Quillen cohomology of divided power algebras over an operad

> Martin Frankland University of Regina

Joint with Ioannis Dokas and Sacha Ikonicoff

Prairie Mathematics Colloquium November 7, 2024

[Introduction](#page-1-0)

[Quillen cohomology](#page-5-0)

[Divided power algebras \(classical\)](#page-21-0)

[Restricted Lie algebras](#page-26-0)

[Operads](#page-30-0)

[Divided power algebras \(operadic\)](#page-40-0)

Overview

...

André–Quillen (co)homology

- Cohomology theory for commutative rings.
- Developed by André and Quillen in the 1960s.
- Non-additive derived functors constructed using simplicial methods.
- Used to solve problems in commutative algebra and algebraic geometry.
- Makes sense for any algebraic structure.

Applications in topology

A sampler of applications in topology.

- Unstable Adams spectral sequence (Miller, Goerss).
- Obstruction theory for ring spectra (Goerss–Hopkins–Miller, Lurie)
- Realization and classification problems (Blanc, Blanc–Dwyer–Goerss, F., Biedermann–Raptis–Stelzer).
- Higher homotopy operations (Baues–Blanc, Blanc–Johnson–Turner).
- Knot theory: Quillen homology of racks and quandles (Szymik, Berest).

Outline

[Introduction](#page-1-0)

[Quillen cohomology](#page-5-0)

[Divided power algebras \(classical\)](#page-21-0)

[Restricted Lie algebras](#page-26-0)

[Operads](#page-30-0)

[Divided power algebras \(operadic\)](#page-40-0)

Cohomology in algebra

Cohomology theories for algebraic structures:

- Group cohomology
- Lie algebra cohomology
- Hochschild cohomology of associative algebras
- André-Quillen cohomology of commutative rings

• etc.

Unified approach: Barr–Beck triple cohomology, based on simplicial resolutions (1969).

Put into the framework of model categories by Quillen (1967).

Idea: cohomology \approx derived functors of derivations.

Beck modules

Setup: An "algebraic" category C , e.g., groups, abelian groups, rings, commutative rings, R-modules, Lie algebras, etc.

Need a good notion of *coefficient module M* over X :

 $H^*(X;M).$

Definition (Beck 1967). For an object X in a category \mathcal{C} , a Beck **module** over X is an abelian group object in the slice category \mathcal{C}/X .

Denote the category of Beck modules over X

 $Mod(X) := (\mathcal{C}/X)_{ab}.$

Pullback and pushforward

Definition. The pullback functor $f^* : C/Y \to C/X$ induces a functor

```
f^* \colon \text{Mod}(Y) \to \text{Mod}(X)
```
also called the **pullback**.

Its left adjoint

```
f_! \colon \mathrm{Mod}(X) \to \mathrm{Mod}(Y)
```
is called the **pushforward** along f .

pullback = "restriction of scalars" pushforward = "extension of scalars"

Groups

 $\mathcal{C} = Gp$, the category of groups.

For a group G :

$$
Mod(G) \cong G
$$
-modules in the usual sense

$$
\cong \mathbb{Z}G
$$
-Mod.

A Beck module over G is a split extension of G with abelian kernel:

$$
1 \longrightarrow K \longrightarrow G \ltimes K \xleftarrow{p} G \longrightarrow 1.
$$

The G-action on K is given by $e(g)k = (g, g \cdot k)$. In other words:

$$
(g,k)(g',k') = (gg',k+g\cdot k').
$$

Groups, cont'd

For a map of groups $f: G \to H$, the pushforward functor is

 $f_! \colon \mathrm{Mod}(G) \to \mathrm{Mod}(H)$ $f_!(M) = \mathbb{Z}H \otimes_{\mathbb{Z}G} M$.

Rings

 $C = Alg_{k}$, the category of (unital) algebras over a commutative ring k.

For a k-algebra A:

$$
Mod(A) \cong {}_A \text{Bimod}_A.
$$

A Beck module over A is a split extension of A with square zero kernel:

$$
0 \longrightarrow M \longrightarrow A \oplus M \xrightarrow{s} A \longrightarrow 0.
$$

The two actions on M are given by

$$
(a,m)(a',m')=(aa',a\cdot m'+m\cdot a')
$$

and they coincide for scalars in k.

Rings, cont'd

For a map of k-algebras $f: A \rightarrow B$, the pullback functor

 $f^* \colon \text{Mod}(B) \to \text{Mod}(A)$

is the usual restriction of scalars:

$$
a \cdot m \cdot a' \coloneqq f(a) \cdot m \cdot f(a').
$$

The pushforward functor is

$$
f_! \colon \text{Mod}(A) \to \text{Mod}(B)
$$

$$
f_!(M) = B \otimes_A M \otimes_A B.
$$

Commutative rings

 $C = \text{Com}_{\mathbb{k}}$, the category of commutative k-algebras.

For a commutative k-algebra A:

 $Mod(A) \cong Mod_A$ in the usual sense.

Same correspondence as for algebras, except that $A \oplus M$ must be commutative. This forces the two actions to coincide:

 $a \cdot m = m \cdot a$.

For a map of commutative k-algebras $f: A \rightarrow B$, the pushforward functor is extension of scalars:

> $f_! \colon \text{Mod}(A) \to \text{Mod}(B)$ $f_!(M) = B \otimes_A M$.

Remark. The notion of Beck module depends on the ambient category! A Beck module over A in Com_k is **not** the same as in $\mathrm{Alg}_{\Bbbk}.$

Lie algebras

 $k = a$ field.

 $C = Lie_{\mathbb{k}}$, the category of Lie algebras over \mathbb{k} .

For a Lie algebra L:

 $Mod(L) \cong L$ -modules in the usual sense $\cong U(L)$ -Mod

where $U(L)$ is the universal enveloping algebra of L.

A Beck module over L is a split extension of L with abelian kernel:

$$
0 \longrightarrow M \longrightarrow L \oplus M \xrightarrow{s} L \longrightarrow 0
$$

with $[m, m'] = 0$ for all $m, m' \in M$.

Lie algebras (cont'd)

The action of L on M is given by

$$
[(\ell, 0), (0, m)] = (0, \ell \cdot m),
$$

which satisfies

$$
[\ell,\ell']\cdot m=\ell\cdot(\ell'\cdot m)-\ell'\cdot(\ell\cdot m).
$$

Universal enveloping algebra

Usually, the category of Beck modules over X is equivalent to (left) modules over a ring $\mathbb{U}_{\mathcal{C}}(X)$, called the **universal enveloping** algebra of X :

 $Mod(X) \cong \mathbb{U}_{\mathcal{C}}(X)$ -Mod.

Examples of universal enveloping algebras:

- 1. For a group G, the group ring $\mathbb{U}_{\mathrm{Gp}}(G) = \mathbb{Z}G$.
- 2. For a ring A, the enveloping ring $\mathbb{U}_{\mathrm{Alg}_{\mathbb{Z}}}(A) = A \otimes A^{\mathrm{op}}$.
- 3. For a commutative ring R, the ring itself $\mathbb{U}_{\text{Com}_{\mathbb{Z}}}(R) = R$.
- 4. For a Lie algebra L over k, the (classical) universal enveloping algebra $\mathbb{U}_{\mathrm{Lie}_\Bbbk}(L) = U(L)$.

Derivations and differentials

Definition. A derivation of X with coefficients in a Beck module $p: E \to X$ is a section of p:

The abelian group of derivations is

$$
\begin{aligned} \text{Der}(X, E) &:= \text{Hom}_{\mathcal{C}/X}(X \xrightarrow{\text{id}} X, E \xrightarrow{p} X) \\ &\cong \text{Hom}_{(\mathcal{C}/X)_{\text{ab}}}(Ab_X(X \xrightarrow{\text{id}} X), E \xrightarrow{p} X), \end{aligned}
$$

where $Ab_X: \mathcal{C}/X \to (\mathcal{C}/X)_{ab}$ is the **abelianization** functor, i.e., the left adjoint to the forgetful functor $(\mathcal{C}/X)_{ab} \to \mathcal{C}/X$.

The module of Kähler differentials is $\Omega_{\mathcal{C}}(X) = Ab_X X$, which represents derivations.

Example: Commutative rings

Take $C = \text{Com}_k$. Given a commutative k-algebra A and an A-module M , a k-linear map

$$
(\mathrm{id}, f) \colon A \to A \oplus M
$$

is a (unital) ring homomorphism if and only if

$$
\begin{cases}\nf(1_A) = 0 \\
f(ab) = a \cdot f(b) + f(a) \cdot b \quad \text{we} \\
\text{Leibniz rule.}\n\end{cases}
$$

 $Der(A, M) =$ derivations in the usual sense. The A-module Ab_AA is:

$$
Ab_A A = I_A / I_A^2 = \Omega_{A/k},
$$

where $I_A = \ker(\mu: A \otimes_{\mathbb{k}} A \to A)$. Classical module of Kähler differentials, which represents k-derivations:

$$
\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A, M).
$$

Geometric interpretation

Analogy:

Kähler differentials in algebraic geometry OO ľ differential 1-forms in differential geometry

Example. 1. $A = \mathbb{k}[x, y]$ $\Omega_{A/\Bbbk} \cong \{p \, dx + q \, dy \mid p, q \in \Bbbk[x, y]\}$ $\cong A \langle dx, dy \rangle$ free A-module.

2.
$$
A = \mathbb{k}[x, y]/(f)
$$

$$
\Omega_{A/\mathbb{k}} \cong A \langle dx, dy \rangle / \langle \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \rangle.
$$

Quillen (co)homology

Quillen homology of $X \approx$ (simplicially) derived functors of Kähler differentials.

Quillen cohomology of X with coefficients in a module $M \approx$ (simplicially) derived functors of derivations with coefficients in M.

The "package":

- 1. Beck modules
- 2. Universal enveloping algebra
- 3. Derivations
- 4. Kähler differentials

[Introduction](#page-1-0)

[Quillen cohomology](#page-5-0)

[Divided power algebras \(classical\)](#page-21-0)

[Restricted Lie algebras](#page-26-0)

[Operads](#page-30-0)

[Divided power algebras \(operadic\)](#page-40-0)

Divided power algebras

Introduced by Cartan in the 1950s. Appear in positive characteristic.

Divided power operations \approx operations γ_n that look like $\gamma_n(x) = \frac{x^n}{n!}$ $\frac{x^n}{n!}$. More precisely...

Divided power algebras (cont'd)

Definition. Let A be a commutative k-algebra. A system of divided powers on an ideal $I \subseteq A$ is a collection of maps $\gamma_i \colon I \to A$ for $i \geq 0$ satisfying:

$$
\gamma_0(a) = 1
$$

\n
$$
\gamma_1(a) = a
$$

\n
$$
\gamma_i(a) \in I, i \ge 1
$$

\n
$$
\gamma_i(a+b) = \sum_{k=0}^{k=i} \gamma_k(a)\gamma_{i-k}(b), a, b \in I, i \ge 0
$$

\n
$$
\gamma_i(ab) = a^i \gamma_i(b), a \in A, i \ge 0
$$

\n
$$
\gamma_i(a)\gamma_j(a) = \frac{(i+j)!}{i!j!} \gamma_{i+j}(a), a \in I, i, j \ge 0
$$

\n
$$
\gamma_i(\gamma_j(a)) = \frac{(ij)!}{i!(j!)^i} \gamma_{ij}(a), a \in I, i \ge 0, j \ge 1.
$$

Usually A has an augmentation $\epsilon: A \to \Bbbk$ and $I = \ker(\epsilon)$.

Examples

Example. The free divided power algebra over \mathbb{Z} on one generator x is

$$
\mathbb{Z}[x,\frac{x^2}{2},\ldots,\frac{x^n}{n!},\ldots] \subset \mathbb{Q}[x].
$$

Example. Over a field k of characteristic 0, divided powers must in fact be given by

$$
\gamma_n(x) = \frac{x^n}{n!}.
$$

 \rightarrow No additional structure in that case.

In positive characteristic

Proposition (Soublin 1987). Over a field k of characteristic $p > 0$, a system of divided power operations is the same data as just the operation $\pi = \gamma_p : I \to I$ satisfying:

$$
a^{p} = 0, \ a \in I
$$

$$
\pi(a+b) = \pi(a) + \pi(b) + \sum_{k=1}^{k=p-1} \frac{(-1)^{k}}{k} a^{k} b^{p-k}, \ a, b \in I
$$

$$
\pi(ab) = 0, \ a, b \in I
$$

$$
\pi(\lambda a) = \lambda^{p} \pi(a), \ a \in I, \lambda \in \mathbb{k}.
$$

Note: The operation π is non-additive!

Theorem (Dokas 2009). Worked out the "package" for divided power algebras over a field $\&$ of characteristic $p > 0$.

[Introduction](#page-1-0)

[Quillen cohomology](#page-5-0)

[Divided power algebras \(classical\)](#page-21-0)

[Restricted Lie algebras](#page-26-0)

[Operads](#page-30-0)

[Divided power algebras \(operadic\)](#page-40-0)

Restricted Lie algebras

Over a field k of characteristic $p > 0$, Lie algebras usually come with extra structure, that of a *restricted* Lie algebra.

Textbook account in Jacobson (1962).

Important in topology. See work of Milnor–Moore, May, Rector, Bousfield, Curtis, Priddy, etc. in the 1960s.

Restricted Lie algebras (cont'd)

Definition. A restricted Lie algebra L over \mathbbk is a Lie algebra together with a map $(-)^{p}$: $L \to L$ called the *p*-map satisfying:

$$
(\alpha x)^{[p]} = \alpha^p x^{[p]}, \ \alpha \in \mathbb{k}
$$

$$
[x, y^{[p]}] = [\cdots [x, y], y], \cdots, y]
$$

$$
(x + y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x, y)
$$

where $is_i(x, y)$ is the coefficient of λ^{i-1} in $\text{ad}_{\lambda x+y}^{p-1}(x)$.

Here $ad_x: L \to L$ denotes the adjoint representation $\mathrm{ad}_x(y) \coloneqq [y, x], x, y \in L.$

Example. For $p = 2$, the last equation becomes: $(x + y)^{[2]} = x^{[2]} + [x, y] + y^{[2]}.$

Examples

Example. For a k-algebra A , the underlying restricted Lie algebra of A has the commutator bracket

$$
[x, y] = xy - yx
$$

and the p^{th} power map

$$
x^{[p]} = x^p.
$$

Example. The free restricted Lie algebra on a k-vector space V is the subspace

 $L^r(V) \subseteq T(V)$

obtained by taking V and closing it under commutators and pth powers.

Theorem (Dokas 2004). Worked out the "package" for restricted Lie algebras over a field k of characteristic $p > 0$.

[Introduction](#page-1-0)

[Quillen cohomology](#page-5-0)

[Divided power algebras \(classical\)](#page-21-0)

[Restricted Lie algebras](#page-26-0)

[Operads](#page-30-0)

[Divided power algebras \(operadic\)](#page-40-0)

Operads in sets

Idea: Encode a type of algebraic structure as

 $P(n) = \{$ the allowed *n*-ary operations $\}.$

Definition. A (symmetric) **operad** in sets $\mathcal{P} = {\mathcal{P}(n)}_{n\geq0}$ is a sequence of sets $P(n)$ with a right action of the symmetric group Σ_n together with composition maps

$$
\circ \colon \mathcal{P}(k) \times \mathcal{P}(n_1) \times \cdots \times \mathcal{P}(n_k) \to \mathcal{P}(n_1 + \cdots + n_k)
$$

and a unit $\eta \in \mathcal{P}(1)$ such that composition is associative, unital, and equivariant.

Algebras over operads

Example. For any set X , the endomorphism operad of X is:

$$
\begin{cases}\n\text{End}_X(n) := \text{Hom}(X^n, X) \\
\circ = \text{ usual composition} \\
\eta = \text{id}_X \in \text{Hom}(X, X) \\
\Sigma_n \text{ acts by permuting the factors of } X^n.\n\end{cases}
$$

Definition. A \mathcal{P} -algebra is a set X equipped with action maps $\alpha_n \colon \mathcal{P}(n) \to \text{Hom}(X^n, X)$

compatible with composition, unit, and equivariance. In other words, an operad map

$$
\alpha\colon \mathcal{P}\to \mathrm{End}_X\,.
$$

Each *n*-ary operation symbol $\mu \in \mathcal{P}(n)$ yields an actual *n*-ary operation on X.

Examples

Example. The (unital) associative operad:

$$
As^{un}(n) = \Sigma_n, n \ge 0.
$$

 $As^{un}-algebra = monoid.$

Example. The (non-unital) associative operad:

As(n) =
$$
\begin{cases} \Sigma_n, & n \ge 1 \\ \emptyset, & n = 0. \end{cases}
$$

 $As-algebra = semigroup.$

Examples (cont'd)

Example. The (unital) commutative operad:

Com^{un} $(n) = *$, $n > 0$.

 $Com^{un}-algebra = commutative monoid.$

Example. The (non-unital) commutative operad:

$$
Com(n) = \begin{cases} *, & n \ge 1 \\ \emptyset, & n = 0. \end{cases}
$$

 $Com-algebra = commutative semigroup.$

Operads in vector spaces

What if we want k-vector spaces equipped with operations?

Instead of working in (Set, \times), work in (Vect_k, $\otimes_{\mathbb{k}}$).

 \rightarrow Replace the Cartesian product \times with the tensor product \otimes _k everywhere.

Definition. A (symmetric) **operad** in k-vector spaces $P = {\mathcal{P}(n)}_{n\geq 0}$ is a sequence of k-vector spaces $\mathcal{P}(n)$ with a right action of the symmetric group Σ_n together with composition maps

$$
\circ \colon \mathcal{P}(k) \otimes_{\Bbbk} \mathcal{P}(n_1) \otimes_{\Bbbk} \cdots \otimes_{\Bbbk} \mathcal{P}(n_k) \to \mathcal{P}(n_1 + \cdots + n_k)
$$

and a unit $\eta \in \mathcal{P}(1)$ such that composition is associative, unital, and equivariant.

Warning. This forces operations $\mu \in \mathcal{P}(n)$ to be k-multilinear.

Examples

Taking the k-vector space spanned by an operad in sets yields an operad in k-vector spaces.

Example. The (unital) associative operad:

$$
As^{un}(n) = \Bbbk \Sigma_n, n \ge 0.
$$

 $As^{un}-algebra = (unital)$ k-algebra.

Example. The (non-unital) associative operad:

$$
As(n) = \begin{cases} k\Sigma_n, & n \ge 1\\ 0, & n = 0. \end{cases}
$$

 $\text{As-algebra} = \text{(non-unital)}$ k-algebra.

Examples (cont'd)

Example. The (unital) commutative operad:

 $\text{Com}^{\text{un}}(n) = \mathbb{k}, n \geq 0.$

 $Com^{un}-algebra = (unital) commutative \mathbb{k} -algebra.$

Example. The (non-unital) commutative operad:

$$
Com(n) = \begin{cases} \n\mathbb{k}, & n \ge 1 \\ \n0, & n = 0. \n\end{cases}
$$

 $Com-algebra = (non-unital) commutative$ k-algebra.

Examples (cont'd)

Example. The Lie operad Lie is generated by an operation

 $[-,-] \in \text{Lie}(2)$ Lie bracket $[x,y]$

subject to relations

$$
\begin{cases}\n[-,-] = -[-,-] \cdot (12) \in \text{Lie}(2) \\
[x, y] = -[y, x] \quad \text{skew-symmetry} \\
[-,[-,-]] + [-,[-,-]] \cdot (132) + [-,[-,-]] \cdot (123) = 0 \in \text{Lie}(3) \\
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \quad \text{Jacobi identity.}\n\end{cases}
$$

Lie-algebra = Lie algebra if char(\Bbbk) \neq 2.

Warning. In the case char(\mathbf{k}) = 2, Lie-algebra = "quasi-Lie algebra". Can't encode the equation $[x, x] = 0$ with an operad.

Quillen cohomology of P-algebra

For the category $C = P$ -Alg of P-algebras, the "package" has been worked out. Nice account in Loday–Vallette (2012).

[Introduction](#page-1-0)

[Quillen cohomology](#page-5-0)

[Divided power algebras \(classical\)](#page-21-0)

[Restricted Lie algebras](#page-26-0)

[Operads](#page-30-0)

[Divided power algebras \(operadic\)](#page-40-0)

Free P-algebras

Setup: $\mathbb{k} = \text{field of characteristic } p > 0.$

 $P =$ operad in k-vector spaces that is *reduced*, i.e., $P(0) = 0$.

Free P-algebra functor (forget-of-free monad)

$$
S(\mathcal{P})\colon \mathrm{Vect}_{\Bbbk} \to \mathrm{Vect}_{\Bbbk}
$$

$$
S(\mathcal{P})(V) = \bigoplus_{n\geq 1} (\mathcal{P}(n) \otimes V^{\otimes n})_{\Sigma_n}
$$

Example: Tensor algebra

Example. Associative operad:

$$
S(As)(V) = \bigoplus_{n \ge 1} (As(n) \otimes V^{\otimes n})_{\Sigma_n}
$$

=
$$
\bigoplus_{n \ge 1} (k\Sigma_n \otimes V^{\otimes n})_{\Sigma_n}
$$

$$
\cong \bigoplus_{n \ge 1} V^{\otimes n}
$$

=
$$
T(V)
$$

the (non-unital) tensor algebra.

Example: Symmetric algebra

Example. Commutative operad:

$$
S(\text{Com})(V) = \bigoplus_{n \ge 1} (\text{Com}(n) \otimes V^{\otimes n})_{\Sigma_n}
$$

$$
= \bigoplus_{n \ge 1} (\mathbb{k} \otimes V^{\otimes n})_{\Sigma_n}
$$

$$
\cong \bigoplus_{n \ge 1} \text{Sym}^n(V)
$$

$$
= \text{Sym}(V)
$$

the (non-unital) symmetric algebra.

Divided power algebras

Instead of taking coinvariants, take invariants. Norm map:

$$
\bigoplus_{n\geq 1} (\mathcal{P}(n) \otimes V^{\otimes n})_{\Sigma_n} \longrightarrow \bigoplus_{n\geq 1} (\mathcal{P}(n) \otimes V^{\otimes n})^{\Sigma_n}
$$

$$
\downarrow^{def}
$$

$$
S(\mathcal{P})(V) \qquad \qquad \prod_{i=1}^{\infty} (\mathcal{P}(n) \otimes V^{\otimes n})^{\Sigma_n}
$$

Proposition. $\Gamma(\mathcal{P})$: Vect_k \rightarrow Vect_k is a monad.

Definition. A divided power \mathcal{P} -algebra is an algebra for the monad $\Gamma(\mathcal{P})$.

 $\Gamma(\mathcal{P})$ -algebra $\approx \mathcal{P}$ -algebra + extra operations, usually non-additive.

Examples

Example. If $char(\mathbb{k}) = 0$, then $S(\mathcal{P}) \xrightarrow{\cong} \Gamma(\mathcal{P})$. No extra operations in that case.

 \rightarrow Divided power operations are a *positive characteristic* phenomenon.

Theorem (Fresse 2000). 1. Associative operad: $S(As) \stackrel{\cong}{\rightarrow} \Gamma(As)$, so a Γ (As)-algebra is just an As-algebra, i.e., a k-algebra.

- 2. Commutative operad: Γ (Com)-algebra = classical divided power algebra.
- 3. Lie operad: Γ (Lie)-algebra = restricted Lie algebra.

Results

Theorem (Ikonicoff 2020). Equational presentation for Γ (P) -algebras.

 \rightsquigarrow List of operations satisfying a (big) list of equations.

Theorem (Dokas–F.–Ikonicoff). Worked out the "package" for $\Gamma(\mathcal{P})$ -algebras.

Reality check: Recovered the examples of classicial divided power algebras ($\mathcal{P} = \text{Com}$) and restricted Lie algebras ($\mathcal{P} = \text{Lie}$).

Comparison maps involving Quillen cohomology of $\Gamma(\mathcal{P})$ -algebras.

Thank you!