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The purpose of this expository note is to clarify the relationship between various
statements of the telescope conjecture. It can be viewed as a beginner’s guide to the
exposition in [4, §1.3]. Most of the ideas come from conversations with Charles Rezk,
whom we thank for his help.

1 The statements
Throughout, p is some fixed prime and everything is localized at p.

Notation 1.1. For any (generalized) homology theory E, let LE denote the Bousfield
localization functor with respect to E, and L f

E the finite localization functor with respect
to E [5, §1].

Notation 1.2. Let Ln denote LE(n) = LK(0)∨K(1)∨...∨K(n) where E(n) is the Johnson-
Wilson spectrum and K(n) is Morava K-theory of height n.

Definition 1.3. A type n complex is a finite spectrum satisfying K(i)∗X = 0 for i < n
and K(n)∗X , 0.

By a theorem of Mitchell [6, Thm B], there exists a type n complex for every n.

Definition 1.4. Let X be a finite spectrum. A map v : ΣdX → X is a vn self map if it
satisfies K(i)∗v = 0 for i , n and K(n)∗v is an isomorphism.

By a theorem of Hopkins-Smith [2, Thm 9], every type n complex admits a vn self

map. Note that if X has type m > n, then the null map X
0
−→ X is a vn self map.

Notation 1.5. Let Xn be a type n complex and v : ΣdXn → Xn a vn self map. Let
tel(v) = v−1Xn denote the mapping telescope of v. By the periodicity theorem [2, Cor
3.7], tel(v) does not depend on the vn self map v and we sometimes denote it tel(Xn) or
(by abuse of notation) tel(n).

Here are statements of the telescope conjecture (for a given n).

(TL) Classic telescope conjecture. The map Xn → tel(v) is an E(n)-localization (or
equivalently, K(n)-localization) [9, 2.2].
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(WK) Finite localization, weak form. The comparison map L f
n Xn → LnXn is an

equivalence.

(ST) Finite localization, strong form. The natural transformation L f
n → Ln is an

equivalence, i.e. the comparison map L f
n X → LnX is an equivalence for any X [9, 1.19

(iii)] [5, §3]. Since both L f
n and Ln are smashing, this is the same as L f

nS 0 → LnS 0

being an equivalence.

(BF) Bousfield classes. 〈tel(v)〉 = 〈K(n)〉 [7, 10.5].

2 The relationships
Clearly we have (ST)⇒ (WK).

Proposition 2.1. (TL)⇔ (WK).

Proof. This is [9, Thm 2.7 (iv)] or [5, Prop 14], which states that the map Xn → tel(v)
is a finite E(n)-localization, i.e. tel(v) = L f

n Xn. �

Notation 2.2. Let F(X,Y) denote the function spectrum between spectra X and Y .

Notation 2.3. Let DX = F(X, S 0) denote the Spanier-Whitehead dual of a spectrum X.

Proposition 2.4. (BF)⇒ (TL).

Proof. It suffices to show ι : Xn → v−1Xn is a tel(n)-localization.

The map ι is a tel(n)-equivalence. After smashing ι with tel(n), we obtain:

v−1Xn ∧ Xn
1∧ι
−−→ v−1Xn ∧ v−1Xn

(v ∧ 1)−1(Xn ∧ Xn)→ (v ∧ v)−1(Xn ∧ Xn)

where Xn∧Xn is still a type n complex, v∧1 and v∧v are two vn self maps, and the map
(which is induced by the identity of Xn∧Xn) is therefore an equivalence, by periodicity.

The target tel(n) is tel(n)-local. Let W be tel(n)-acyclic and f : W → v−1Xn any map.
We want to show f = 0. Consider the square obtained by smashing f with Xn or with
v−1Xn:

Xn ∧W

ι∧1
��

1∧ f // Xn ∧ v−1Xn

ι∧1'

��
v−1Xn ∧W

1∧ f
// v−1Xn ∧ v−1Xn

where the right-hand map is an equivalence, as shown above. The bottom left corner
v−1Xn ∧ W ' ∗ is contractible. Therefore we have Xn ∧ f = 0. Its adjunct map
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η ∧ f : W → DXn ∧ Xn ∧ v−1Xn is also zero. But v−1Xn is a (DXn ∧ Xn)-module
spectrum (using v−1Xn = L f

n Xn) and f is the composite:

W
η∧ f
−−−→ DXn ∧ Xn ∧ v−1Xn → v−1Xn

which is zero. �

Remark 2.5. Lemma [9, Lem 2.4 (i)] provides a map of abelian groups [Xn, Xn] →
[tel(Xn), tel(Xn)] but is not quite enough to conclude that tel(Xn) is a module spectrum
over F(Xn, Xn) = DXn ∧ Xn. Here we used the fact that L f

n is a spectrally enriched
functor, from which we obtain the map of ring spectra F(Xn, Xn)→ F(L f

n Xn, L
f
n Xn).

Notation 2.6. Let C f
n denote the fiber C f

n → S 0 → L f
nS 0 [3, §7.3]. Warning! Our C f

n
corresponds to ΣC f

n in [9, 2.3].

Fact 2.7. C f
n−1 is a homotopy direct limit of finite complexes of type n [9, 2.4 (iii)]. We

will write C f
n−1 = hocolimα Fα.

The following lemma is also proved in [3, Prop 7.10 (d)].

Lemma 2.8. The map C f
n−1 → S 0 induces a natural transformation id = F(S 0,−) →

F(C f
n−1,−) which is an Xn-localization. In particular, LXn is cosmashing.

Proof. We want to show that for any Z, the map Z → F(C f
n−1,Z) is an Xn-localization.

The target is Xn-local. Let W be Xn-acyclic and f : W → F(C f
n−1,Z) any map. The

map is adjunct to a map W ∧ C f
n−1 → Z, which must be zero since the source is

contractible:

W ∧C f
n−1 = W ∧

(
hocolim

α
Fα

)
with each Fα type n

= hocolim
α

(W ∧ Fα)

= hocolim
α

(∗) because W is Xn-acyclic

= ∗.

The map is an Xn-equivalence. We have the cofiber sequence C f
n−1 → S 0 → L f

n−1S 0

which induces a fiber sequence:

F(L f
n−1S 0,Z)→ F(S 0,Z)→ F(C f

n−1,Z).

We want to show that the second map is an Xn-equivalence, i.e. its fiber is Xn-acyclic.
We have:

F(L f
n−1S 0,Z) ∧ Xn = F(L f

n−1S 0,Z ∧ Xn)

= F(L f
n−1S 0,Z ∧ DDXn) since Xn is finite

= F(L f
n−1S 0 ∧ DXn,Z) since DXn is equivalent to finite

= F(L f
n−1(DXn),Z) since L f

n−1 is smashing.
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Suffices to check L f
n−1(DXn) ' ∗. We know DXn is finite of type n, that is K(0) ∨ . . . ∨

K(n − 1)-acyclic. But since it is finite, it is also finitely K(0) ∨ . . . ∨ K(n − 1)-acyclic
and so we have L f

n−1(DXn) ' ∗. �

Lemma 2.9. Let X be a type n complex. Then its Spanier-Whitehead dual DX is also
(equivalent to) a type n complex.

Proof. Since X is finite, DX is equivalent to a finite complex [1, Lem III.5.5]. Since X
is finite, we have:

K(i)∗DX � K(i)−∗X
� HomK(i)∗ (K(i)∗X,K(i)∗)

which is zero whenever K(i)∗X is zero, in particular for i < n.
On the other hand, [2, Lem 1.13] says that K(i)∗X is non-zero if and only if the

duality map S 0 → X ∧ DX is non-zero in K(i)-homology. In particular, we then have
0 , K(i)∗(X∧DX) � K(i)∗X⊗K(i)∗ K(i)∗DX which guarantees K(i)∗DX , 0. In the case
at hand, we have K(n)∗X , 0 which means K(n)∗DX , 0 and so DX has type n. �

Proposition 2.10. (WK)⇒ (BF).

Here are two different proofs, relying on different facts.

Fact 2.11. There are factorizations of localization functors:

1. LK(n) = LXn Ln

2. Ltel(n) = LXn L f
n .

First proof of 2.10. We want to show Ltel(n)Y → LK(n)Y is an equivalence for any Y .
The source and target can be computed using 2.11. Using 2.8 and 2.7, for any Z we
have:

LXn Z = F(C f
n−1,Z)

= F(hocolim
α

Fα,Z)

= holim
α

F(Fα,Z)

= holim
α

F(Fα, S 0) ∧ Z

= holim
α

(DFα ∧ Z).
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Using this, we can compare Ltel(n)Y and LK(n)Y:

Ltel(n)Y = LXn L f
nY

= holim
α

(DFα ∧ L f
nY)

= holim
α

(
L f

n (DFα) ∧ Y
)

since L f
n is smashing

= holim
α

(Ln(DFα) ∧ Y) by (WK) and lemma 2.9

= holim
α

(DFα ∧ LnY) since Ln is smashing

= LXn LnY

= LK(n)Y.

�

Fact 2.12. For all finite complexes X of type at least n (i.e. K(n − 1)-acyclic), we have
〈LnX〉 ≤ 〈K(n)〉.

The collection of all such X is thick, so it suffices to build one example, which is
done in [8, §8.3]. Using this fact, we obtain an alternate proof of 2.10, outlined in
[4, 1.13 (ii)].

Second proof of 2.10. Our assumption says tel(Xn) = LnXn and we want to show the
equality 〈tel(Xn)〉 = 〈K(n)〉, that is 〈LnXn〉 = 〈K(n)〉. By 2.12, it suffices to show
〈LnXn〉 ≥ 〈K(n)〉.

Let W be LnXn-acyclic. We want to show W is K(n)-acyclic. We know ∗ ' W ∧
LnXn = Ln(W ∧ Xn) so that W ∧ Xn is K(0) ∨ . . . ∨ K(n)-acyclic, and in particular
K(n)-acyclic. That means we have:

K(n)∗(W ∧ Xn) = 0 = K(n)∗W ⊗K(n)∗ K(n)∗Xn

which forces K(n)∗W to be zero since Xn has type n. �

Remark 2.13. If one is willing to use the fact 2.11, then the implication (ST)⇒ (BF)
is immediate, without going through (ST)⇒ (WK)⇒ (BF). The assumption L f

n = Ln

yields:
Ltel(n) = LXn L f

n = LXn Ln = LK(n)

so that K(n) and tel(n) are Bousfield equivalent.

Proposition 2.14. (WK) at n and (ST) at n − 1⇒ (ST) at n.
In particular: [(WK) from 0 to n]⇒ [(ST) from 0 to n] since (ST) is true at n = 0.

Here is a proof proposed in [4, 1.13 (iv)].

First proof of 2.14. Consider the cofiber sequence C f
n−1 → S 0 → L f

n−1S 0 where the
fiber C f

n−1 is a homotopy direct limit of finite type n complexes hocolimα Fα. Applying
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L f
n or Ln, we obtain a map of cofiber sequences:

L f
nC f

n−1

��

// L f
nS 0

��

// L f
n L f

n−1S 0 = L f
n−1S 0

��
LnC f

n−1
// LnS 0 // LnL f

n−1S 0.

Since Ln and L f
n are smashing, they commute with homotopy direct limits and we have:

L f
nC f

n−1 = L f
n hocolim

α
Fα

= hocolim
α

L f
n Fα

= hocolim
α

LnFα by (WK)

= Ln hocolim
α

Fα

= LnC f
n−1

so that the left-hand downward map is an equivalence.
By inductive assumption (ST) at n − 1, we have L f

n−1 = Ln−1 so that the bottom
right corner is LnL f

n−1S 0 = LnLn−1S 0 = Ln−1S 0 and the right-hand downward map is the

equivalence L f
n−1S 0

'
−→ Ln−1S 0. Therefore the middle downward map is an equivalence,

which is the statement of (ST) at n. �

Here is an alternate proof of 2.14, which can be restated as: (BF) at n and (ST) at
n − 1⇒ (ST) at n. It will rely on the relationship between Ln and Ln−1.

Fact 2.15. (Fracture squares) The squares:

Ln

��
y

// LK(n)

��
Ln−1 // Ln−1LK(n)

L f
n

��
y

// Ltel(n)

��
L f

n−1
// L f

n−1Ltel(n).

are homotopy pullbacks.

Second proof of 2.14. The assumptions say that the bottom rows and right-hand sides
of the two fracture squares 2.15 are equivalent, hence so are the top left corners L f

n '

Ln. �

Remark 2.16. In the proof, we only needed (BF) on S 0, i.e. that Ltel(n)S 0 → LK(n)S 0

be an equivalence.
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Lemma 2.17. The full subcategory of the (homotopy) category of (p-local) spectra X
for which the telescope conjecture holds, i.e. L f

n X
'
−→ LnX is thick.

Proof. This follows from the natural transformation L f
n → Ln and the fact that both

functors preserve cofiber sequences.
More precisely, assume Y is a retract of X and L f

n X → LnX is an equivalence. Then
naturality makes L f

nY → LnY a retract of L f
n X → LnX and hence an equivalence.

Assume X → Y → Z is a cofiber sequence such that L f
n → Ln is an equivalence for

two of the three. Then the map of cofiber sequences:

L f
n X

��

// L f
nY

��

// L f
nZ

��
LnX // LnY // LnZ

makes the third comparison map an equivalence. �

Fact 2.18. The telescope conjecture (ST) holds (at all n) on all Li-local spectra, for
any i. That is, for any spectrum X and integers n, i ≥ 0, we have L f

n LiX
'
−→ LnLiX.

Proposition 2.19. (ST) at n⇒ (ST) at n − 1.

Proof. By assumption the map L f
nS 0 '
−→ LnS 0 is an equivalence. Applying L f

n−1, we
obtain the equivalence:

L f
n−1L f

nS 0 '
−→ L f

n−1LnS 0.

The left-hand side is L f
n−1S 0. By 2.18, the right-hand side is L f

n−1LnS 0 ' Ln−1LnS 0 =

Ln−1S 0. �

In particular, (ST) at n ⇔ (ST) from 0 to n ⇒ (WK) from 0 to n and by 2.14, the
converse holds as well. In summary, the “strong” telescope conjecture (ST) is simply
the conjunction of the “weak” telescope conjectures (WK=TL=BF) from 0 to n.

Here is another equivalent statement of the telescope conjecture, arguably the most
important.

(AN) Adams-Novikov spectral sequence. The Adams-Novikov spectral sequence
for tel(Xn) converges to π∗tel(Xn).

We refer to [4, 1.13 (iii)] for more information.

3 Proving some of the facts
Proof of the fracture squares 2.15. See [3, Thm 6.19]. Indeed, we want to show that
for any Z, the square:

LnZ

��
y

// LK(n)Z

��
Ln−1Z // Ln−1LK(n)Z
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is a homotopy pullback. Note the equivalence LK(n) = LK(n)Ln = LnLK(n), since K(n)-
local spectra are in particular Ln-local. The claim is equivalent to the induced map of
vertical fibers (monochromatic layers) MnZ → MnLK(n)Z being an equivalence, which
is proved in [3, Thm 6.19].

Here is an alternate proof proposed by C. Rezk. First note that all four corners are
Ln-local, because they are local with respect to some subwedge of K(0) ∨ . . . ∨ K(n).
Therefore the vertical (or horizontal) fibers are also Ln-local and the induced map will
be an equivalence if and only if it is a K(0)∨ . . .∨ K(n)-equivalence. In other words, it
suffices to check that the square is a homotopy pullback after smashing with K(i), for
i = 0, . . . , n.

For i = 0, . . . , n− 1, the vertical maps are K(i)-equivalences, since they are the unit
id → Ln−1 applied to something, respectively Ln and LK(n). Thus after smashing with
K(i), the square is a homotopy pullback with vertical fibers ' ∗.

For i = n, the top map is a K(n)-equivalence since it is the unit id → LK(n) applied
to Ln. The bottom objects are K(n)-acyclic, as we show below. Thus after smashing
with K(n), the square is a homotopy pullback with horizontal fibers ' ∗.

Why is Ln−1Z K(n)-acyclic? Pick a type n complex Xn. Since Xn and DXn are
K(0) ∧ . . .K(n − 1)-acyclic (by 2.9), we have:

Xn ∧ Ln−1Z = F(DXn, Ln−1Z) = ∗.

In K(n)-homology, we obtain:

0 = K(n)∗(Xn ∧ Ln−1Z) = K(n)∗Xn ⊗K(n)∗ K(n)∗Ln−1Z

which forces K(n)∗Ln−1Z = 0 since we have K(n)∗Xn , 0. This concludes the proof of
the first fracture square, and the second has a similar proof. �

Proof of the factorizations 2.11. 1. [3, Prop 7.10 (e)].
2. Similar. �

Proof of the telescope conjecture on Li-local spectra 2.18. See [3, Cor 6.10]. Here is
a sketch of an alternate proof.

First, the telescope conjecture holds (at all n) for MU, meaning L f
n MU

'
−→ LnMU

is an equivalence [9, Thm 2.7 (iii)].
Second, the telescope conjecture holds for spectra of the form MU ∧ Z for any Z.

This is clear once we know Ln is smashing:

L f
n (MU ∧ Z) = L f

n MU ∧ Z

= LnMU ∧ Z

= Ln(MU ∧ Z).

In fact, one can show directly the property: Ln(MU∧Z) ' LnMU∧Z without knowing
that Ln is smashing. In particular, the telescope conjecture holds for all spectra of the
form LnMU ∧ Z.

By lemma 2.17, the telescope conjecture holds on the thick subcategory of the
(homotopy) category of (p-local) spectra generated by spectra of the form LnMU ∧ Z

8



for arbitrary Z. Call this thick subcategory T . Note that T is closed under smashing
by anything.

To prove the claim, it suffices to show that for any X, LnX is in T . It suffices to
show LnS 0 is in T , because of the equivalence LnX = X∧LnS 0. Using the (MU-based)
Adams-Novikov resolution of S 0 and arguments similar to [3, Pf of Prop 6.5], one can
show LnS 0 is in T . �

In the statement of (TL), we used the following fact, which is a particular case of
[3, Lem 7.2].

Proposition 3.1. K(n)- and E(n)-localizations agree on any type n complex: LnXn =

LK(n)Xn.

Proof. We show that the map Xn → LnXn is in fact a K(n)-localization. We know it is
a K(0) ∨ . . . ∨ K(n)-equivalence, in particular a K(n)-equivalence.

Remains to show that the target LnXn is K(n)-local. We have LnXn = Xn ∧ LnS 0

(just because Xn is finite and localizations preserve cofiber sequences [7, Prop 1.6];
no need to invoke the fact that Ln is smashing). Let W be K(n)-acyclic. We want to
show [W, Xn ∧ LnS 0] = 0. But we have [W, Xn ∧ LnS 0] = [W ∧ DXn, LnS 0] = 0 since
W ∧DXn is K(0)∨ . . .∨K(n)-acyclic. Indeed, we have K(n)∗W = 0 by assumption and
K(i)∗(DXn) = 0 for i = 0, . . . , n − 1 since DXn has type n, and thus K(i)∗(W ∧ DXn) =

K(i)∗W ⊗K(i)∗ K(i)∗(DXn) = 0 for i = 0, . . . , n. �

Notation 3.2. Let Thick(X) denote the thick subcategory generated by a spectrum X.
Similar notation for a set of spectra.

Lemma 3.3. If Z is in Thick(Y), then we have 〈Z〉 ≤ 〈Y〉.

Proof. Clearly we have 〈Y〉 ≤ 〈Y〉.
If Z1 is a retract of Z2 and W is Z2-acyclic, then Z1 ∧W is a retract of Z2 ∧W ' ∗

and so is contractible. In other words, W is also Z1-acyclic, and we have 〈Z1〉 ≤ 〈Z2〉.
If Z1 → Z2 → Z3 is a cofiber sequence and i, j, k is a permutation of 1, 2, 3 satisfying〈

Z j

〉
≤ 〈Y〉 and 〈Zk〉 ≤ 〈Y〉, then we have 〈Zi〉 ≤

〈
Z j

〉
∨ 〈Zk〉 ≤ 〈Y〉 ∨ 〈Y〉 = 〈Y〉 [7, Prop

1.23]. �

In the statement of (BF), we used the following fact.

Proposition 3.4. n-telescopes are all Bousfield equivalent. In other words, if Xn and
Yn are type n complexes with vn self maps v and w, then we have

〈
v−1Xn

〉
=

〈
w−1Yn

〉
.

Proof. Xn and Yn generate the same thick subcategory and so are Bousfield equivalent
by 3.3. Let us show that the telescopes v−1Xn and w−1Yn also generate the same thick
subcategory.

If Z1 is a retract of Z2 and the latter is in Thick(Yn) (i.e. finite complexes of type at
least n) and such that its telescope tel(Z2) is in Thick(tel(Yn)), then tel(Z1) = L f

nZ1 is a
retract of tel(Z2) = L f

nZ2 and so is in Thick(tel(Yn)).
If Z1 → Z2 → Z3 is a cofiber sequence where two of the objects are in Thick(Yn)

and such that their telescopes are in Thick(tel(Yn)), then telescoping yields the cofiber
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sequence L f
nZ1 → L f

nZ2 → L f
nZ3 so that the telescope tel(Zi) of the third object Zi is

also in Thick(tel(Yn)).
Since Xn is in Thick(Yn), the above discussion shows tel(Xn) is in Thick(tel(Yn)).

�
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