The monoidal fibered category of Beck modules

Martin Frankland University of Regina

Algebraic Topology Seminar Princeton University March 25, 2021

Motivation: Quillen (co)homology

Beck modules

Tensor product of Beck modules

Simplicial Beck modules

André–Quillen (co)homology

- Cohomology theory for commutative rings.
- Developed by André and Quillen in the 1960s.
- Non-additive derived functors constructed using simplicial methods.
- Used to solve problems in commutative algebra and algebraic geometry.
- Makes sense for any algebraic structure.

Applications in topology

A sampler of applications in topology.

- Unstable Adams spectral sequence (Miller, Goerss).
- Realization and classification problems (Goerss-Hopkins-Miller, Blanc, Blanc-Dwyer-Goerss, F., Biedermann-Raptis-Stelzer).
- Higher homotopy operations (Baues–Blanc, Blanc–Johnson–Turner).
- Knot theory: Quillen homology of racks and quandles (Szymik, Berest).

Goals

Previous work (F. 2015): Comparing Quillen (co)homology in categories related by an adjunction

 $F: \mathcal{C} \rightleftharpoons \mathcal{D}: G.$

The focus was on $\mathrm{HQ}_*(X)$ and $\mathrm{HQ}^*(X;M)$ for an object X.

Goals

- 1. Deal with $\operatorname{HQ}_*(X; M)$ for any coefficient module M. \rightsquigarrow Need the tensor product of Beck modules.
- 2. Deal with a simplicial object X_{\bullet} in sC and simplicial module M_{\bullet} over it.

Motivation: Quillen (co)homology

Beck modules

Tensor product of Beck modules

Simplicial Beck modules

Setup

Throughout, we will work with an "algebraic" category \mathcal{C} .

Definition. An algebraic theory is a small category \mathcal{T} with finite products. A model for the theory \mathcal{T} is a functor $M: \mathcal{T} \to \text{Set}$ that preserves finite products.

Definition. A category is **algebraic** if it is equivalent to the category $Model(\mathcal{T})$ of models for some algebraic theory \mathcal{T} .

Characterization

Theorem (Lawvere 1963 & more). For a category C, the following are equivalent.

- 1. ${\mathcal C}$ is algebraic.
- 2. C is cocomplete, has a set of finitely presentable projective generators, and is exact (in the sense of Barr).
- 3. C is a many-sorted finitary variety of algebras, a.k.a. "equational class".
- 4. C is the category of algebras for a finitary monad $T: \operatorname{Set}^S \to \operatorname{Set}^S$ for some set S.

Example. Your favorite algebraic structures: sets, monoids, groups, abelian groups, rings, commutative rings, *R*-modules, Lie algebras, chain complexes, DG-algebras, etc.

Beck modules

Definition (Beck 1967). For an object X in C, a **Beck module** over X is an abelian group object in the slice category C/X.

The category of Beck modules is sometimes denoted

$$\operatorname{Mod}(X) := (\mathcal{C}/X)_{\operatorname{ab}}.$$

Definition. The abelianization over X

 $Ab_X \colon \mathcal{C}/X \to (\mathcal{C}/X)_{\mathrm{ab}}$

is the left adjoint of the forgetful functor

 $U_X \colon (\mathcal{C}/X)_{\mathrm{ab}} \to \mathcal{C}/X.$

Quillen (co)homology

Definition. Let X be an object of \mathcal{C} and M a module over X.

• The cotangent complex \mathbf{L}_X of X is the derived abelianization of X, i.e., the simplicial module over X given by

$$\mathbf{L}_X := Ab_X(C_{\bullet} \to X)$$

where $C_{\bullet} \to X$ is a cofibrant replacement of X in sC. • Quillen homology of X is

$$\mathrm{HQ}_n(X) := \pi_n(\mathbf{L}_X).$$

If the category Mod(X) has a good notion of tensor product \otimes , then Quillen homology with coefficients in M is

$$\mathrm{HQ}_n(X;M) := \pi_n(\mathbf{L}_X \otimes M).$$

• Quillen cohomology of X with coefficients in M is the derived functors of derivations:

$$\operatorname{HQ}^{n}(X; M) := \pi^{n} \operatorname{Hom}(\mathbf{L}_{X}, M).$$
^{10/36}

Pullback and pushforward

Definition. The pullback functor $f^* \colon \mathcal{C}/Y \to \mathcal{C}/X$ induces a functor

 $f^* \colon \operatorname{Mod}(Y) \to \operatorname{Mod}(X)$

also called the **pullback**. Its left adjoint

 $f_! \colon \operatorname{Mod}(X) \to \operatorname{Mod}(Y)$

is called the **pushforward** along f.

pullback = "restriction of scalars"
pushforward = "extension of scalars"

Rings

 $C = Alg_k$, the category of (associative, unital) k-algebras. For a k-algebra A:

 $\operatorname{Mod}(A) \cong {}_{A}\operatorname{Bimod}_{A}.$

A Beck module over A is a split extension of A with square zero kernel:

$$0 \longrightarrow M \longrightarrow A \oplus M \xrightarrow{p} A \longrightarrow 0.$$

The two actions on M are given by

$$(a,m)(a',m')=(aa',a\cdot m'+m\cdot a')$$

and they coincide for scalars in k.

Rings, cont'd

For a map of k-algebras $f: A \to B$, the pushforward functor is

$$f_{!} \colon \operatorname{Mod}(A) \to \operatorname{Mod}(B)$$
$$f_{!}(M) = B \otimes_{A} M \otimes_{A} B.$$

The A-bimodule $Ab_A A$ is the kernel of the multiplication map:

$$Ab_A A = I_A := \ker(A \otimes_k A \xrightarrow{\mu} A).$$

Proposition (Barr 1967). Quillen cohomology in Alg_k is (up to shift) Shukla cohomology, a.k.a. derived Hochschild cohomology:

$$HQ^{n}(A; M) = \begin{cases} Der_{k}(A, M) & n = 0\\ H^{n+1}(A; M) & n > 0. \end{cases}$$

Commutative rings

 $\mathcal{C} = \mathrm{Alg}_k$, the category of commutative k-algebras.

For a commutative k-algebra A:

 $Mod(A) \cong Mod_A$ in the usual sense.

Same correspondence as for algebras, except that $A \oplus M$ must be commutative. This forces the two actions to coincide:

 $a \cdot m = m \cdot a.$

Commutative rings, cont'd

For a map of commutative k-algebras $f \colon A \to B$, the pushforward functor is

$$f_! \colon \operatorname{Mod}(A) \to \operatorname{Mod}(B)$$
$$f_!(M) = B \otimes_A M.$$

The A-module $Ab_A A$ is:

$$Ab_A A = I_A / I_A^2 = \Omega_{A/k},$$

the module of Kähler differentials. It represents k-derivations:

 $\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A, M).$

Groups

 $\mathcal{C} = \mathrm{Gp}$, the category of groups.

For a group G:

$$\operatorname{Mod}(G) \cong G - \operatorname{Mod}$$
 in the usual sense
 $\cong \mathbb{Z}G - \operatorname{Mod}.$

A Beck module over G is a split extension of G with abelian kernel:

$$1 \longrightarrow K \longrightarrow G \ltimes K \xrightarrow[e]{p} G \longrightarrow 1.$$

The G-action on K is given by $e(g)k = (g, g \cdot k)$. In other words:

$$(g,k)(g',k') = (gg',k+g\cdot k').$$

Groups, cont'd

For a map of groups $f: G \to H$, the pushforward functor is

$$f_! \colon \operatorname{Mod}(G) \to \operatorname{Mod}(H)$$
$$f_!(M) = \mathbb{Z}H \otimes_{\mathbb{Z}G} M.$$

The *G*-module Ab_GG is the augmentation ideal:

$$Ab_G G = I_G = \ker(\mathbb{Z}G \xrightarrow{\epsilon} \mathbb{Z}).$$

Proposition (Barr–Beck 1966). Quillen cohomology in Gp is (up to a shift) group cohomology:

$$\mathrm{HQ}^{n}(G; M) = \begin{cases} \mathrm{Der}(G, M) & n = 0\\ H^{n+1}(G; M) & n > 0 \end{cases}$$

where Der(G, M) denotes crossed homomorphisms $G \to M$.

Abelian groups

 $\mathcal{C} = Ab$, the category of abelian groups.

For an abelian group A:

$$Mod(A) \cong Ab.$$

Same correspondence as for groups, except that $A \ltimes K$ must be abelian. This forces the A-action on K to be trivial:

$$a \cdot k = k.$$

More generally:

Example (Beck 1967). In an additive category \mathcal{A} with finite limits, Beck modules over any object X are:

$$\operatorname{Mod}(X) \cong \mathcal{A}$$

 $(p \colon E \twoheadrightarrow X) \mapsto \ker(p).$

Fibered category

The assignment

$$\operatorname{Mod}(-) \colon \mathcal{C}^{\operatorname{op}} \to \operatorname{AbCat}$$

sending an object X to its category of Beck modules Mod(X) and a map $f: X \to Y$ to the pullback functor $f^*: Mod(Y) \to Mod(X)$ is a pseudo-functor: $(gf)^* \cong f^*g^*$.

Definition. The Grothendieck construction of the pseudo-functor Mod(-) yields a fibered category

 $\pi\colon \mathrm{Mod}\mathcal{C}\to\mathcal{C}$

called the **fibered category of Beck modules** over C, a.k.a. the **tangent category** of C, denoted $TC \to C$.

An object of $Mod\mathcal{C}$ is (X, M), where M is a module over X.

Remark. ∞ -categorical analogue using stabilization instead of abelianization (Lurie 2011, Harpaz–Nuiten–Prasma 2019).

Fibered category (cont'd)

Example. 1. For \mathcal{A} additive with finite limits:

 $T\mathcal{A}\cong \mathcal{A}\times \mathcal{A}.$

- 2. TGp $\cong \Pi$ Alg₁², the category of 2-truncated Π -algebras.
- 3. $TAlg_k \cong grAlg_k^{\leq 1}$, the category of graded algebras concentrated in degrees 0 and 1.
- 4. $T \operatorname{Com}_k \cong \operatorname{grCom}_k^{\leq 1}$.

Motivation: Quillen (co)homology

Beck modules

Tensor product of Beck modules

Simplicial Beck modules

Common tensor products

- For a commutative ring R, the tensor product of R-modules is the usual tensor product $M \otimes_R N$.
- For a k-algebra A, the tensor product of A-bimodules is $M \otimes_A N$.
- For a group G, the tensor product of G-modules is $M\otimes_{\mathbb{Z}} N$ with diagonal action

$$g \cdot (m \otimes n) = (gm) \otimes (gn).$$

Goal

Find a categorical construction of the tensor product of Beck modules that recovers those examples (and more).

Remark. Because of the example of *A*-bimodules, don't expect a *symmetric* monoidal structure.

Commutative theories

Definition. An algebraic theory \mathcal{T} is **commutative** if (roughly) every operation is a homomorphism of the algebraic structure.

Example. 1. The theory \mathcal{T}_{Gp} of groups is not commutative. The multiplication map

$$G \times G \xrightarrow{\mu} G$$

is a group homomorphism if and only if G is abelian.

- 2. The theory \mathcal{T}_{Ab} of abelian groups is commutative.
- 3. The theory \mathcal{T}_{Com} of commutative rings is not commutative. The addition map

$$R \times R \xrightarrow{+} R$$

is not a ring homomorphism.

4. For a given commutative ring R, the theory $\mathcal{T}_{\operatorname{Mod}_R}$ of R-modules is commutative.

Tensor product of models

Theorem (Keigher 1978). If \mathcal{T} is a commutative theory, then $Model(\mathcal{T})$ admits a symmetric monoidal structure characterized by

 $\operatorname{Model}(\mathcal{T})(A \otimes B, C) \cong \mathcal{T} - \operatorname{Bihom}(A \times B, C).$

Here, a bihomomorphism is a function $f: A \times B \to C$ that preserves the operations in each variable.

Example. For the theories \mathcal{T}_{Ab} and \mathcal{T}_{Mod_R} , this recovers the usual tensor product.

Can be generalized to \mathcal{V} -valued models $Model(\mathcal{T}; \mathcal{V})$ where \mathcal{V} is itself symmetric monoidal.

A naive approach

Can we tensor abelian group objects? For an object X in \mathcal{C} :

$$\begin{aligned} (\mathcal{C}/X)_{ab} &\cong \operatorname{Model}(\mathcal{T}_{Ab}; \mathcal{C}/X) \\ &\cong \operatorname{Model}\left(\mathcal{T}_{Ab}; \operatorname{Model}(\mathcal{T}_{\mathcal{C}/X})\right) \\ &\cong \operatorname{Model}(\mathcal{T}_{Ab} \otimes \mathcal{T}_{\mathcal{C}/X}; \operatorname{Set}). \end{aligned}$$

The theory of Beck modules over X

$$\mathcal{T}_{\mathrm{Mod}(X)} = \mathcal{T}_{\mathrm{Ab}} \otimes \mathcal{T}_{\mathcal{C}/X}$$

is not commutative in general.

For a non-commutative theory, the tensor product of models still makes sense, but it imposes too many equations!

Too much commutativity

Example. "Over a non-commutative ring R, you shouldn't tensor two left R-modules." What if I want to:

$$M \boxtimes N := M \otimes_{\mathbb{Z}} N / \langle (rm) \otimes n - m \otimes (rn) \rangle$$
$$= q^* \left((R_{\text{com}} \otimes_R M) \otimes_{R_{\text{com}}} (R_{\text{com}} \otimes_R N) \right)$$

where $R_{\text{com}} = R/[R, R]$ and $q: R \rightarrow R_{\text{com}}$ is the quotient map.

A similar phenomenon happens with A-bimodules and G-modules.

Pointwise tensor product

For a group G:

 $G - Mod \cong Fun(BG, Ab)$

where BG denotes the one-object groupoid. The tensor product of G-modules agrees with the pointwise tensor product in Fun(BG, Ab).

Definition. A category C has **representable Beck modules** if for all object X in C:

 $Mod(X) \cong Fun(J_X, Ab)$

for some small category J_X , pseudo-functorial in X.

Pointwise tensor product (cont'd)

- **Example.** Sets, groups, abelian groups, and monoids have representable Beck modules.
 - Rings and commutative rings do not have representable Beck modules.

Desiderata

- If \mathcal{C} has Beck modules $Mod(X) \cong Fun(J_X, Ab)$, expect the tensor product to be the pointwise tensor product.
- If \mathcal{C} has Beck modules $\operatorname{Mod}(X) \cong \operatorname{Mod}_{R_X}$ for some (pseudo-functorial) commutative ring R_X , expect the tensor product to be the usual tensor product $M \otimes_{R_X} N$.

Monoidal properties

For commutative rings, extension of scalars $f_!M = S \otimes_R M$ is strong monoidal and (hence) restriction of scalars f^* is lax monoidal.

Don't expect pushforwards $f_!: \operatorname{Mod}(X) \to \operatorname{Mod}(Y)$ to be strong monoidal in general, since this is not the case for A-bimodules and *G*-modules.

Other features to look for:

• Projection formula?

 $f_!(f^*M\otimes N)\to M\otimes f_!N$

• Wirthmüller context?

Motivation: Quillen (co)homology

Beck modules

Tensor product of Beck modules

Simplicial Beck modules

Quillen model structure

Quillen constructed a standard model structure on simplicial objects $s\mathcal{C}$. A map $f_{\bullet} \colon X_{\bullet} \to Y_{\bullet}$ in $s\mathcal{C}$ is a:

• fibration (resp. weak equivalence) if for every projective object P of C, the map:

$$\operatorname{Hom}_{\mathcal{C}}(P, X_{\bullet}) \xrightarrow{f_*} \operatorname{Hom}_{\mathcal{C}}(P, Y_{\bullet})$$

is a fibration (resp. weak equivalence) of simplicial sets.

• *cofibration* if it has the left lifting property with respect to all trivial fibrations.

More concretely: For C an algebraic category, the model structure is right-induced along the forgetful functor

$$U: s\mathcal{C} \to s(\operatorname{Set}^S) = (s\operatorname{Set})^S.$$

For instance, a simplicial ring has an underlying simplicial set.

Nice simplicial objects

Definition. A complete and cocomplete category C has nice simplicial objects if sC admits Quillen's standard model structure.

Theorem (Quillen 1967). Any quasi-algebraic category has nice simplicial objects.

Proposition. If C has nice simplicial objects and sC is cofibrantly generated, then TC has nice simplicial objects.

Homotopy theory of simplicial modules

Proposition. The category of Beck modules over a simplicial object X_{\bullet} in $s\mathcal{C}$

$$\operatorname{Mod}(X_{\bullet}) = (s\mathcal{C}/X_{\bullet})_{\mathrm{ab}}$$

admits the model structure right-induced along the forgetful functor

$$U_{X_{\bullet}}: (s\mathcal{C}/X_{\bullet})_{\mathrm{ab}} \to s\mathcal{C}/X_{\bullet}.$$

Recovers the model structure on simplicial modules over a simplicial commutative ring R_{\bullet} (Quillen 1967, Schwede 1997).

Lemma. There is an equivalence of categories $sT\mathcal{C} \cong T(s\mathcal{C})$ exhibiting $sT\mathcal{C}$ as the tangent category of \mathcal{C} :

Simplicial modules (cont'd)

More explicitly: A module over X_{\bullet} is the same as a module M_n over X_n for each $n \ge 0$ together with face maps $d_i \colon M_n \to M_{n-1}$ that are maps of modules over the face maps $d_i \colon X_n \to X_{n-1}$, and likewise for degeneracies.

Lemma. The standard model structure on sTC restricts to each fiber $(sC/X_{\bullet})_{ab}$ to the model structure induced from that of sC/X_{\bullet} .

Proposition. Under the identification $sT\mathcal{C} \cong T(s\mathcal{C})$, the standard model structure on $sT\mathcal{C}$ corresponds to the integral model structure on $T(s\mathcal{C})$ in the sense of Harpaz–Prasma (2015).

Future steps

Develop tools to compute $HQ_*(X_{\bullet}; M_{\bullet})$ and $HQ^*(X_{\bullet}; M_{\bullet})$ analogous to Quillen's work:

- Transitivity sequence
- Flat base change
- Künneth and universal coefficient spectral sequences.

Thank you!