Equivalent statements of the telescope conjecture

Martin Frankland

April 7, 2011

The purpose of this expository note is to clarify the relationship between various statements of the telescope conjecture. It can be viewed as a beginner's guide to the exposition in [4, §1.3]. Most of the ideas come from conversations with Charles Rezk, whom we thank for his help.

1 The statements

Throughout, p is some fixed prime and everything is localized at p.
Notation 1.1. For any (generalized) homology theory E, let L_{E} denote the Bousfield localization functor with respect to E, and L_{E}^{f} the finite localization functor with respect to $E[5, \S 1]$.

Notation 1.2. Let L_{n} denote $L_{E(n)}=L_{K(0) \vee K(1) \vee \ldots \vee K(n)}$ where $E(n)$ is the JohnsonWilson spectrum and $K(n)$ is Morava K-theory of height n.

Definition 1.3. A type n complex is a finite spectrum satisfying $K(i)_{*} X=0$ for $i<n$ and $K(n)_{*} X \neq 0$.

By a theorem of Mitchell [6, Thm B], there exists a type n complex for every n.
Definition 1.4. Let X be a finite spectrum. A map $v: \Sigma^{d} X \rightarrow X$ is a v_{n} self map if it satisfies $K(i)_{*} v=0$ for $i \neq n$ and $K(n)_{*} v$ is an isomorphism.

By a theorem of Hopkins-Smith [2, Thm 9], every type n complex admits a v_{n} self map. Note that if X has type $m>n$, then the null map $X \xrightarrow{0} X$ is a v_{n} self map.

Notation 1.5. Let X_{n} be a type n complex and $v: \Sigma^{d} X_{n} \rightarrow X_{n}$ a v_{n} self map. Let $\operatorname{tel}(v)=v^{-1} X_{n}$ denote the mapping telescope of v. By the periodicity theorem [2, Cor 3.7], tel (v) does not depend on the v_{n} self map v and we sometimes denote it $\operatorname{tel}\left(X_{n}\right)$ or (by abuse of notation) tel (n).

Here are statements of the telescope conjecture (for a given n).
(TL) Classic telescope conjecture. The map $X_{n} \rightarrow \operatorname{tel}(v)$ is an $E(n)$-localization (or equivalently, $K(n)$-localization) [9, 2.2].
(WK) Finite localization, weak form. The comparison map $L_{n}^{f} X_{n} \rightarrow L_{n} X_{n}$ is an equivalence.
(ST) Finite localization, strong form. The natural transformation $L_{n}^{f} \rightarrow L_{n}$ is an equivalence, i.e. the comparison map $L_{n}^{f} X \rightarrow L_{n} X$ is an equivalence for any X [9, 1.19 (iii)] [5, §3]. Since both L_{n}^{f} and L_{n} are smashing, this is the same as $L_{n}^{f} S^{0} \rightarrow L_{n} S^{0}$ being an equivalence.
(BF) Bousfield classes. $\langle\operatorname{tel}(v)\rangle=\langle K(n)\rangle[7,10.5]$.

2 The relationships

Clearly we have (ST) \Rightarrow (WK).
Proposition 2.1. $(T L) \Leftrightarrow(W K)$.
Proof. This is [9, Thm 2.7 (iv)] or [5, Prop 14], which states that the map $X_{n} \rightarrow \operatorname{tel}(v)$ is a finite $E(n)$-localization, i.e. $\operatorname{tel}(v)=L_{n}^{f} X_{n}$.

Notation 2.2. Let $\underline{F}(X, Y)$ denote the function spectrum between spectra X and Y.
Notation 2.3. Let $D X=\underline{F}\left(X, S^{0}\right)$ denote the Spanier-Whitehead dual of a spectrum X.
Proposition 2.4. $(B F) \Rightarrow(T L)$.
Proof. It suffices to show $\iota: X_{n} \rightarrow v^{-1} X_{n}$ is a tel(n)-localization.

The map ι is a tel (n)-equivalence. After smashing ι with tel (n), we obtain:

$$
\begin{aligned}
v^{-1} X_{n} \wedge X_{n} & \xrightarrow{1 \wedge \iota} v^{-1} X_{n} \wedge v^{-1} X_{n} \\
(v \wedge 1)^{-1}\left(X_{n} \wedge X_{n}\right) & \rightarrow(v \wedge v)^{-1}\left(X_{n} \wedge X_{n}\right)
\end{aligned}
$$

where $X_{n} \wedge X_{n}$ is still a type n complex, $v \wedge 1$ and $v \wedge v$ are two v_{n} self maps, and the map (which is induced by the identity of $X_{n} \wedge X_{n}$) is therefore an equivalence, by periodicity.

The target tel (n) is tel (n)-local. Let W be tel (n)-acyclic and $f: W \rightarrow v^{-1} X_{n}$ any map. We want to show $f=0$. Consider the square obtained by smashing f with X_{n} or with $v^{-1} X_{n}$:

where the right-hand map is an equivalence, as shown above. The bottom left corner $v^{-1} X_{n} \wedge W \simeq *$ is contractible. Therefore we have $X_{n} \wedge f=0$. Its adjunct map
$\eta \wedge f: W \rightarrow D X_{n} \wedge X_{n} \wedge v^{-1} X_{n}$ is also zero. But $v^{-1} X_{n}$ is a $\left(D X_{n} \wedge X_{n}\right)$-module spectrum (using $v^{-1} X_{n}=L_{n}^{f} X_{n}$) and f is the composite:

$$
W \xrightarrow{\eta \wedge f} D X_{n} \wedge X_{n} \wedge v^{-1} X_{n} \rightarrow v^{-1} X_{n}
$$

which is zero.
Remark 2.5. Lemma [9, Lem 2.4 (i)] provides a map of abelian groups $\left[X_{n}, X_{n}\right] \rightarrow$ $\left[\operatorname{tel}\left(X_{n}\right)\right.$, $\left.\operatorname{tel}\left(X_{n}\right)\right]$ but is not quite enough to conclude that tel $\left(X_{n}\right)$ is a module spectrum over $\underline{F}\left(X_{n}, X_{n}\right)=D X_{n} \wedge X_{n}$. Here we used the fact that L_{n}^{f} is a spectrally enriched functor, from which we obtain the map of ring spectra $\underline{F}\left(X_{n}, X_{n}\right) \rightarrow \underline{F}\left(L_{n}^{f} X_{n}, L_{n}^{f} X_{n}\right)$.

Notation 2.6. Let C_{n}^{f} denote the fiber $C_{n}^{f} \rightarrow S^{0} \rightarrow L_{n}^{f} S^{0}$ [3, §7.3]. Warning! Our C_{n}^{f} corresponds to ΣC_{n}^{f} in [9. 2.3].
Fact 2.7. C_{n-1}^{f} is a homotopy direct limit of finite complexes of type n [9, 2.4 (iii)]. We will write $C_{n-1}^{f}=\operatorname{hocolim}_{\alpha} F_{\alpha}$.

The following lemma is also proved in [3, Prop 7.10 (d)].
Lemma 2.8. The map $C_{n-1}^{f} \rightarrow S^{0}$ induces a natural transformation id $=\underline{F}\left(S^{0},-\right) \rightarrow$ $\underline{F}\left(C_{n-1}^{f},-\right)$ which is an X_{n}-localization. In particular, $L_{X_{n}}$ is cosmashing.
Proof. We want to show that for any Z, the map $Z \rightarrow \underline{F}\left(C_{n-1}^{f}, Z\right)$ is an X_{n}-localization.

The target is X_{n}-local. Let W be X_{n}-acyclic and $f: W \rightarrow \underline{F}\left(C_{n-1}^{f}, Z\right)$ any map. The map is adjunct to a map $W \wedge C_{n-1}^{f} \rightarrow Z$, which must be zero since the source is contractible:

$$
\begin{aligned}
W \wedge C_{n-1}^{f} & =W \wedge\left(\underset{\alpha}{\operatorname{hocolim}} F_{\alpha}\right) \text { with each } F_{\alpha} \text { type } n \\
& =\underset{\alpha}{\operatorname{hocolim}\left(W \wedge F_{\alpha}\right)} \\
& =\underset{\alpha}{\operatorname{hocolim}(*)} \text { because } W \text { is } X_{n} \text {-acyclic } \\
& =* .
\end{aligned}
$$

The map is an X_{n}-equivalence. We have the cofiber sequence $C_{n-1}^{f} \rightarrow S^{0} \rightarrow L_{n-1}^{f} S^{0}$ which induces a fiber sequence:

$$
\underline{F}\left(L_{n-1}^{f} S^{0}, Z\right) \rightarrow \underline{F}\left(S^{0}, Z\right) \rightarrow \underline{F}\left(C_{n-1}^{f}, Z\right)
$$

We want to show that the second map is an X_{n}-equivalence, i.e. its fiber is X_{n}-acyclic. We have:

$$
\begin{aligned}
\underline{F}\left(L_{n-1}^{f} S^{0}, Z\right) \wedge X_{n} & =\underline{F}\left(L_{n-1}^{f} S^{0}, Z \wedge X_{n}\right) \\
& =\underline{F}\left(L_{n-1}^{f} S^{0}, Z \wedge D D X_{n}\right) \text { since } X_{n} \text { is finite } \\
& =\underline{F}\left(L_{n-1}^{f} S^{0} \wedge D X_{n}, Z\right) \text { since } D X_{n} \text { is equivalent to finite } \\
& =\underline{F}\left(L_{n-1}^{f}\left(D X_{n}\right), Z\right) \text { since } L_{n-1}^{f} \text { is smashing. }
\end{aligned}
$$

Suffices to check $L_{n-1}^{f}\left(D X_{n}\right) \simeq *$. We know $D X_{n}$ is finite of type n, that is $K(0) \vee \ldots \vee$ $K(n-1)$-acyclic. But since it is finite, it is also finitely $K(0) \vee \ldots \vee K(n-1)$-acyclic and so we have $L_{n-1}^{f}\left(D X_{n}\right) \simeq *$.

Lemma 2.9. Let X be a type n complex. Then its Spanier-Whitehead dual $D X$ is also (equivalent to) a type n complex.

Proof. Since X is finite, $D X$ is equivalent to a finite complex [1. Lem III.5.5]. Since X is finite, we have:

$$
\begin{aligned}
K(i)_{*} D X & \cong K(i)^{-*} X \\
& \cong \operatorname{Hom}_{K(i)_{*}}\left(K(i)_{*} X, K(i)_{*}\right)
\end{aligned}
$$

which is zero whenever $K(i)_{*} X$ is zero, in particular for $i<n$.
On the other hand, [2], Lem 1.13] says that $K(i)_{*} X$ is non-zero if and only if the duality map $S^{0} \rightarrow X \wedge \overline{D X}$ is non-zero in $K(i)$-homology. In particular, we then have $0 \neq K(i)_{*}(X \wedge D X) \cong K(i)_{*} X \otimes_{K(i)_{*}} K(i)_{*} D X$ which guarantees $K(i)_{*} D X \neq 0$. In the case at hand, we have $K(n)_{*} X \neq 0$ which means $K(n)_{*} D X \neq 0$ and so $D X$ has type n.

Proposition 2.10. $(W K) \Rightarrow(B F)$.
Here are two different proofs, relying on different facts.
Fact 2.11. There are factorizations of localization functors:

1. $L_{K(n)}=L_{X_{n}} L_{n}$
2. $L_{\text {tel }(n)}=L_{X_{n}} L_{n}^{f}$.

First proof of 2.10 We want to show $L_{\operatorname{tel}(n)} Y \rightarrow L_{K(n)} Y$ is an equivalence for any Y. The source and target can be computed using 2.11 Using 2.8 and 2.7 , for any Z we have:

$$
\begin{aligned}
L_{X_{n}} Z & =\underline{F}\left(C_{n-1}^{f}, Z\right) \\
& =\underline{F}\left(\underset{\alpha}{\operatorname{hocolim}} F_{\alpha}, Z\right) \\
& =\underset{\alpha}{\operatorname{\operatorname {holim}} \underline{F}}\left(F_{\alpha}, Z\right) \\
& =\underset{\alpha}{\operatorname{holim}} \underline{F}\left(F_{\alpha}, S^{0}\right) \wedge Z \\
& =\underset{\alpha}{\operatorname{holim}}\left(D F_{\alpha} \wedge Z\right) .
\end{aligned}
$$

Using this, we can compare $L_{\operatorname{tel}(n)} Y$ and $L_{K(n)} Y$:

$$
\begin{aligned}
L_{\mathrm{tel}(n)} Y & =L_{X_{n}} L_{n}^{f} Y \\
& =\underset{\alpha}{\operatorname{holim}\left(D F_{\alpha} \wedge L_{n}^{f} Y\right)} \\
& =\underset{\alpha}{\operatorname{holim}}\left(L_{n}^{f}\left(D F_{\alpha}\right) \wedge Y\right) \text { since } L_{n}^{f} \text { is smashing } \\
& =\underset{\alpha}{\operatorname{holim}}\left(L_{n}\left(D F_{\alpha}\right) \wedge Y\right) \text { by }(\mathrm{WK}) \text { and lemma } 2.9 \\
& =\underset{\alpha}{\operatorname{holim}}\left(D F_{\alpha} \wedge L_{n} Y\right) \text { since } L_{n} \text { is smashing } \\
& =L_{X_{n}} L_{n} Y \\
& =L_{K(n)} Y .
\end{aligned}
$$

Fact 2.12. For all finite complexes X of type at least n (i.e. $K(n-1)$-acyclic), we have $\left\langle L_{n} X\right\rangle \leq\langle K(n)\rangle$.

The collection of all such X is thick, so it suffices to build one example, which is done in [8, §8.3]. Using this fact, we obtain an alternate proof of 2.10, outlined in [4, 1.13 (ii)].

Second proof of 2.10 Our assumption says tel $\left(X_{n}\right)=L_{n} X_{n}$ and we want to show the equality $\left\langle\operatorname{tel}\left(X_{n}\right)\right\rangle=\langle K(n)\rangle$, that is $\left\langle L_{n} X_{n}\right\rangle=\langle K(n)\rangle$. By 2.12, it suffices to show $\left\langle L_{n} X_{n}\right\rangle \geq\langle K(n)\rangle$.

Let W be $L_{n} X_{n}$-acyclic. We want to show W is $K(n)$-acyclic. We know $* \simeq W \wedge$ $L_{n} X_{n}=L_{n}\left(W \wedge X_{n}\right)$ so that $W \wedge X_{n}$ is $K(0) \vee \ldots \vee K(n)$-acyclic, and in particular $K(n)$-acyclic. That means we have:

$$
K(n)_{*}\left(W \wedge X_{n}\right)=0=K(n)_{*} W \otimes_{K(n)_{*}} K(n)_{*} X_{n}
$$

which forces $K(n)_{*} W$ to be zero since X_{n} has type n.
Remark 2.13. If one is willing to use the fact 2.11, then the implication (ST) $\Rightarrow(\mathrm{BF})$ is immediate, without going through $(\mathrm{ST}) \Rightarrow(\mathrm{WK}) \Rightarrow(\mathrm{BF})$. The assumption $L_{n}^{f}=L_{n}$ yields:

$$
L_{\operatorname{tel}(n)}=L_{X_{n}} L_{n}^{f}=L_{X_{n}} L_{n}=L_{K(n)}
$$

so that $K(n)$ and tel (n) are Bousfield equivalent.
Proposition 2.14. (WK) at n and $(S T)$ at $n-1 \Rightarrow(S T)$ at n.
In particular: $[(W K)$ from 0 to $n] \Rightarrow[(S T)$ from 0 to $n]$ since $(S T)$ is true at $n=0$.
Here is a proof proposed in [4, 1.13 (iv)].
First proof of 2.14 Consider the cofiber sequence $C_{n-1}^{f} \rightarrow S^{0} \rightarrow L_{n-1}^{f} S^{0}$ where the fiber C_{n-1}^{f} is a homotopy direct limit of finite type n complexes hocolim ${ }_{\alpha} F_{\alpha}$. Applying
L_{n}^{f} or L_{n}, we obtain a map of cofiber sequences:

Since L_{n} and L_{n}^{f} are smashing, they commute with homotopy direct limits and we have:

$$
\begin{aligned}
L_{n}^{f} C_{n-1}^{f} & =L_{n}^{f} \underset{\alpha}{\operatorname{aocolim} F_{\alpha}} \\
& =\underset{\alpha}{\operatorname{hocolim}} L_{n}^{f} F_{\alpha} \\
& =\underset{\alpha}{\operatorname{hocolim}} L_{n} F_{\alpha} \text { by (WK) } \\
& =L_{n} \underset{\alpha}{\operatorname{~ocolim}} F_{\alpha} \\
& =L_{n} C_{n-1}^{f}
\end{aligned}
$$

so that the left-hand downward map is an equivalence.
By inductive assumption (ST) at $n-1$, we have $L_{n-1}^{f}=L_{n-1}$ so that the bottom right corner is $L_{n} L_{n-1}^{f} S^{0}=L_{n} L_{n-1} S^{0}=L_{n-1} S^{0}$ and the right-hand downward map is the equivalence $L_{n-1}^{f} S_{0} \xrightarrow{\simeq} L_{n-1} S^{0}$. Therefore the middle downward map is an equivalence, which is the statement of (ST) at n.

Here is an alternate proof of 2.14, which can be restated as: (BF) at n and (ST) at $n-1 \Rightarrow(\mathrm{ST})$ at n. It will rely on the relationship between L_{n} and L_{n-1}.

Fact 2.15. (Fracture squares) The squares:

are homotopy pullbacks.
Second proof of 2.14 The assumptions say that the bottom rows and right-hand sides of the two fracture squares 2.15 are equivalent, hence so are the top left corners $L_{n}^{f} \simeq$ L_{n}.

Remark 2.16. In the proof, we only needed (BF) on S^{0}, i.e. that $L_{\text {tel }(n)} S^{0} \rightarrow L_{K(n)} S^{0}$ be an equivalence.

Lemma 2.17. The full subcategory of the (homotopy) category of (p-local) spectra X for which the telescope conjecture holds, i.e. $L_{n}^{f} X \xrightarrow{\simeq} L_{n} X$ is thick.
Proof. This follows from the natural transformation $L_{n}^{f} \rightarrow L_{n}$ and the fact that both functors preserve cofiber sequences.

More precisely, assume Y is a retract of X and $L_{n}^{f} X \rightarrow L_{n} X$ is an equivalence. Then naturality makes $L_{n}^{f} Y \rightarrow L_{n} Y$ a retract of $L_{n}^{f} X \rightarrow L_{n} X$ and hence an equivalence.

Assume $X \rightarrow Y \rightarrow Z$ is a cofiber sequence such that $L_{n}^{f} \rightarrow L_{n}$ is an equivalence for two of the three. Then the map of cofiber sequences:

makes the third comparison map an equivalence.
Fact 2.18. The telescope conjecture (ST) holds (at all n) on all L_{i}-local spectra, for any i. That is, for any spectrum X and integers $n, i \geq 0$, we have $L_{n}^{f} L_{i} X \xrightarrow{\simeq} L_{n} L_{i} X$.

Proposition 2.19. $(S T)$ at $n \Rightarrow(S T)$ at $n-1$.
Proof. By assumption the map $L_{n}^{f} S^{0} \xrightarrow{\simeq} L_{n} S^{0}$ is an equivalence. Applying L_{n-1}^{f}, we obtain the equivalence:

$$
L_{n-1}^{f} L_{n}^{f} S^{0} \xrightarrow{\simeq} L_{n-1}^{f} L_{n} S^{0} .
$$

The left-hand side is $L_{n-1}^{f} S^{0}$. By 2.18, the right-hand side is $L_{n-1}^{f} L_{n} S^{0} \simeq L_{n-1} L_{n} S^{0}=$ $L_{n-1} S^{0}$.

In particular, (ST) at $n \Leftrightarrow(\mathrm{ST})$ from 0 to $n \Rightarrow(\mathrm{WK})$ from 0 to n and by 2.14 , the converse holds as well. In summary, the "strong" telescope conjecture (ST) is simply the conjunction of the "weak" telescope conjectures (WK=TL=BF) from 0 to n.

Here is another equivalent statement of the telescope conjecture, arguably the most important.
(AN) Adams-Novikov spectral sequence. The Adams-Novikov spectral sequence for $\operatorname{tel}\left(X_{n}\right)$ converges to $\pi_{*} \operatorname{tel}\left(X_{n}\right)$.

We refer to [4, 1.13 (iii)] for more information.

3 Proving some of the facts

Proof of the fracture squares 2.15 See [3. Thm 6.19]. Indeed, we want to show that for any Z, the square:

is a homotopy pullback. Note the equivalence $L_{K(n)}=L_{K(n)} L_{n}=L_{n} L_{K(n)}$, since $K(n)$ local spectra are in particular L_{n}-local. The claim is equivalent to the induced map of vertical fibers (monochromatic layers) $M_{n} Z \rightarrow M_{n} L_{K(n)} Z$ being an equivalence, which is proved in [3, Thm 6.19].

Here is an alternate proof proposed by C. Rezk. First note that all four corners are L_{n}-local, because they are local with respect to some subwedge of $K(0) \vee \ldots \vee K(n)$. Therefore the vertical (or horizontal) fibers are also L_{n}-local and the induced map will be an equivalence if and only if it is a $K(0) \vee \ldots \vee K(n)$-equivalence. In other words, it suffices to check that the square is a homotopy pullback after smashing with $K(i)$, for $i=0, \ldots, n$.

For $i=0, \ldots, n-1$, the vertical maps are $K(i)$-equivalences, since they are the unit id $\rightarrow L_{n-1}$ applied to something, respectively L_{n} and $L_{K(n)}$. Thus after smashing with $K(i)$, the square is a homotopy pullback with vertical fibers $\simeq *$.

For $i=n$, the top map is a $K(n)$-equivalence since it is the unit id $\rightarrow L_{K(n)}$ applied to L_{n}. The bottom objects are $K(n)$-acyclic, as we show below. Thus after smashing with $K(n)$, the square is a homotopy pullback with horizontal fibers $\simeq *$.

Why is $L_{n-1} Z K(n)$-acyclic? Pick a type n complex X_{n}. Since X_{n} and $D X_{n}$ are $K(0) \wedge \ldots K(n-1)$-acyclic (by 2.9), we have:

$$
X_{n} \wedge L_{n-1} Z=\underline{F}\left(D X_{n}, L_{n-1} Z\right)=* .
$$

In $K(n)$-homology, we obtain:

$$
0=K(n)_{*}\left(X_{n} \wedge L_{n-1} Z\right)=K(n)_{*} X_{n} \otimes_{K(n) *} K(n)_{*} L_{n-1} Z
$$

which forces $K(n)_{*} L_{n-1} Z=0$ since we have $K(n)_{*} X_{n} \neq 0$. This concludes the proof of the first fracture square, and the second has a similar proof.

Proof of the factorizations 2.11] 1. [3, Prop 7.10 (e)].
2. Similar.

Proof of the telescope conjecture on L_{i}-local spectra 2.18, See [3, Cor 6.10]. Here is a sketch of an alternate proof.

First, the telescope conjecture holds (at all n) for $M U$, meaning $L_{n}^{f} M U \xrightarrow{\simeq} L_{n} M U$ is an equivalence [9. Thm 2.7 (iii)].

Second, the telescope conjecture holds for spectra of the form $M U \wedge Z$ for any Z. This is clear once we know L_{n} is smashing:

$$
\begin{aligned}
L_{n}^{f}(M U \wedge Z) & =L_{n}^{f} M U \wedge Z \\
& =L_{n} M U \wedge Z \\
& =L_{n}(M U \wedge Z)
\end{aligned}
$$

In fact, one can show directly the property: $L_{n}(M U \wedge Z) \simeq L_{n} M U \wedge Z$ without knowing that L_{n} is smashing. In particular, the telescope conjecture holds for all spectra of the form $L_{n} M U \wedge Z$.

By lemma 2.17, the telescope conjecture holds on the thick subcategory of the (homotopy) category of (p-local) spectra generated by spectra of the form $L_{n} M U \wedge Z$
for arbitrary Z. Call this thick subcategory \mathcal{T}. Note that \mathcal{T} is closed under smashing by anything.

To prove the claim, it suffices to show that for any $X, L_{n} X$ is in \mathcal{T}. It suffices to show $L_{n} S^{0}$ is in \mathcal{T}, because of the equivalence $L_{n} X=X \wedge L_{n} S^{0}$. Using the ($M U$-based) Adams-Novikov resolution of S^{0} and arguments similar to [3, Pf of Prop 6.5], one can show $L_{n} S^{0}$ is in \mathcal{T}.

In the statement of (TL), we used the following fact, which is a particular case of [3, Lem 7.2].

Proposition 3.1. $K(n)$ - and $E(n)$-localizations agree on any type n complex: $L_{n} X_{n}=$ $L_{K(n)} X_{n}$.

Proof. We show that the map $X_{n} \rightarrow L_{n} X_{n}$ is in fact a $K(n)$-localization. We know it is a $K(0) \vee \ldots \vee K(n)$-equivalence, in particular a $K(n)$-equivalence.

Remains to show that the target $L_{n} X_{n}$ is $K(n)$-local. We have $L_{n} X_{n}=X_{n} \wedge L_{n} S^{0}$ (just because X_{n} is finite and localizations preserve cofiber sequences [7, Prop 1.6]; no need to invoke the fact that L_{n} is smashing). Let W be $K(n)$-acyclic. We want to show $\left[W, X_{n} \wedge L_{n} S^{0}\right]=0$. But we have $\left[W, X_{n} \wedge L_{n} S^{0}\right]=\left[W \wedge D X_{n}, L_{n} S^{0}\right]=0$ since $W \wedge D X_{n}$ is $K(0) \vee \ldots \vee K(n)$-acyclic. Indeed, we have $K(n)_{*} W=0$ by assumption and $K(i)_{*}\left(D X_{n}\right)=0$ for $i=0, \ldots, n-1$ since $D X_{n}$ has type n, and thus $K(i)_{*}\left(W \wedge D X_{n}\right)=$ $K(i)_{*} W \otimes_{K(i) *} K(i)_{*}\left(D X_{n}\right)=0$ for $i=0, \ldots, n$.

Notation 3.2. Let $\operatorname{Thick}(X)$ denote the thick subcategory generated by a spectrum X. Similar notation for a set of spectra.

Lemma 3.3. If Z is in $\operatorname{Thick}(Y)$, then we have $\langle Z\rangle \leq\langle Y\rangle$.
Proof. Clearly we have $\langle Y\rangle \leq\langle Y\rangle$.
If Z_{1} is a retract of Z_{2} and W is Z_{2}-acyclic, then $Z_{1} \wedge W$ is a retract of $Z_{2} \wedge W \simeq *$ and so is contractible. In other words, W is also Z_{1}-acyclic, and we have $\left\langle Z_{1}\right\rangle \leq\left\langle Z_{2}\right\rangle$.

If $Z_{1} \rightarrow Z_{2} \rightarrow Z_{3}$ is a cofiber sequence and i, j, k is a permutation of $1,2,3$ satisfying $\left\langle Z_{j}\right\rangle \leq\langle Y\rangle$ and $\left\langle Z_{k}\right\rangle \leq\langle Y\rangle$, then we have $\left\langle Z_{i}\right\rangle \leq\left\langle Z_{j}\right\rangle \vee\left\langle Z_{k}\right\rangle \leq\langle Y\rangle \vee\langle Y\rangle=\langle Y\rangle$ [7]. Prop 1.23].

In the statement of (BF), we used the following fact.
Proposition 3.4. n-telescopes are all Bousfield equivalent. In other words, if X_{n} and Y_{n} are type n complexes with v_{n} self maps v and w, then we have $\left\langle v^{-1} X_{n}\right\rangle=\left\langle w^{-1} Y_{n}\right\rangle$.

Proof. X_{n} and Y_{n} generate the same thick subcategory and so are Bousfield equivalent by 3.3. Let us show that the telescopes $v^{-1} X_{n}$ and $w^{-1} Y_{n}$ also generate the same thick subcategory.

If Z_{1} is a retract of Z_{2} and the latter is in Thick $\left(Y_{n}\right)$ (i.e. finite complexes of type at least n) and such that its telescope $\operatorname{tel}\left(Z_{2}\right)$ is in $\operatorname{Thick}\left(\operatorname{tel}\left(Y_{n}\right)\right)$, then $\operatorname{tel}\left(Z_{1}\right)=L_{n}^{f} Z_{1}$ is a retract of tel $\left(Z_{2}\right)=L_{n}^{f} Z_{2}$ and so is in Thick $\left(\operatorname{tel}\left(Y_{n}\right)\right)$.

If $Z_{1} \rightarrow Z_{2} \rightarrow Z_{3}$ is a cofiber sequence where two of the objects are in Thick $\left(Y_{n}\right)$ and such that their telescopes are in $\operatorname{Thick}\left(\operatorname{tel}\left(Y_{n}\right)\right)$, then telescoping yields the cofiber
sequence $L_{n}^{f} Z_{1} \rightarrow L_{n}^{f} Z_{2} \rightarrow L_{n}^{f} Z_{3}$ so that the telescope tel $\left(Z_{i}\right)$ of the third object Z_{i} is also in $\operatorname{Thick}\left(\operatorname{tel}\left(Y_{n}\right)\right)$.

Since X_{n} is in Thick $\left(Y_{n}\right)$, the above discussion shows tel $\left(X_{n}\right)$ is in $\operatorname{Thick}\left(\operatorname{tel}\left(Y_{n}\right)\right)$.

References

[1] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, vol. 17, University of Chicago Press, Chicago, IL, 1974.
[2] Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory II, Ann. of Math. (2) 148 (1998), 1-49.
[3] Mark Hovey and Neil P. Strickland, Morava K-theories and localisation, Mem. Amer. Math. Soc., vol. 139, AMS, 1999.
[4] Mark Mahowald, Douglas Ravenel, and Paul Shick, The triple loop space approach to the telescope conjecture, Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemporary Mathematics, vol. 271, AMS, Providence, RI, 2001, pp. 217-284.
[5] Haynes Miller, Finite localizations: Papers in honor of José Adem (Spanish), Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 383-389.
[6] Stephen A. Mitchell, Finite complexes with A(n)-free cohomology, Topology 24 (1985), no. 2, 227-246.
[7] Douglas C. Ravenel, Localization with respect to certain periodic homology theories, American Journal of Mathematics 106 (1984), no. 2, $351-414$.
[8] ___, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1992.
[9] , Life after the telescope conjecture, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 205-222.

