ A × B.

In spectra, finite products are weak coproducts:

A ∨ B
∼
−→ A × B.

Definition
A mapping theory T is weakly bilinear if it is left linear and moreover
for all objects A,B,Z of T , the map

T (A × B,Z )
(i∗A,i

∗
B) // T (A,Z ) × T (B,Z )

is a trivial Serre fibration.
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Examples

Example
The mapping theory EM is weakly bilinear.

Example

The mapping theory EMunstable is left linear, but not weakly bilinear.
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1-distributivity

Definition
A left linear Top∗-enriched category is 1-distributive if for all
a, x , y ∈ T , there is a path

a(x + y) ax + ayϕ
x ,y
a

in T . In other words, T is right linear up to homotopy.
A choice of such paths is denoted ϕ1 =

{
ϕ

x ,y
a | a, x , y ∈ T

}
and is called

a 1-distributor for T .
Also, ϕ1 is required to be continuous in the inputs a, x , y . More
precisely, for all objects X ,A,B of T , the following map is continuous:

T (A,B) × T (X ,A)2 ϕ1
// T (X ,B)I

(a, x , y) � // ϕ
x ,y
a .

Baues, Frankland (MPIM and Osnabrück) Higher distributivity UIUC, July 2017 16 / 31



2-distributivity

Definition
T is called 2-distributive if it admits a 1-distributor ϕ1 such that for all
a, x , y , z ∈ T , the map ∂I2 → T defined by

a(x + y + z)

a(x + y) + az

ax + a(y + z).

ax + ay + az

ϕ
x ,y+z
a

ϕ
x ,y
a + az

ϕ
x+y ,z
a ax + ϕ

y ,z
aϕ

x ,y ,z
a

admits an extension ϕx ,y ,z
a : I2 → T .
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2-distributivity (cont’d)

Definition
A choice of such 2-cubes is denoted

ϕ2 =
{
ϕ

x ,y ,z
a | a, x , y , z ∈ T

}
and is called a 2-distributor for T , based on the 1-distributor ϕ1.

As before, the 2-distributor ϕ2 is required to be continuous in the inputs
a, x , y , z ∈ T . More precisely, for all objects X ,A,B of T , the following
map is continuous:

T (A,B) × T (X ,A)3 ϕ2
// T (X ,B)I2

(a, x , y , z) � // ϕ
x ,y ,z
a .
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n-distributivity

Definition
T is called n-distributive if there are collections of cubes
ϕ0, ϕ1, . . . , ϕn, where

ϕm = {ϕx0,...,xm
a | a, x0, . . . , xm ∈ T }

is a collection of m-cubes ϕx0,...,xm
a : Im → T , satisfying the following.

ϕ0 is a 0-distributor, i.e., the collection of 0-cubes ϕx
a = ax .

For 1 ≤ m ≤ n, the following boundary conditions hold:

ϕ
x0,...,xm
a (t1, . . . ,

tj︷︸︸︷
0 , . . . , tm) = ϕ

x0,...,xj−1+xj ,...,xm
a (t1, . . . , t̂j , . . . , tm)

ϕ
x0,...,xm
a (t1, . . . ,

tj︷︸︸︷
1 , . . . , tm) = ϕ

x0,...,xj−1
a (t1, . . . , . . . , tj−1) ⊕ ϕ

xj ,...,xm
a (tj+1, . . . , tm).
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n-distributivity (cont’d)

Such a collection ϕn of n-cubes in T is called an n-distributor for T ,
based on the (n − 1)-distributor ϕn−1.

The n-distributor ϕn is required to be continuous in the inputs
a, x0, . . . , xn ∈ T . More precisely, for all objects X ,A,B of T , the
following map is continuous:

T (A,B) × T (X ,A)n+1 ϕn
// T (X ,B)In

(a, x0, . . . , xn) � // ϕ
x0,...,xn
a .
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Example: 3-distributor

a(x0 + x1 + x2 + x3)

a(x0 + x1 + x2) + ax3

ax0 + a(x1 + x2 + x3)

ax0 + a(x1 + x2) + ax3

a(x0 + x1) + a(x2 + x3)

a(x0 + x1) + ax2 + ax3

ax0 + ax1 + a(x2 + x3)

ax0 + ax1 + ax2 + ax3

ϕ
x0,x1+x2+x3
a

ϕ
x0,x1+x2
a + ax3

ϕ
x0+x1+x2,x3
a ax0 + ϕ

x1+x2,x3
a

ϕ
x0,x1
a + a(x2 + x3)

ϕ
x0,x1
a + ax2 + ax3

a(x0 + x1) + ϕ
x2,x3
a ax0 + ax1 + ϕ

x2,x3
a

ϕ
x0+x1,x2+x3
a

ϕ
x0+x1,x2
a + ax3

ax0 + ϕ
x1,x2+x3
a

ax0 + ϕx1,x2
a + ax3

ϕ
x0,x1+x2,x3
a

ϕ
x0,x1
a ⊕ ϕ

x2,x3
a

ϕ x0 ,x1 ,x2+x3
a

ϕ x0 ,x1 ,x2
a + ax3

ϕ
x0
+x1

,x2
,x3

a ax0
+
ϕ

x1
,x2
,x3

a
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Existence

Theorem (Baues,F.)
Let T be a weakly bilinear mapping theory in which every mapping
space T (A,B) has the homotopy type of a CW complex. Then T is
∞-distributive.

Remark
In fact, T admits a “good” ∞-distributor, for which each distributor ϕn is
determined up to homotopy rel ∂In by the previous distributor ϕn−1.
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Homotopy invariance

Theorem (Baues,F.)
Let F : S → T be a morphism of left linear Top∗-enriched categories
which is moreover a Dwyer–Kan equivalence.
Assume that all mapping spaces in S and in T have the homotopy type
of a CW complex. Then for every n ≥ 1 (or n = ∞), S is n-distributive if
and only if T is n-distributive.
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The Kristensen derivation

Fix p = 2, and let ϕ1 be a “good” 1-distributor for the mod 2
Eilenberg–MacLane mapping theory EM.

For a class in the Steenrod algebra a ∈ Am, the loop

0 = a0 = a(1 + 1)
ϕ1,1

a // a1 + a1 = a + a = 0

defines a class

κ(a) ∈ π1EM(HF2,Σ
mHF2) = [HF2,Σ

m−1HF2] = Am−1.

Proposition (Baues 2006)

The function κ : A∗ → A∗−1 is the Kristensen derivation, i.e., the
derivation satisfying κ(Sqm) = Sqm−1.
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The 2-dimensional analogue

Now let ϕ2 be a “good” 2-distributor for EM. Consider the 2-cube in
EM(HF2,Σ

mHF2):

a = a(1 + 1 + 1)

a = a(1 + 1) + a1

a1 + a(1 + 1) = a.

a1 + a1 + a1 = a

ϕ1,0
a = a

ϕ1,1
a + a

a = ϕ0,1
a a + ϕ1,1

aϕ1,1,1
a
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A derivation of degree −2

The 2-cube

0

0

0

0

0

0

ϕ1,1
a

0
ϕ1,1

a

0

0

ϕ1,1,1
a − a

ε

defines a class

λ(a) ∈ π2EM(HF2,Σ
mHF2) = Am−2.
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A derivation of degree −2 (cont’d)

Proposition

The function λ : A∗ → A∗−2 is a derivation.

Question
Is λ given by λ = κ2?
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Thank you!
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