Eilenberg-MacLane mapping algebras and higher distributivity up to homotopy

Hans-Joachim Baues ${ }^{1}$ Martin Frankland*2

${ }^{1}$ Max-Planck-Institut für Mathematik
${ }^{2}$ Universität Osnabrück

Homotopy Theory: Tools and Applications
University of Illinois at Urbana-Champaign July 19, 2017

Outline

(1) Background
(2) Mapping theories
(3) Higher distributivity
(4) Main results
(5) Examples in mod 2 cohomology

Some history: A_{∞}-spaces

Stasheff (1963): Higher associativity via associahedra.

- Homotopy invariance: Assume $X \simeq Y$. Then X admits an A_{n}-structure if and only if Y does.
- Strictification: An A_{∞}-space is weakly equivalent to a topological monoid.

Stable cohomology operations

Slogan: Higher distributivity via cubes.
Let X be a spectrum. Cohomology $H^{n}\left(X ; \mathbb{F}_{p}\right)=\left[X, \Sigma^{n} H \mathbb{F}_{p}\right]$ is given by homotopy classes of maps to Eilenberg-MacLane spectra.
Primary stable cohomology operations are given by homotopy classes of maps between Eilenberg-MacLane spectra.
The $\bmod p$ Steenrod algebra \mathcal{A}^{*} is given by

$$
\mathcal{A}^{k}=\left[H \mathbb{F}_{p}, \Sigma^{k} H \mathbb{F}_{p}\right]
$$

For example, $\mathrm{Sq}^{k}: H \mathbb{F}_{2} \rightarrow \Sigma^{k} H \mathbb{F}_{2}$.
More generally, consider maps between finite products

$$
A=\Sigma^{n_{1}} H \mathbb{F}_{p} \times \ldots \times \Sigma^{n_{k}} H \mathbb{F}_{p}
$$

Higher order operations

Higher order cohomology operations are encoded by the mapping spaces between Eilenberg-MacLane spectra.

Example

The 3-fold Toda brackets $\langle b, a, x\rangle \subseteq[X, \Omega C]$ define a secondary cohomology operation $\langle b, a,-\rangle$.

Distributivity up to homotopy

In the homotopy category of spectra, composition is bilinear.
This does not hold in a Top ${ }_{*}$-enriched category of spectra.

$$
X \xrightarrow{x, x^{\prime}} A \xrightarrow{a, a^{\prime}} B
$$

The equation

$$
\left(a+a^{\prime}\right) x=a x+a^{\prime} x
$$

holds strictly in $\operatorname{map}(X, B)$, because of pointwise addition. That is, left linearity holds.
The equation

$$
a\left(x+x^{\prime}\right) \sim a x+a x^{\prime}
$$

holds up to coherent homotopy in $\operatorname{map}(X, B)$.

Goal

Describe the higher distributivity laws satisfied by maps between Eilenberg-MacLane spectra.

Maps between Eilenberg-MacLane spectra

Work in a simplicial model category of spectra Sp (e.g.
Bousfield-Friedlander).
Important ingredient: A model of the Eilenberg-MacLane spectrum $H \mathbb{F}_{p}$ which is an abelian group object, fibrant, and cofibrant. (Hat tip: Marc Stephan.)
\Rightarrow Each mapping space $\operatorname{map}(X, A)$ is a topological abelian group.

Notation

Let $\mathcal{E} \mathcal{M}$ denote the full Top $_{*}$-enriched category of Sp consisting of the finite products

$$
A=\Sigma^{n_{1}} H \mathbb{F}_{p} \times \ldots \times \Sigma^{n_{k}} H \mathbb{F}_{p}
$$

Note that $\mathcal{E} \mathcal{M}$ is a small category.

Left linear mapping theories

Salient features of $\mathcal{E M}$:
(1) Top $_{*}$-enriched.
(2) Has finite products (i.e., is a theory).
(3) Each mapping space $\mathcal{E} \mathcal{M}(A, B)$ is an topological abelian group, with basepoint $0: A \rightarrow B$.
(4) Composition is strictly left linear: $\left(a+a^{\prime}\right) x=a x+a^{\prime} x$.

Definition

A left linear mapping theory \mathcal{T} is defined by (1)-(4).

Examples

Example

$\mathcal{E M}$ is a left linear mapping theory, called the Eilenberg-MacLane mapping theory.

Example

Consider models of Eilenberg-MacLane spaces $K\left(\mathbb{F}_{p}, n\right)$ as topological abelian groups. Let $\mathcal{E} \mathcal{M}^{\text {unstable }}$ be the full subcategory of Top ${ }_{*}$ consisting of finite products

$$
K\left(\mathbb{F}_{p}, n_{1}\right) \times \ldots \times K\left(\mathbb{F}_{p}, n_{k}\right)
$$

with $n_{i} \geq 1$. Then $\mathcal{E} \mathcal{M}^{\text {unstable }}$ is a left linear mapping theory.

Enriched cohomology

For a spectrum X, the functor

$$
\operatorname{map}(X,-): \mathcal{E M} \rightarrow \mathbf{T o p}_{*}
$$

preserves products strictly, i.e., is a model of $\mathcal{E M}$. It is called the (stable) Eilenberg-MacLane mapping algebra of X.

For our purposes: It suffices to focus on $\mathcal{E} \mathcal{M}$ itself.

What about right linearity?

Stably, finite products become coproducts, more precisely in the homotopy category of spectra:

$$
A \vee B \stackrel{\cong}{\Rightarrow} A \times B .
$$

In spectra, finite products are weak coproducts:

$$
A \vee B \xrightarrow{\sim} A \times B .
$$

Definition

A mapping theory \mathcal{T} is weakly bilinear if it is left linear and moreover for all objects A, B, Z of \mathcal{T}, the map

$$
\mathcal{T}(A \times B, Z) \xrightarrow{\left(i_{A}^{*}, V_{B}^{*}\right)} \mathcal{T}(A, Z) \times \mathcal{T}(B, Z)
$$

is a trivial Serre fibration.

Examples

Example

The mapping theory $\mathcal{E M}$ is weakly bilinear.

Example

The mapping theory $\mathcal{E} \mathcal{M}^{\text {unstable }}$ is left linear, but not weakly bilinear.

1-distributivity

Definition

A left linear Top ${ }_{*}$-enriched category is 1-distributive if for all a, $x, y \in \mathcal{T}$, there is a path

$$
a(x+y) \cdot{ }_{\varphi_{a}^{x, y}}^{>} a x+a y
$$

in \mathcal{T}. In other words, \mathcal{T} is right linear up to homotopy.
A choice of such paths is denoted $\varphi^{1}=\left\{\varphi_{a}^{x, y} \mid a, x, y \in \mathcal{T}\right\}$ and is called a 1 -distributor for \mathcal{T}.
Also, φ^{1} is required to be continuous in the inputs a, x, y. More precisely, for all objects X, A, B of \mathcal{T}, the following map is continuous:

$$
\begin{aligned}
& \mathcal{T}(A, B) \times \mathcal{T}(X, A)^{2} \xrightarrow{\varphi^{1}} \mathcal{T}(X, B)^{\prime} \\
&(a, x, y) \longmapsto \varphi_{a}^{x, y}
\end{aligned}
$$

2-distributivity

Definition

\mathcal{T} is called 2-distributive if it admits a 1-distributor φ^{1} such that for all $a, x, y, z \in \mathcal{T}$, the map $\partial I^{2} \rightarrow \mathcal{T}$ defined by

$$
a(x+y)+a z \underset{\varphi_{a}^{x+y, z} \uparrow}{\varphi_{a}^{x, y}+a z} a x+a y+a z
$$

admits an extension $\varphi_{a}^{x, y, z}: I^{2} \rightarrow \mathcal{T}$.

2-distributivity (cont'd)

Definition

A choice of such 2-cubes is denoted

$$
\varphi^{2}=\left\{\varphi_{a}^{x, y, z} \mid a, x, y, z \in \mathcal{T}\right\}
$$

and is called a 2-distributor for \mathcal{T}, based on the 1-distributor φ^{1}.
As before, the 2-distributor φ^{2} is required to be continuous in the inputs $a, x, y, z \in \mathcal{T}$. More precisely, for all objects X, A, B of \mathcal{T}, the following map is continuous:

$$
\begin{aligned}
\mathcal{T}(A, B) \times \mathcal{T}(X, A)^{3} \xrightarrow{\varphi^{2}} & \mathcal{T}(X, B)^{L^{2}} \\
(a, x, y, z) \longmapsto & \longmapsto \varphi_{a}^{x, y, z}
\end{aligned}
$$

n-distributivity

Definition

\mathcal{T} is called n-distributive if there are collections of cubes $\varphi^{0}, \varphi^{1}, \ldots, \varphi^{n}$, where

$$
\varphi^{m}=\left\{\varphi_{a}^{x_{0}, \ldots, x_{m}} \mid a, x_{0}, \ldots, x_{m} \in \mathcal{T}\right\}
$$

is a collection of m-cubes $\varphi_{a}^{x_{0}, \ldots, \chi_{m}}: I^{m} \rightarrow \mathcal{T}$, satisfying the following.

- φ^{0} is a 0 -distributor, i.e., the collection of 0 -cubes $\varphi_{a}^{x}=a x$.
- For $1 \leq m \leq n$, the following boundary conditions hold:

$$
\begin{aligned}
& \varphi_{a}^{x_{0}, \ldots, x_{m}}(t_{1}, \ldots, \overbrace{0}^{t_{j}}, \ldots, t_{m})=\varphi_{a}^{x_{0}, \ldots, x_{j-1}+x_{j}, \ldots, x_{m}}\left(t_{1}, \ldots, \widehat{t}_{j}, \ldots, t_{m}\right) \\
& \varphi_{a}^{x_{0}, \ldots, x_{m}}(t_{1}, \ldots, \overbrace{1}^{t_{j}}, \ldots, t_{m})=\varphi_{a}^{x_{0}, \ldots, x_{j-1}}\left(t_{1}, \ldots, \ldots, t_{j-1}\right) \oplus \varphi_{a}^{x_{j}, \ldots, x_{m}}\left(t_{j+1}, \ldots, t_{m}\right) .
\end{aligned}
$$

n-distributivity (cont'd)

Such a collection φ^{n} of n-cubes in \mathcal{T} is called an n-distributor for \mathcal{T}, based on the $(n-1)$-distributor φ^{n-1}.
The n-distributor φ^{n} is required to be continuous in the inputs $a, x_{0}, \ldots, x_{n} \in \mathcal{T}$. More precisely, for all objects X, A, B of \mathcal{T}, the following map is continuous:

$$
\begin{aligned}
& \mathcal{T}(A, B) \times \mathcal{T}(X, A)^{n+1} \xrightarrow{\varphi^{n}} \mathcal{T}(X, B)^{)^{n}} \\
&\left(a, x_{0}, \ldots, x_{n}\right) \longmapsto \varphi_{a}^{x_{0}, \ldots, x_{n}} .
\end{aligned}
$$

Example: 3-distributor

Existence

Theorem (Baues,F.)

Let \mathcal{T} be a weakly bilinear mapping theory in which every mapping space $\mathcal{T}(A, B)$ has the homotopy type of a CW complex. Then \mathcal{T} is ∞-distributive.

Remark

In fact, \mathcal{T} admits a "good" ∞-distributor, for which each distributor φ^{n} is determined up to homotopy rel ∂I^{n} by the previous distributor φ^{n-1}.

Homotopy invariance

Theorem (Baues,F.)
Let $F: \mathcal{S} \rightarrow \mathcal{T}$ be a morphism of left linear Top $_{*}$-enriched categories which is moreover a Dwyer-Kan equivalence. Assume that all mapping spaces in \mathcal{S} and in \mathcal{T} have the homotopy type of a CW complex. Then for every $n \geq 1$ (or $n=\infty$), \mathcal{S} is n-distributive if and only if \mathcal{T} is n-distributive.

The Kristensen derivation

Fix $p=2$, and let φ^{1} be a "good" 1-distributor for the $\bmod 2$ Eilenberg-MacLane mapping theory $\mathcal{E M}$.

For a class in the Steenrod algebra $a \in \mathcal{A}^{m}$, the loop

$$
0=a 0=a(1+1) \xrightarrow{\varphi_{a}^{1,1}} a 1+a 1=a+a=0
$$

defines a class

$$
\kappa(a) \in \pi_{1} \mathcal{E} \mathcal{M}\left(H \mathbb{F}_{2}, \Sigma^{m} H \mathbb{F}_{2}\right)=\left[H \mathbb{F}_{2}, \Sigma^{m-1} H \mathbb{F}_{2}\right]=\mathcal{A}^{m-1} .
$$

Proposition (Baues 2006)

The function $\kappa: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*-1}$ is the Kristensen derivation, i.e., the derivation satisfying $\kappa\left(\mathrm{Sq}^{m}\right)=\mathrm{Sq}^{m-1}$.

The 2-dimensional analogue

Now let φ^{2} be a "good" 2-distributor for $\mathcal{E M}$. Consider the 2-cube in $\mathcal{E} \mathcal{M}\left(H \mathbb{F}_{2}, \Sigma^{m} H \mathbb{F}_{2}\right)$:

A derivation of degree -2

The 2-cube

defines a class

$$
\lambda(a) \in \pi_{2} \mathcal{E} \mathcal{M}\left(H \mathbb{F}_{2}, \Sigma^{m} H \mathbb{F}_{2}\right)=\mathcal{A}^{m-2} .
$$

A derivation of degree -2 (cont'd)

Proposition

The function $\lambda: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*-2}$ is a derivation.

Question
 Is λ given by $\lambda=\kappa^{2}$?

Thank you!

Reference

- H.J. Baues and M. Frankland. Eilenberg-MacLane mapping algebras and higher distributivity up to homotopy. arXiv:1703.07512.

