The Euler characteristic

Martin Frankland University of Regina

Pi Day University of Regina March 14, 2025

ME 100 OPOLOGY ALGEBRA GEOMETRY ANALYSIS PROBABILITY **DISCRETE MATH** SET THEORY NUMBER THEORY

Outline

Discrete math

Topology

Analysis

Differential geometry

Graphs

Rules of the game:

- 1. Draw a connected graph on a piece of paper.
- 2. Count:

V = # Vertices E = # Edges F = # Faces (enclosed regions), including the "outer face".

3. Compute
$$\chi = V - E + F$$
.

Example.

$$V = 3, \quad E = 2, \quad F = 1$$
 (the outer face)
 $\implies \chi = 3 - 2 + 1 = 2.$

More graphs

Example.

Example.

Theorem (Euler's formula). For any connected planar graph:

$$\chi = 2$$
.

Polyhedra

Definition. The Euler characteristic of a polyhedron is

$$\chi = V - E + F$$

where

$$\begin{cases} V = \# \text{ Vertices} \\ E = \# \text{ Edges} \\ F = \# \text{ Faces.} \end{cases}$$

Example: Regular polyhedra

Name	Image	Vertices V	Edges <i>E</i>	Faces <i>F</i>	Euler characteristic: $\chi = V - E + F$
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
lcosahedron		12	30	20	2

Image credit: Wikipedia.

Simplicial complexes

Definition. A (geometric) **simplicial complex** is a union of simplices that intersect in common faces.

A 3-dimensional simplicial complex. Image credit: Wikipedia.

Examples

Complex					
V	4	4	4	4	4
E	2	3	4	5	5
F	0	0	0	0	1
χ	2	1	0	-1	0

Outline

Discrete math

Topology

Analysis

Differential geometry

Betti numbers

Question. What is the Euler characteristic χ measuring? \rightsquigarrow Topological invariant.

Definition. The n^{th} **Betti number** of a space X is

 $b_n(X) \coloneqq \dim H_n(X; \mathbb{Q}).$

 \approx number of "*n*-dimensional holes" in X.

Example. b_0 = number of path components.

 $b_1 \approx$ number of "different loops".

Definition. The **Euler characteristic** of a space X is the alternating sum of the Betti numbers:

$$\chi(X) = b_0(X) - b_1(X) + b_2(X) - \dots = \sum_n (-1)^n b_n(X).$$

Example: Torus

The torus T^2 has Betti numbers

$$b_0 = 1, \quad b_1 = 2, \quad b_2 = 1$$

and Euler characteristic

$$\chi(T^2) = 1 - 2 + 1 = 0.$$

Surfaces

Surface		$\overline{}$	8	8
Genus g	0	1	2	3
Euler				
characteristic	2	0	-2	-4
$\chi = 2 - 2g$				

Image credit: Wikipedia.

Topological invariant

Proposition. Let X be a finite simplicial complex and denote $F_n = \# n$ -dimensional faces. Then

$$\sum_{n} (-1)^{n} F_{n} = \sum_{n} (-1)^{n} b_{n}(X) = \chi(X) \,.$$

"combinatorial formula = topological formula"

Proof sketch: Boils down to linear algebra! Use the rank-nullity theorem several times.

Example. If X is a 2-dimensional simplicial complex:

$$V - F + E = b_0 - b_1 + b_2.$$

Examples revisited

Complex					
V	4	4	4	4	4
E	2	3	4	5	5
F	0	0	0	0	1
χ	2	1	0	-1	0
b_0	2	1	1	1	1
b_1	0	0	1	2	1

Outline

Discrete math

Topology

Analysis

Differential geometry

Vector fields

Definition. The **index** of a vector field \vec{F} at a zero P is the winding number of \vec{F} along a small sphere around P.

Example. Some vector fields $\vec{F}(x, y)$ on \mathbb{R}^2 with a zero at P = (0, 0):

More vector fields

Poincaré–Hopf theorem

Theorem. Let M be a compact manifold without boundary and \vec{F} a vector field on M with isolated zeros. Then the index of \vec{F} is:

$$\sum_{\vec{F}(P)=\vec{0}} \operatorname{ind}_P(\vec{F}) = \chi(M) \; .$$

Given $\chi(S^2) = 2 \neq 0$, this implies:

Corollary (Hairy ball theorem). Every vector field on the sphere S^2 must have a zero.

Hairy ball theorem

Example. On the sphere S^2 , consider a vector field \vec{F} that "points south". The zeros of \vec{F} are the North pole and the South pole. The index of \vec{F} is:

 $\operatorname{ind}(\vec{F}) = \operatorname{ind}_N(\vec{F}) + \operatorname{ind}_S(\vec{F}) = 1 + 1 = 2. \quad \checkmark$

Image credit: Wolfram Demonstrations Project.

Vector fields on a torus

In contrast, there is no "hairy donut theorem".

The torus T^2 has Euler characteristic $\chi(T^2) = 0$, and indeed there are vector fields on T^2 without zeros.

Image credit: Mathematics Stack Exchange.

Outline

Discrete math

Topology

Analysis

Differential geometry

Gauss–Bonnet theorem

Theorem. Let M be a compact 2-dimensional Riemannian manifold without boundary. Then:

$$\iint_M K \, dA = 2\pi \, \chi(M)$$

where K denotes the Gaussian curvature.

Example: Torus

The torus T^2 has Euler characteristic $\chi(T^2) = 0$.

 \implies A metric on T^2 cannot have curvature that is everywhere positive or everywhere negative.

Image credit: Wikipedia.

Remark. There exists a metric on T^2 of constant curvature 0.

Example: Sphere

A standard 2-sphere of radius r has constant curvature $K = \frac{1}{r^2}$.

$$\iint_{S} K \, dA = \iint_{S} \frac{1}{r^{2}} \, dA$$
$$= \frac{1}{r^{2}} \operatorname{Area}(S)$$
$$= \frac{1}{r^{2}} (4\pi r^{2})$$
$$= 4\pi$$
$$= 2\pi \cdot 2$$
$$= 2\pi \chi(S^{2}). \quad \checkmark$$

Thank you!