Equivalent statements of the telescope conjecture

Martin Frankland

April 7, 2011

The purpose of this expository note is to clarify the relationship between various statements of the telescope conjecture. It can be viewed as a beginner's guide to the exposition in [4, §1.3]. Most of the ideas come from conversations with Charles Rezk, whom we thank for his help.

1 The statements

Throughout, *p* is some fixed prime and everything is localized at *p*.

Notation 1.1. For any (generalized) homology theory E, let L_E denote the Bousfield localization functor with respect to E, and L_E^f the finite localization functor with respect to E [5, §1].

Notation 1.2. Let L_n denote $L_{E(n)} = L_{K(0) \lor K(1) \lor ... \lor K(n)}$ where E(n) is the Johnson-Wilson spectrum and K(n) is Morava K-theory of height n.

Definition 1.3. A type *n* complex is a finite spectrum satisfying $K(i)_*X = 0$ for i < n and $K(n)_*X \neq 0$.

By a theorem of Mitchell [6, Thm B], there exists a type *n* complex for every *n*.

Definition 1.4. Let X be a finite spectrum. A map $v: \Sigma^d X \to X$ is a v_n self map if it satisfies $K(i)_*v = 0$ for $i \neq n$ and $K(n)_*v$ is an isomorphism.

By a theorem of Hopkins-Smith [2, Thm 9], every type *n* complex admits a v_n self map. Note that if *X* has type m > n, then the null map $X \xrightarrow{0} X$ is a v_n self map.

Notation 1.5. Let X_n be a type *n* complex and $v: \Sigma^d X_n \to X_n$ a v_n self map. Let $tel(v) = v^{-1}X_n$ denote the mapping telescope of *v*. By the periodicity theorem [2, Cor 3.7], tel(v) does not depend on the v_n self map *v* and we sometimes denote it $tel(X_n)$ or (by abuse of notation) tel(n).

Here are statements of the telescope conjecture (for a given *n*).

(TL) Classic telescope conjecture. The map $X_n \rightarrow \text{tel}(v)$ is an E(n)-localization (or equivalently, K(n)-localization) [9, 2.2].

(WK) Finite localization, weak form. The comparison map $L_n^f X_n \to L_n X_n$ is an equivalence.

(ST) Finite localization, strong form. The natural transformation $L_n^f \to L_n$ is an equivalence, i.e. the comparison map $L_n^f X \to L_n X$ is an equivalence for any X [9, 1.19 (iii)] [5, §3]. Since both L_n^f and L_n are smashing, this is the same as $L_n^f S^0 \to L_n S^0$ being an equivalence.

(BF) Bousfield classes. $\langle \text{tel}(v) \rangle = \langle K(n) \rangle [7, 10.5].$

2 The relationships

Clearly we have $(ST) \Rightarrow (WK)$.

Proposition 2.1. $(TL) \Leftrightarrow (WK)$.

Proof. This is [9, Thm 2.7 (iv)] or [5, Prop 14], which states that the map $X_n \to \text{tel}(v)$ is a **finite** E(n)-localization, i.e. $\text{tel}(v) = L_n^f X_n$.

Notation 2.2. Let $\underline{F}(X, Y)$ denote the function spectrum between spectra X and Y.

Notation 2.3. Let $DX = \underline{F}(X, S^0)$ denote the Spanier-Whitehead dual of a spectrum X.

Proposition 2.4. $(BF) \Rightarrow (TL)$.

Proof. It suffices to show $\iota: X_n \to \nu^{-1}X_n$ is a tel(*n*)-localization.

The map ι is a tel(*n*)-equivalence. After smashing ι with tel(*n*), we obtain:

$$v^{-1}X_n \wedge X_n \xrightarrow{1 \wedge \iota} v^{-1}X_n \wedge v^{-1}X_n$$
$$(v \wedge 1)^{-1}(X_n \wedge X_n) \to (v \wedge v)^{-1}(X_n \wedge X_n)$$

where $X_n \wedge X_n$ is still a type *n* complex, $v \wedge 1$ and $v \wedge v$ are two v_n self maps, and the map (which is induced by the identity of $X_n \wedge X_n$) is therefore an equivalence, by periodicity.

The target tel(*n*) is tel(*n*)-local. Let *W* be tel(*n*)-acyclic and $f: W \to v^{-1}X_n$ any map. We want to show f = 0. Consider the square obtained by smashing *f* with X_n or with $v^{-1}X_n$:

$$\begin{array}{c|c} X_n \wedge W \xrightarrow{1 \wedge f} & X_n \wedge v^{-1} X_n \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \iota \wedge 1 & \downarrow & \downarrow & \downarrow \iota \wedge 1 \\ v^{-1} X_n \wedge W \xrightarrow{1 \wedge f} & v^{-1} X_n \wedge v^{-1} X_n \end{array}$$

where the right-hand map is an equivalence, as shown above. The bottom left corner $v^{-1}X_n \wedge W \simeq *$ is contractible. Therefore we have $X_n \wedge f = 0$. Its adjunct map

 $\eta \wedge f: W \to DX_n \wedge X_n \wedge v^{-1}X_n$ is also zero. But $v^{-1}X_n$ is a $(DX_n \wedge X_n)$ -module spectrum (using $v^{-1}X_n = L_n^f X_n$) and *f* is the composite:

$$W \xrightarrow{\eta \wedge f} DX_n \wedge X_n \wedge v^{-1}X_n \to v^{-1}X_n$$

which is zero.

Remark 2.5. Lemma [9, Lem 2.4 (i)] provides a map of abelian groups $[X_n, X_n] \rightarrow [tel(X_n), tel(X_n)]$ but is not quite enough to conclude that $tel(X_n)$ is a module spectrum over $\underline{F}(X_n, X_n) = DX_n \wedge X_n$. Here we used the fact that L_n^f is a spectrally enriched functor, from which we obtain the map of ring spectra $\underline{F}(X_n, X_n) \rightarrow \underline{F}(L_n^f X_n, L_n^f X_n)$.

Notation 2.6. Let C_n^f denote the fiber $C_n^f \to S^0 \to L_n^f S^0$ [3, §7.3]. Warning! Our C_n^f corresponds to ΣC_n^f in [9, 2.3].

Fact 2.7. C_{n-1}^{f} is a homotopy direct limit of finite complexes of type n [9, 2.4 (iii)]. We will write C_{n-1}^{f} = hocolim_{α} F_{α} .

The following lemma is also proved in [3, Prop 7.10 (d)].

Lemma 2.8. The map $C_{n-1}^f \to S^0$ induces a natural transformation id $= \underline{F}(S^0, -) \to \underline{F}(C_{n-1}^f, -)$ which is an X_n -localization. In particular, L_{X_n} is cosmashing.

Proof. We want to show that for any Z, the map $Z \to \underline{F}(C_{n-1}^f, Z)$ is an X_n -localization.

The target is X_n **-local.** Let W be X_n -acyclic and $f: W \to \underline{F}(C_{n-1}^f, Z)$ any map. The map is adjunct to a map $W \wedge C_{n-1}^f \to Z$, which must be zero since the source is contractible:

$$W \wedge C_{n-1}^{f} = W \wedge \left(\operatorname{hocolim}_{\alpha} F_{\alpha} \right) \text{ with each } F_{\alpha} \text{ type } n$$
$$= \operatorname{hocolim}_{\alpha} (W \wedge F_{\alpha})$$
$$= \operatorname{hocolim}_{\alpha} (*) \text{ because } W \text{ is } X_{n} \text{-acyclic}$$
$$= *.$$

The map is an X_n **-equivalence.** We have the cofiber sequence $C_{n-1}^f \to S^0 \to L_{n-1}^f S^0$ which induces a fiber sequence:

$$\underline{F}(L_{n-1}^f S^0, Z) \to \underline{F}(S^0, Z) \to \underline{F}(C_{n-1}^f, Z).$$

We want to show that the second map is an X_n -equivalence, i.e. its fiber is X_n -acyclic. We have:

$$\underline{F}(L_{n-1}^{f}S^{0}, Z) \wedge X_{n} = \underline{F}(L_{n-1}^{f}S^{0}, Z \wedge X_{n})$$

$$= \underline{F}(L_{n-1}^{f}S^{0}, Z \wedge DDX_{n}) \text{ since } X_{n} \text{ is finite}$$

$$= \underline{F}(L_{n-1}^{f}S^{0} \wedge DX_{n}, Z) \text{ since } DX_{n} \text{ is equivalent to finite}$$

$$= \underline{F}(L_{n-1}^{f}(DX_{n}), Z) \text{ since } L_{n-1}^{f} \text{ is smashing.}$$

Suffices to check $L_{n-1}^f(DX_n) \simeq *$. We know DX_n is finite of type *n*, that is $K(0) \lor \ldots \lor K(n-1)$ -acyclic. But since it is finite, it is also finitely $K(0) \lor \ldots \lor K(n-1)$ -acyclic and so we have $L_{n-1}^f(DX_n) \simeq *$.

Lemma 2.9. Let X be a type n complex. Then its Spanier-Whitehead dual DX is also (equivalent to) a type n complex.

Proof. Since *X* is finite, *DX* is equivalent to a finite complex [1, Lem III.5.5]. Since *X* is finite, we have:

$$K(i)_*DX \cong K(i)^{-*}X$$
$$\cong \operatorname{Hom}_{K(i)_*}(K(i)_*X, K(i)_*)$$

which is zero whenever $K(i)_*X$ is zero, in particular for i < n.

On the other hand, [2, Lem 1.13] says that $K(i)_*X$ is non-zero if and only if the duality map $S^0 \to X \land DX$ is non-zero in K(i)-homology. In particular, we then have $0 \neq K(i)_*(X \land DX) \cong K(i)_*X \otimes_{K(i)_*} K(i)_*DX$ which guarantees $K(i)_*DX \neq 0$. In the case at hand, we have $K(n)_*X \neq 0$ which means $K(n)_*DX \neq 0$ and so DX has type n.

Proposition 2.10. $(WK) \Rightarrow (BF)$.

Here are two different proofs, relying on different facts.

Fact 2.11. There are factorizations of localization functors:

- 1. $L_{K(n)} = L_{X_n} L_n$
- 2. $L_{\text{tel}(n)} = L_{X_n} L_n^f$.

First proof of 2.10. We want to show $L_{tel(n)}Y \rightarrow L_{K(n)}Y$ is an equivalence for any *Y*. The source and target can be computed using 2.11. Using 2.8 and 2.7, for any *Z* we have:

$$L_{X_n}Z = \underline{F}(C_{n-1}^f, Z)$$

= $\underline{F}(\operatorname{hocolim} F_{\alpha}, Z)$
= $\operatorname{holim}_{\alpha} \underline{F}(F_{\alpha}, Z)$
= $\operatorname{holim}_{\alpha} \underline{F}(F_{\alpha}, S^0) \wedge Z$
= $\operatorname{holim}_{\alpha} (DF_{\alpha} \wedge Z).$

Using this, we can compare $L_{tel(n)}Y$ and $L_{K(n)}Y$:

$$L_{\text{tel}(n)}Y = L_{X_n}L_n^J Y$$

= $\operatorname{holim}_{\alpha}(DF_{\alpha} \wedge L_n^f Y)$
= $\operatorname{holim}_{\alpha}\left(L_n^f(DF_{\alpha}) \wedge Y\right)$ since L_n^f is smashing
= $\operatorname{holim}_{\alpha}\left(L_n(DF_{\alpha}) \wedge Y\right)$ by (WK) and lemma 2.9
= $\operatorname{holim}_{\alpha}(DF_{\alpha} \wedge L_n Y)$ since L_n is smashing
= $L_{X_n}L_n Y$
= $L_{K(n)}Y$.

Fact 2.12. For all finite complexes X of type at least n (i.e. K(n - 1)-acyclic), we have $\langle L_n X \rangle \leq \langle K(n) \rangle$.

The collection of all such X is thick, so it suffices to build one example, which is done in [8, \$8.3]. Using this fact, we obtain an alternate proof of 2.10, outlined in [4, 1.13 (ii)].

Second proof of 2.10. Our assumption says $tel(X_n) = L_n X_n$ and we want to show the equality $\langle tel(X_n) \rangle = \langle K(n) \rangle$, that is $\langle L_n X_n \rangle = \langle K(n) \rangle$. By 2.12, it suffices to show $\langle L_n X_n \rangle \ge \langle K(n) \rangle$.

Let *W* be L_nX_n -acyclic. We want to show *W* is K(n)-acyclic. We know $* \simeq W \land L_nX_n = L_n(W \land X_n)$ so that $W \land X_n$ is $K(0) \lor \ldots \lor K(n)$ -acyclic, and in particular K(n)-acyclic. That means we have:

$$K(n)_*(W \wedge X_n) = 0 = K(n)_*W \otimes_{K(n)_*} K(n)_*X_n$$

which forces $K(n)_*W$ to be zero since X_n has type n.

Remark 2.13. If one is willing to use the fact 2.11, then the implication (ST) \Rightarrow (BF) is immediate, without going through (ST) \Rightarrow (WK) \Rightarrow (BF). The assumption $L_n^f = L_n$ yields:

$$L_{\text{tel}(n)} = L_{X_n} L_n^J = L_{X_n} L_n = L_{K(n)}$$

so that K(n) and tel(n) are Bousfield equivalent.

Proposition 2.14. (WK) at n and (ST) at $n - 1 \Rightarrow$ (ST) at n. In particular: [(WK) from 0 to n] \Rightarrow [(ST) from 0 to n] since (ST) is true at n = 0.

Here is a proof proposed in [4, 1.13 (iv)].

First proof of 2.14. Consider the cofiber sequence $C_{n-1}^f \to S^0 \to L_{n-1}^f S^0$ where the fiber C_{n-1}^f is a homotopy direct limit of finite type *n* complexes hocolim_{α} F_{α} . Applying

 L_n^f or L_n , we obtain a map of cofiber sequences:

Since L_n and L_n^f are smashing, they commute with homotopy direct limits and we have:

$$L_n^f C_{n-1}^f = L_n^f \operatorname{hocolim}_{\alpha} F_{\alpha}$$

= $\operatorname{hocolim}_{\alpha} L_n^f F_{\alpha}$
= $\operatorname{hocolim}_{\alpha} L_n F_{\alpha}$ by (WK)
= $L_n \operatorname{hocolim}_{\alpha} F_{\alpha}$
= $L_n C_{n-1}^f$

so that the left-hand downward map is an equivalence.

By inductive assumption (ST) at n - 1, we have $L_{n-1}^f = L_{n-1}$ so that the bottom right corner is $L_n L_{n-1}^f S^0 = L_n L_{n-1} S^0 = L_{n-1} S^0$ and the right-hand downward map is the equivalence $L_{n-1}^f S_0 \xrightarrow{\simeq} L_{n-1} S^0$. Therefore the middle downward map is an equivalence, which is the statement of (ST) at n.

Here is an alternate proof of 2.14, which can be restated as: (BF) at *n* and (ST) at $n - 1 \Rightarrow$ (ST) at *n*. It will rely on the relationship between L_n and L_{n-1} .

Fact 2.15. (Fracture squares) The squares:

are homotopy pullbacks.

Second proof of 2.14. The assumptions say that the bottom rows and right-hand sides of the two fracture squares 2.15 are equivalent, hence so are the top left corners $L_n^f \simeq L_n$.

Remark 2.16. In the proof, we only needed (BF) on S^0 , i.e. that $L_{tel(n)}S^0 \rightarrow L_{K(n)}S^0$ be an equivalence.

Lemma 2.17. The full subcategory of the (homotopy) category of (p-local) spectra X for which the telescope conjecture holds, i.e. $L_n^f X \xrightarrow{\simeq} L_n X$ is thick.

Proof. This follows from the natural transformation $L_n^f \to L_n$ and the fact that both functors preserve cofiber sequences.

More precisely, assume \hat{Y} is a retract of X and $L_n^f X \to L_n X$ is an equivalence. Then naturality makes $L_n^f Y \to L_n Y$ a retract of $L_n^f X \to L_n X$ and hence an equivalence.

Assume $X \to Y \to Z$ is a cofiber sequence such that $L_n^f \to L_n$ is an equivalence for two of the three. Then the map of cofiber sequences:

makes the third comparison map an equivalence.

Fact 2.18. The telescope conjecture (ST) holds (at all n) on all L_i -local spectra, for any *i*. That is, for any spectrum X and integers $n, i \ge 0$, we have $L_n^f L_i X \xrightarrow{\simeq} L_n L_i X$.

Proposition 2.19. (*ST*) at $n \Rightarrow (ST)$ at n - 1.

Proof. By assumption the map $L_n^f S^0 \xrightarrow{\simeq} L_n S^0$ is an equivalence. Applying L_{n-1}^f , we obtain the equivalence:

$$L_{n-1}^f L_n^f S^0 \xrightarrow{\simeq} L_{n-1}^f L_n S^0.$$

The left-hand side is $L_{n-1}^f S^0$. By 2.18, the right-hand side is $L_{n-1}^f L_n S^0 \simeq L_{n-1} L_n S^0 = L_{n-1} S^0$.

In particular, (ST) at $n \Leftrightarrow$ (ST) from 0 to $n \Rightarrow$ (WK) from 0 to n and by 2.14, the converse holds as well. In summary, the "strong" telescope conjecture (ST) is simply the conjunction of the "weak" telescope conjectures (WK=TL=BF) from 0 to n.

Here is another equivalent statement of the telescope conjecture, arguably the most important.

(AN) Adams-Novikov spectral sequence. The Adams-Novikov spectral sequence for tel(X_n) converges to π_* tel(X_n).

We refer to [4, 1.13 (iii)] for more information.

3 Proving some of the facts

Proof of the fracture squares 2.15. See [3, Thm 6.19]. Indeed, we want to show that for any *Z*, the square:

is a homotopy pullback. Note the equivalence $L_{K(n)} = L_{K(n)}L_n = L_nL_{K(n)}$, since K(n)local spectra are in particular L_n -local. The claim is equivalent to the induced map of vertical fibers (monochromatic layers) $M_nZ \rightarrow M_nL_{K(n)}Z$ being an equivalence, which is proved in [3, Thm 6.19].

Here is an alternate proof proposed by C. Rezk. First note that all four corners are L_n -local, because they are local with respect to some subwedge of $K(0) \vee ... \vee K(n)$. Therefore the vertical (or horizontal) fibers are also L_n -local and the induced map will be an equivalence if and only if it is a $K(0) \vee ... \vee K(n)$ -equivalence. In other words, it suffices to check that the square is a homotopy pullback after smashing with K(i), for i = 0, ..., n.

For i = 0, ..., n - 1, the vertical maps are K(i)-equivalences, since they are the unit id $\rightarrow L_{n-1}$ applied to something, respectively L_n and $L_{K(n)}$. Thus after smashing with K(i), the square is a homotopy pullback with vertical fibers $\simeq *$.

For i = n, the top map is a K(n)-equivalence since it is the unit id $\rightarrow L_{K(n)}$ applied to L_n . The bottom objects are K(n)-acyclic, as we show below. Thus after smashing with K(n), the square is a homotopy pullback with horizontal fibers $\simeq *$.

Why is $L_{n-1}Z$ K(n)-acyclic? Pick a type n complex X_n . Since X_n and DX_n are $K(0) \wedge \ldots K(n-1)$ -acyclic (by 2.9), we have:

$$X_n \wedge L_{n-1}Z = F(DX_n, L_{n-1}Z) = *.$$

In K(n)-homology, we obtain:

$$0 = K(n)_*(X_n \wedge L_{n-1}Z) = K(n)_*X_n \otimes_{K(n)_*} K(n)_*L_{n-1}Z$$

which forces $K(n)_*L_{n-1}Z = 0$ since we have $K(n)_*X_n \neq 0$. This concludes the proof of the first fracture square, and the second has a similar proof.

Proof of the factorizations 2.11. 1. [3, Prop 7.10 (e)].

2. Similar.

Proof of the telescope conjecture on L_i *-local spectra 2.18.* See [3, Cor 6.10]. Here is a sketch of an alternate proof.

First, the telescope conjecture holds (at all *n*) for MU, meaning $L_n^f MU \xrightarrow{\simeq} L_n MU$ is an equivalence [9, Thm 2.7 (iii)].

Second, the telescope conjecture holds for spectra of the form $MU \wedge Z$ for any Z. This is clear once we know L_n is smashing:

$$L_n^f(MU \wedge Z) = L_n^f MU \wedge Z$$
$$= L_n MU \wedge Z$$
$$= L_n (MU \wedge Z).$$

In fact, one can show directly the property: $L_n(MU \wedge Z) \simeq L_nMU \wedge Z$ without knowing that L_n is smashing. In particular, the telescope conjecture holds for all spectra of the form $L_nMU \wedge Z$.

By lemma 2.17, the telescope conjecture holds on the thick subcategory of the (homotopy) category of (*p*-local) spectra generated by spectra of the form $L_n MU \wedge Z$

for arbitrary Z. Call this thick subcategory \mathcal{T} . Note that \mathcal{T} is closed under smashing by anything.

To prove the claim, it suffices to show that for any X, $L_n X$ is in \mathcal{T} . It suffices to show $L_n S^0$ is in \mathcal{T} , because of the equivalence $L_n X = X \wedge L_n S^0$. Using the (*MU*-based) Adams-Novikov resolution of S^0 and arguments similar to [3, Pf of Prop 6.5], one can show $L_n S^0$ is in \mathcal{T} .

In the statement of (TL), we used the following fact, which is a particular case of [3, Lem 7.2].

Proposition 3.1. K(n)- and E(n)-localizations agree on any type n complex: $L_nX_n = L_{K(n)}X_n$.

Proof. We show that the map $X_n \to L_n X_n$ is in fact a K(n)-localization. We know it is a $K(0) \vee \ldots \vee K(n)$ -equivalence, in particular a K(n)-equivalence.

Remains to show that the target L_nX_n is K(n)-local. We have $L_nX_n = X_n \wedge L_nS^0$ (just because X_n is finite and localizations preserve cofiber sequences [7, Prop 1.6]; no need to invoke the fact that L_n is smashing). Let W be K(n)-acyclic. We want to show $[W, X_n \wedge L_nS^0] = 0$. But we have $[W, X_n \wedge L_nS^0] = [W \wedge DX_n, L_nS^0] = 0$ since $W \wedge DX_n$ is $K(0) \vee \ldots \vee K(n)$ -acyclic. Indeed, we have $K(n)_*W = 0$ by assumption and $K(i)_*(DX_n) = 0$ for $i = 0, \ldots, n - 1$ since DX_n has type n, and thus $K(i)_*(W \wedge DX_n) =$ $K(i)_*W \otimes_{K(i)_*} K(i)_*(DX_n) = 0$ for $i = 0, \ldots, n$.

Notation 3.2. Let Thick(X) denote the thick subcategory generated by a spectrum *X*. Similar notation for a set of spectra.

Lemma 3.3. If Z is in Thick(Y), then we have $\langle Z \rangle \leq \langle Y \rangle$.

Proof. Clearly we have $\langle Y \rangle \leq \langle Y \rangle$.

If Z_1 is a retract of Z_2 and W is Z_2 -acyclic, then $Z_1 \wedge W$ is a retract of $Z_2 \wedge W \simeq *$ and so is contractible. In other words, W is also Z_1 -acyclic, and we have $\langle Z_1 \rangle \leq \langle Z_2 \rangle$.

If $Z_1 \to Z_2 \to Z_3$ is a cofiber sequence and i, j, k is a permutation of 1, 2, 3 satisfying $\langle Z_j \rangle \leq \langle Y \rangle$ and $\langle Z_k \rangle \leq \langle Y \rangle$, then we have $\langle Z_i \rangle \leq \langle Z_j \rangle \lor \langle Z_k \rangle \leq \langle Y \rangle \lor \langle Y \rangle = \langle Y \rangle$ [7, Prop 1.23].

In the statement of (BF), we used the following fact.

Proposition 3.4. *n*-telescopes are all Bousfield equivalent. In other words, if X_n and Y_n are type *n* complexes with v_n self maps *v* and *w*, then we have $\langle v^{-1}X_n \rangle = \langle w^{-1}Y_n \rangle$.

Proof. X_n and Y_n generate the same thick subcategory and so are Bousfield equivalent by 3.3. Let us show that the telescopes $v^{-1}X_n$ and $w^{-1}Y_n$ also generate the same thick subcategory.

If Z_1 is a retract of Z_2 and the latter is in Thick (Y_n) (i.e. finite complexes of type at least *n*) and such that its telescope tel (Z_2) is in Thick $(tel(Y_n))$, then tel $(Z_1) = L_n^f Z_1$ is a retract of tel $(Z_2) = L_n^f Z_2$ and so is in Thick $(tel(Y_n))$.

If $Z_1 \rightarrow Z_2 \rightarrow Z_3$ is a cofiber sequence where two of the objects are in Thick(Y_n) and such that their telescopes are in Thick(tel(Y_n)), then telescoping yields the cofiber

sequence $L_n^f Z_1 \to L_n^f Z_2 \to L_n^f Z_3$ so that the telescope tel(Z_i) of the third object Z_i is also in Thick(tel(Y_n)).

Since X_n is in Thick (Y_n) , the above discussion shows tel (X_n) is in Thick $(tel(Y_n))$.

References

- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, vol. 17, University of Chicago Press, Chicago, IL, 1974.
- [2] Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory II, Ann. of Math. (2) 148 (1998), 1–49.
- [3] Mark Hovey and Neil P. Strickland, Morava K-theories and localisation, Mem. Amer. Math. Soc., vol. 139, AMS, 1999.
- [4] Mark Mahowald, Douglas Ravenel, and Paul Shick, *The triple loop space approach to the telescope conjecture*, Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemporary Mathematics, vol. 271, AMS, Providence, RI, 2001, pp. 217–284.
- [5] Haynes Miller, Finite localizations: Papers in honor of José Adem (Spanish), Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1 –2, 383 –389.
- [6] Stephen A. Mitchell, Finite complexes with A(n)-free cohomology, Topology 24 (1985), no. 2, 227 –246.
- [7] Douglas C. Ravenel, Localization with respect to certain periodic homology theories, American Journal of Mathematics 106 (1984), no. 2, 351–414.
- [8] _____, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1992.
- [9] _____, Life after the telescope conjecture, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 205 –222.