Is calculus secretly algebraic topology?

Martin Frankland
University of Regina

Pi Day
University of Regina
March 14, 2022

No.

Thank you!

Outline

The general Stokes' theorem

The de Rham theorem

Outline

The general Stokes' theorem

The de Rham theorem

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.
A differential \boldsymbol{k}-form on $U \approx$ "something you can integrate over a k-dimensional subspace of $U "$.

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.
A differential \boldsymbol{k}-form on $U \approx$ "something you can integrate over a k-dimensional subspace of $U "$.

Example. - A 0-form is a (smooth) function $f: U \rightarrow \mathbb{R}$.

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.
A differential \boldsymbol{k}-form on $U \approx$ "something you can integrate over a k-dimensional subspace of $U "$.

Example. - A 0 -form is a (smooth) function $f: U \rightarrow \mathbb{R}$.
Integrate over the point $\{a\}$:

$$
\int_{\{a\}} f=f(a) .
$$

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.
A differential \boldsymbol{k}-form on $U \approx$ "something you can integrate over a k-dimensional subspace of $U "$.

Example. - A 0 -form is a (smooth) function $f: U \rightarrow \mathbb{R}$.
Integrate over the point $\{a\}$:

$$
\int_{\{a\}} f=f(a) .
$$

- $f d x$ is a 1 -form.

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.
A differential \boldsymbol{k}-form on $U \approx$ "something you can integrate over a k-dimensional subspace of $U "$.

Example. - A 0 -form is a (smooth) function $f: U \rightarrow \mathbb{R}$.
Integrate over the point $\{a\}$:

$$
\int_{\{a\}} f=f(a)
$$

- $f d x$ is a 1 -form. Integrate over the interval $[a, b]$:

$$
\int_{[a, b]} f d x=\int_{a}^{b} f(x) d x
$$

Differential forms

Setup: open subset $U \subseteq \mathbb{R}^{n}$.
A differential \boldsymbol{k}-form on $U \approx$ "something you can integrate over a k-dimensional subspace of $U "$.

Example. - A 0 -form is a (smooth) function $f: U \rightarrow \mathbb{R}$.
Integrate over the point $\{a\}$:

$$
\int_{\{a\}} f=f(a) .
$$

- $f d x$ is a 1 -form. Integrate over the interval $[a, b]$:

$$
\int_{[a, b]} f d x=\int_{a}^{b} f(x) d x
$$

Why not $\int_{b}^{a} f(x) d x ? \rightsquigarrow$ Orientation convention.

Examples of differential forms

- $f d x \wedge d y$ is a 2 -form.

Examples of differential forms

- $f d x \wedge d y$ is a 2-form. Integrate over the rectangle $R=[a, b] \times[c, d]:$

$$
\begin{aligned}
\int_{R} f d x \wedge d y & =\iint_{R} f(x, y) d A \\
& =\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \stackrel{\text { Fubini }}{=} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
\end{aligned}
$$

Examples of differential forms

- $f d x \wedge d y$ is a 2-form. Integrate over the rectangle $R=[a, b] \times[c, d]:$

$$
\begin{aligned}
\int_{R} f d x \wedge d y & =\iint_{R} f(x, y) d A \\
& =\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \stackrel{\text { Fubini }}{=} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
\end{aligned}
$$

Warning! $d y \wedge d x=-d x \wedge d y$

Examples of differential forms

- $f d x \wedge d y$ is a 2-form. Integrate over the rectangle $R=[a, b] \times[c, d]:$

$$
\begin{aligned}
\int_{R} f d x \wedge d y & =\iint_{R} f(x, y) d A \\
& =\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \stackrel{\text { Fubini }}{=} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
\end{aligned}
$$

Warning! $d y \wedge d x=-d x \wedge d y$

$$
\int_{R} f d y \wedge d x=\int_{R} f(-d x \wedge d y)=-\iint_{R} f(x, y) d A
$$

Exterior derivative

The exterior derivative of a k-form ω is a $(k+1)$-form $d \omega$.

Exterior derivative

The exterior derivative of a k-form ω is a $(k+1)$-form $d \omega$. Rules

1. Functions:

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n} .
$$

Exterior derivative

The exterior derivative of a k-form ω is a $(k+1)$-form $d \omega$. Rules

1. Functions:

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n} .
$$

2. Linearity:

$$
d(\alpha+\beta)=d \alpha+d \beta
$$

Exterior derivative

The exterior derivative of a k-form ω is a $(k+1)$-form $d \omega$.
Rules

1. Functions:

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n} .
$$

2. Linearity:

$$
d(\alpha+\beta)=d \alpha+d \beta
$$

3. Product rule:

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\operatorname{deg} \alpha} \alpha \wedge d \beta
$$

Exterior derivative (cont'd)

4. Squares to zero:

$$
d\left(d x_{i}\right)=0
$$

Exterior derivative (cont'd)

4. Squares to zero:

$$
d\left(d x_{i}\right)=0
$$

Key fact

$$
d^{2}=0
$$

That is: $d(d \omega)=0$ for any k-form ω.

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
d \omega=d(P d x+Q d y)
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y)
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)^{0}+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)^{0}
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& \left.=d P \wedge d x+(-1)^{0} P \wedge d(d x)^{0}+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)\right)^{0} \\
& =d P \wedge d x+d Q \wedge d y
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)^{0} \\
& =d P \wedge d x+d Q \wedge d y \\
& =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y\right) \wedge d x+\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \wedge d y
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& \left.=d P \wedge d x+(-1)^{0} P \wedge d(d x)+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)\right)^{0} \\
& =d P \wedge d x+d Q \wedge d y \\
& =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y\right) \wedge d x+\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial P}{\partial x} d x \wedge d x+\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y+\frac{\partial Q}{\partial y} d y \wedge d y
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
& d \omega=d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)^{0}+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)^{0} \\
& =d P \wedge d x+d Q \wedge d y \\
& =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y\right) \wedge d x+\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial P}{\partial x} d x \wedge \vec{x}+\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y+\frac{\partial Q}{\partial y} d y \wedge d{ }^{0} 0
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)^{0} \\
& =d P \wedge d x+d Q \wedge d y \\
& =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y\right) \wedge d x+\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial P}{\partial x} d x \wedge d \vec{x}+\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y+\frac{\partial Q}{\partial y} d y \wedge d \vec{x}^{0} \\
& =\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)^{0} \\
& =d P \wedge d x+d Q \wedge d y \\
& =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y\right) \wedge d x+\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial P}{\partial x} d x \wedge d \vec{x}+\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y+\frac{\partial Q}{\partial y} d y \wedge d \vec{y}^{0} \\
& =\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y \\
& =\frac{\partial P}{\partial y}(-d x \wedge d y)+\frac{\partial Q}{\partial x} d x \wedge d y
\end{aligned}
$$

Example of exterior derivative

Example. The exterior derivative of the 1-form $\omega=P d x+Q d y$ is

$$
\begin{aligned}
d \omega & =d(P d x+Q d y) \\
& =d(P d x)+d(Q d y) \\
& =d P \wedge d x+(-1)^{0} P \wedge d(d x)+d Q \wedge d y+(-1)^{0} Q \wedge d(d y)^{0} \\
& =d P \wedge d x+d Q \wedge d y \\
& =\left(\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y\right) \wedge d x+\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \wedge d y \\
& =\frac{\partial P}{\partial x} d x \wedge \vec{x}+\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y+\frac{\partial Q}{\partial y} d y \wedge d{\underset{y}{c}}^{0} \\
& =\frac{\partial P}{\partial y} d y \wedge d x+\frac{\partial Q}{\partial x} d x \wedge d y \\
& =\frac{\partial P}{\partial y}(-d x \wedge d y)+\frac{\partial Q}{\partial x} d x \wedge d y \\
& =\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y
\end{aligned}
$$

Example (cont'd)

Taking the vector field $\vec{F}=\langle P, Q\rangle$, we have:

$$
d \omega=2 \mathrm{~d}-\operatorname{curl}(\vec{F}) d x \wedge d y
$$

where

$$
2 \mathrm{~d}-\operatorname{curl}(\vec{F})=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} .
$$

The de Rham complex

Definition. Denote

$$
\Omega^{k}(U)=\{k \text {-forms on } \mathrm{U}\}
$$

The de Rham complex

Definition. Denote

$$
\Omega^{k}(U)=\{k \text {-forms on } \mathrm{U}\}
$$

The de Rham complex of U is

$$
\Omega^{0}(U) \xrightarrow{d} \Omega^{1}(U) \xrightarrow{d} \Omega^{2}(U) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n}(U) \longrightarrow 0
$$

de Rham complex for $n=1$

Example. For $U \subseteq \mathbb{R}$, the de Rham complex of U is

$$
\begin{array}{cc}
\Omega^{0}(U) \xrightarrow{d} \Omega^{1}(U) \longrightarrow 0 \\
\left.\|_{\text {dunctions }\}} \xrightarrow{\frac{d}{d x}} \underset{\downarrow}{\longrightarrow} \text { functions }\right\} \longrightarrow 0
\end{array}
$$

de Rham complex for $n=1$

Example. For $U \subseteq \mathbb{R}$, the de Rham complex of U is

$$
\begin{array}{cc}
f & f d x \\
\Omega^{0}(U) \xrightarrow{d} & \Omega^{1}(U) \longrightarrow 0 \\
\left.\|_{\text {functions }\}} \xrightarrow{\frac{d}{d x}} \underset{\sim}{\longrightarrow} \text { \{functions }\right\} \longrightarrow \\
f & f
\end{array}
$$

de Rham complex for $n=1$

Example. For $U \subseteq \mathbb{R}$, the de Rham complex of U is

$$
\begin{array}{cc}
f & f d x \\
\Omega^{0}(U) \xrightarrow{d} & \Omega^{1}(U) \longrightarrow 0 \\
\left.\| \text { functions }\} \xrightarrow{\frac{d}{d x}} \xrightarrow{\longrightarrow} \text { \{functions }\right\} \longrightarrow \\
f & f
\end{array}
$$

Warning! The equality $d^{2}=0$ is saying $d\left(\frac{d f}{d x} d x\right)=0$, not that every second derivative $\frac{d^{2} f}{d x^{2}}$ is zero!

de Rham complex for $n=2$

Example. For $U \subseteq \mathbb{R}^{2}$, the de Rham complex of U is

de Rham complex for $n=2$

Example. For $U \subseteq \mathbb{R}^{2}$, the de Rham complex of U is

$$
f \quad\langle P, Q\rangle \quad f
$$

de Rham complex for $n=2$

Example. For $U \subseteq \mathbb{R}^{2}$, the de Rham complex of U is

$$
f \quad\langle P, Q\rangle \quad f
$$

The gradient of f is the vector field

$$
\operatorname{grad}(f)=\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

de Rham complex for $n=3$

Example. For $U \subseteq \mathbb{R}^{3}$, the de Rham complex of U is

$$
\Omega^{0}(U) \xrightarrow{d} \Omega^{1}(U) \xrightarrow{d} \Omega^{2}(U) \xrightarrow{d} \Omega^{3}(U) \longrightarrow 0
$$

de Rham complex for $n=3$

Example. For $U \subseteq \mathbb{R}^{3}$, the de Rham complex of U is

f
$\langle P, Q, R\rangle$
$\langle P, Q, R\rangle$
f

de Rham complex for $n=3$

Example. For $U \subseteq \mathbb{R}^{3}$, the de Rham complex of U is

$$
f \quad\langle P, Q, R\rangle \quad\langle P, Q, R\rangle
$$

f
The curl of a vector field \vec{F} is the vector field

$$
\operatorname{curl}(\vec{F})=\nabla \times \vec{F}
$$

de Rham complex for $n=3$

Example. For $U \subseteq \mathbb{R}^{3}$, the de Rham complex of U is

$$
f \quad\langle P, Q, R\rangle \quad\langle P, Q, R\rangle
$$

The curl of a vector field \vec{F} is the vector field

$$
\operatorname{curl}(\vec{F})=\nabla \times \vec{F}
$$

The divergence of a vector field $\vec{F}=\langle P, Q, R\rangle$ is the function

$$
\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

General Stokes' theorem

The general Stokes' theorem
For a $(k-1)$-form ω and a k-dimensional subspace $S \subset U$, we have:

$$
\int_{S} d \omega=\int_{\partial S} \omega
$$

where ∂S denotes the boundary of S (with appropriate orientation).

Stokes for $n=1$

Let $U \subseteq \mathbb{R}$.

Stokes for $n=1$

Let $U \subseteq \mathbb{R}$.
Case $k=1$. For any function f on U and interval $[a, b] \subset U$, we have

$$
\begin{aligned}
\int_{[a, b]} d f & =\int_{\partial[a, b]} f \\
\int_{a}^{b} \frac{d f}{d x} d x & =\int_{b-a} f \\
& =\int_{b} f-\int_{a} f \\
& =f(b)-f(a) .
\end{aligned}
$$

Stokes for $n=1$

Let $U \subseteq \mathbb{R}$.
Case $k=1$. For any function f on U and interval $[a, b] \subset U$, we have

$$
\begin{aligned}
\int_{[a, b]} d f & =\int_{\partial[a, b]} f \\
\int_{a}^{b} \frac{d f}{d x} d x & =\int_{b-a} f \\
& =\int_{b} f-\int_{a} f \\
& =f(b)-f(a) .
\end{aligned}
$$

Fundamental theorem of calculus

Stokes for $n=2$

Let $U \subseteq \mathbb{R}^{2}$.

Stokes for $n=2$

Let $U \subseteq \mathbb{R}^{2}$.
Case $k=1$. For any function f on U and path $\gamma:[a, b] \rightarrow U$, we have

$$
\begin{aligned}
\int_{\gamma} d f & =\int_{\partial \gamma} f \\
\int_{\gamma} f_{x} d x+f_{y} d y & =\int_{\gamma(b)-\gamma(a)} f \\
\int_{\gamma} \nabla f \cdot d \vec{r} & =f(\gamma(b))-f(\gamma(a))
\end{aligned}
$$

Stokes for $n=2$

Let $U \subseteq \mathbb{R}^{2}$.
Case $k=1$. For any function f on U and path $\gamma:[a, b] \rightarrow U$, we have

$$
\begin{aligned}
\int_{\gamma} d f & =\int_{\partial \gamma} f \\
\int_{\gamma} f_{x} d x+f_{y} d y & =\int_{\gamma(b)-\gamma(a)} f \\
\int_{\gamma} \nabla f \cdot d \vec{r} & =f(\gamma(b))-f(\gamma(a))
\end{aligned}
$$

Fundamental theorem of line integrals

Stokes for $n=2$ (cont'd)

Case $k=2$. For any vector field $\vec{F}=\langle P, Q\rangle$ on U and region $D \subset U$, we have

$$
\begin{aligned}
\iint_{D} 2 \mathrm{~d}-\operatorname{curl}(\vec{F}) d A & =\oint_{\partial D} \vec{F} \cdot d \vec{r} \\
\iint_{D} Q_{x}-P_{y} d A & =\oint_{\partial D} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Stokes for $n=2$ (cont'd)

Case $k=2$. For any vector field $\vec{F}=\langle P, Q\rangle$ on U and region $D \subset U$, we have

$$
\begin{aligned}
\iint_{D} 2 \mathrm{~d}-\operatorname{curl}(\vec{F}) d A & =\oint_{\partial D} \vec{F} \cdot d \vec{r} \\
\iint_{D} Q_{x}-P_{y} d A & =\oint_{\partial D} \vec{F} \cdot d \vec{r} .
\end{aligned}
$$

Green's theorem

Stokes for $n=3$

Let $U \subseteq \mathbb{R}^{3}$.

Stokes for $n=3$

Let $U \subseteq \mathbb{R}^{3}$.
Case $k=1 . \rightsquigarrow$ Still the fundamental theorem of line integrals.

Stokes for $n=3$

Let $U \subseteq \mathbb{R}^{3}$.
Case $k=1 . \rightsquigarrow$ Still the fundamental theorem of line integrals.
Case $k=2$. For any vector field $\vec{F}=\langle P, Q, R\rangle$ on U and surface $S \subset U$, we have

$$
\iint_{S} \operatorname{curl}(\vec{F}) \cdot \vec{n} d S=\oint_{\partial S} \vec{F} \cdot d \vec{r}
$$

Stokes for $n=3$

Let $U \subseteq \mathbb{R}^{3}$.
Case $k=1 . \rightsquigarrow$ Still the fundamental theorem of line integrals.
Case $k=2$. For any vector field $\vec{F}=\langle P, Q, R\rangle$ on U and surface $S \subset U$, we have

$$
\iint_{S} \operatorname{curl}(\vec{F}) \cdot \vec{n} d S=\oint_{\partial S} \vec{F} \cdot d \vec{r}
$$

The special Stokes' theorem

Stokes for $n=3$ (cont'd)

Case $k=3$. For any vector field $\vec{F}=\langle P, Q, R\rangle$ on U and solid region $D \subset U$, we have

$$
\iiint_{D} \operatorname{div}(\vec{F}) d V=\oiint_{\partial D} \vec{F} \cdot \vec{n} d S
$$

Stokes for $n=3$ (cont'd)

Case $k=3$. For any vector field $\vec{F}=\langle P, Q, R\rangle$ on U and solid region $D \subset U$, we have

$$
\iiint_{D} \operatorname{div}(\vec{F}) d V=\oiint_{\partial D} \vec{F} \cdot \vec{n} d S
$$

Divergence theorem

Outline

The general Stokes' theorem

The de Rham theorem

Closed and exact forms

Recall: $d(d \omega)=0$ for any form ω.

Closed and exact forms

Recall: $d(d \omega)=0$ for any form ω.
Definition. A k-form ω is called:

- closed if $d \omega=0$;
- exact if $\omega=d \alpha$ for some $(k-1)$-form α.

Closed and exact forms

Recall: $d(d \omega)=0$ for any form ω.
Definition. A k-form ω is called:

- closed if $d \omega=0$;
- exact if $\omega=d \alpha$ for some $(k-1)$-form α.

Closed and exact forms

Recall: $d(d \omega)=0$ for any form ω.
Definition. A k-form ω is called:

- closed if $d \omega=0$;
- exact if $\omega=d \alpha$ for some $(k-1)$-form α.

However: On $U=\mathbb{R}^{n}$ or an open ball, every closed form is exact.

Closed and exact forms

Recall: $d(d \omega)=0$ for any form ω.
Definition. A k-form ω is called:

- closed if $d \omega=0$;
- exact if $\omega=d \alpha$ for some ($k-1$)-form α.

However: On $U=\mathbb{R}^{n}$ or an open ball, every closed form is exact.
Question. To what extent does the converse fail?

Closed and exact forms

Recall: $d(d \omega)=0$ for any form ω.
Definition. A k-form ω is called:

- closed if $d \omega=0$;
- exact if $\omega=d \alpha$ for some ($k-1$)-form α.

However: On $U=\mathbb{R}^{n}$ or an open ball, every closed form is exact.
Question. To what extent does the converse fail?
Answer. It depends on the shape of U !

de Rham cohomology

To measure the failure of the converse:

de Rham cohomology

To measure the failure of the converse:
Definition. The $k^{\text {th }}$ de Rham cohomology group of U is

$$
H_{\mathrm{dR}}^{k}(U):=\{\text { closed } k \text {-forms }\} /\{\text { exact } k \text {-forms }\}
$$

de Rham cohomology

To measure the failure of the converse:
Definition. The $k^{\text {th }}$ de Rham cohomology group of U is

$$
H_{\mathrm{dR}}^{k}(U):=\{\text { closed } k \text {-forms }\} /\{\text { exact } k \text {-forms }\}
$$

The de Rham theorem

$$
H_{\mathrm{dR}}^{k}(U) \cong H^{k}(U ; \mathbb{R})
$$

the singular cohomology of U with real coefficients.

de Rham cohomology

To measure the failure of the converse:
Definition. The $k^{\text {th }}$ de Rham cohomology group of U is

$$
H_{\mathrm{dR}}^{k}(U):=\{\text { closed } k \text {-forms }\} /\{\text { exact } k \text {-forms }\}
$$

The de Rham theorem

$$
H_{\mathrm{dR}}^{k}(U) \cong H^{k}(U ; \mathbb{R})
$$

the singular cohomology of U with real coefficients.

$$
H^{k}(U ; \mathbb{R}) \cong \operatorname{Hom}_{\mathbb{Z}}\left(H_{k}(U), \mathbb{R}\right)
$$

de Rham cohomology

To measure the failure of the converse:
Definition. The $k^{\text {th }}$ de Rham cohomology group of U is

$$
H_{\mathrm{dR}}^{k}(U):=\{\text { closed } k \text {-forms }\} /\{\text { exact } k \text {-forms }\} .
$$

The de Rham theorem

$$
H_{\mathrm{dR}}^{k}(U) \cong H^{k}(U ; \mathbb{R})
$$

the singular cohomology of U with real coefficients.

$$
H^{k}(U ; \mathbb{R}) \cong \operatorname{Hom}_{\mathbb{Z}}\left(H_{k}(U), \mathbb{R}\right)
$$

The pairing is given by integration:

$$
\begin{aligned}
H^{k}(U ; \mathbb{R}) \times H_{k}(U) & \rightarrow \mathbb{R} \\
\langle[\omega],[C]\rangle & =\oint_{C} \omega
\end{aligned}
$$

de Rham for $n=1$

Let $U \subseteq \mathbb{R}$. The cohomology of U is

$$
H^{k}(U ; \mathbb{R})= \begin{cases}\mathbb{R}^{\# \text { components }}, & k=0 \\ 0, & k \neq 0\end{cases}
$$

de Rham for $n=1$

Let $U \subseteq \mathbb{R}$. The cohomology of U is

$$
H^{k}(U ; \mathbb{R})= \begin{cases}\mathbb{R}^{\# \text { components }}, & k=0 \\ 0, & k \neq 0\end{cases}
$$

Example. Take the union of intervals $U=(1,3) \cup(4,5)$. Then

$$
H^{k}(U ; \mathbb{R})= \begin{cases}\mathbb{R}^{2}, & k=0 \\ 0, & k \neq 0\end{cases}
$$

de Rham for $n=1$ (cont'd)

Case $k=0$. A function $f: U \rightarrow \mathbb{R}$ has derivative $f^{\prime}(x)=0 \Longleftrightarrow f$ is locally constant, i.e., constant on each component.

de Rham for $n=1$ (cont'd)

Case $k=1$. Every function $f: U \rightarrow \mathbb{R}$ is the derivative of some other function $F: U \rightarrow \mathbb{R}$.

de Rham for $n=1$ (cont'd)

Case $k=1$. Every function $f: U \rightarrow \mathbb{R}$ is the derivative of some other function $F: U \rightarrow \mathbb{R}$.

We knew that. On each component, take the integral

$$
F(x)=\int_{a}^{x} f(t) d t
$$

de Rham for $n=2$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=1$.

de Rham for $n=2$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=1$.

- closed 1-form: irrotational vector field $\vec{F}=\langle P, Q\rangle$, i.e., $2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0$.
- exact 1-form: conservative vector field, i.e., $\vec{F}=\nabla f$ for some function f, called a potential function for \vec{F}.

de Rham for $n=2$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=1$.

- closed 1-form: irrotational vector field $\vec{F}=\langle P, Q\rangle$, i.e., $2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0$.
- exact 1-form: conservative vector field, i.e., $\vec{F}=\nabla f$ for some function f, called a potential function for \vec{F}.

de Rham for $n=2$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=1$.

- closed 1-form: irrotational vector field $\vec{F}=\langle P, Q\rangle$, i.e., $2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0$.
- exact 1-form: conservative vector field, i.e., $\vec{F}=\nabla f$ for some function f, called a potential function for \vec{F}.

An irrotational vector field $\vec{F}=\langle P, Q\rangle$ is conservative \Longleftrightarrow its cohomology class in $H^{1}(U ; \mathbb{R})$ is trivial.

de Rham for $n=2$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=1$.

- closed 1-form: irrotational vector field $\vec{F}=\langle P, Q\rangle$, i.e., $2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0$.
- exact 1-form: conservative vector field, i.e., $\vec{F}=\nabla f$ for some function f, called a potential function for \vec{F}.

An irrotational vector field $\vec{F}=\langle P, Q\rangle$ is conservative \Longleftrightarrow its cohomology class in $H^{1}(U ; \mathbb{R})$ is trivial.

Example. If U is simply-connected (i.e. "without holes"), then every irrotational vector field is conservative:

$$
\pi_{1}(U)=0 \Longrightarrow H_{1}(U)=0 \Longrightarrow H^{1}(U ; \mathbb{R})=0
$$

Irrotational versus conservative

Example. Take the punctured plane $U=\mathbb{R}^{2} \backslash\{(0,0)\}$, and the vector field on U

$$
\vec{F}(x, y)=\frac{1}{x^{2}+y^{2}}\langle-y, x\rangle=\frac{1}{r^{2}}\langle-y, x\rangle=\langle P, Q\rangle .
$$

Irrotational versus conservative

Example. Take the punctured plane $U=\mathbb{R}^{2} \backslash\{(0,0)\}$, and the vector field on U

$$
\vec{F}(x, y)=\frac{1}{x^{2}+y^{2}}\langle-y, x\rangle=\frac{1}{r^{2}}\langle-y, x\rangle=\langle P, Q\rangle .
$$

Irrotational versus conservative (cont'd)

$$
\begin{aligned}
& Q_{x}=\frac{y^{2}-x^{2}}{r^{4}} \\
& P_{y}=\frac{y^{2}-x^{2}}{r^{4}} \\
\Longrightarrow & 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0
\end{aligned}
$$

Irrotational versus conservative (cont'd)

$$
\begin{aligned}
& Q_{x}=\frac{y^{2}-x^{2}}{r^{4}} \\
& P_{y}=\frac{y^{2}-x^{2}}{r^{4}} \\
& \Longrightarrow 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0 .
\end{aligned}
$$

That is, \vec{F} is irrotational.

Irrotational versus conservative (cont'd)

$$
\begin{aligned}
& Q_{x}=\frac{y^{2}-x^{2}}{r^{4}} \\
& P_{y}=\frac{y^{2}-x^{2}}{r^{4}} \\
& \Longrightarrow 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0
\end{aligned}
$$

That is, \vec{F} is irrotational.
However, integrating over the unit circle C_{1} yields:

$$
\oint_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} 1 d t=2 \pi \neq 0
$$

Irrotational versus conservative (cont'd)

$$
\begin{aligned}
& Q_{x}=\frac{y^{2}-x^{2}}{r^{4}} \\
& P_{y}=\frac{y^{2}-x^{2}}{r^{4}} \\
& \Longrightarrow 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0
\end{aligned}
$$

That is, \vec{F} is irrotational.
However, integrating over the unit circle C_{1} yields:

$$
\oint_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} 1 d t=2 \pi \neq 0
$$

$\Longrightarrow \vec{F}$ is not conservative.

Irrotational versus conservative (cont'd)

Irrotational versus conservative (cont'd)

Note: Integrating over the circle C_{R} of radius R yields:

$$
\oint_{C_{R}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} \frac{R}{R} d t=2 \pi .
$$

Irrotational versus conservative (cont'd)

Note: Integrating over the circle C_{R} of radius R yields:

$$
\oint_{C_{R}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} \frac{R}{R} d t=2 \pi .
$$

Both circles represent the same homology class

$$
\left[C_{1}\right]=\left[C_{R}\right] \in H_{1}(U) \cong \mathbb{Z}
$$

since their difference is a boundary:

$$
C_{R}-C_{1}=\partial \text { (annulus) }
$$

Irrotational versus conservative (cont'd)

Note: Integrating over the circle C_{R} of radius R yields:

$$
\oint_{C_{R}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} \frac{R}{R} d t=2 \pi .
$$

Both circles represent the same homology class

$$
\left[C_{1}\right]=\left[C_{R}\right] \in H_{1}(U) \cong \mathbb{Z}
$$

since their difference is a boundary:

$$
C_{R}-C_{1}=\partial \text { (annulus) }
$$

Pairing with the cohomology class $[\vec{F}] \in H^{1}(U ; \mathbb{R})$ yields the same number:

$$
\left\langle[\vec{F}],\left[C_{1}\right]\right\rangle=\left\langle[\vec{F}],\left[C_{R}\right]\right\rangle \in \mathbb{R}
$$

A weird curve

What about the this weird curve C ?

A weird curve (cont'd)

Since C winds 3 times around the origin, its homology class is

$$
[C]=3\left[C_{1}\right] \in H_{1}(U)
$$

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\langle[\vec{F}],[C]\rangle \\
& =\left\langle[\vec{F}], 3\left[C_{1}\right]\right\rangle \\
& =3\left\langle[\vec{F}],\left[C_{1}\right]\right\rangle \\
& =3 \oint_{C \mathbf{1}} \vec{F} \cdot d \vec{r} \\
& =3(2 \pi) \\
& =6 \pi
\end{aligned}
$$

Another example

Example. Still with $U=\mathbb{R}^{2} \backslash\{(0,0)\}$, consider the vector field

$$
\vec{F}(x, y)=\frac{1}{x^{2}+y^{2}}\langle x, y\rangle=\frac{1}{r^{2}}\langle x, y\rangle=\langle P, Q\rangle
$$

Another example

Example. Still with $U=\mathbb{R}^{2} \backslash\{(0,0)\}$, consider the vector field

$$
\vec{F}(x, y)=\frac{1}{x^{2}+y^{2}}\langle x, y\rangle=\frac{1}{r^{2}}\langle x, y\rangle=\langle P, Q\rangle
$$

Another example (cont'd)

$$
\begin{aligned}
Q_{x} & =\frac{-2 x y}{r^{4}} \\
& P_{y}=\frac{-2 x y}{r^{4}} \\
\Longrightarrow & 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0 .
\end{aligned}
$$

Another example (cont'd)

$$
\begin{aligned}
Q_{x} & =\frac{-2 x y}{r^{4}} \\
P_{y} & =\frac{-2 x y}{r^{4}} \\
\Longrightarrow & 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0 .
\end{aligned}
$$

That is, \vec{F} is irrotational.

Another example (cont'd)

$$
\begin{aligned}
Q_{x} & =\frac{-2 x y}{r^{4}} \\
& P_{y}=\frac{-2 x y}{r^{4}} \\
\Longrightarrow & 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0 .
\end{aligned}
$$

That is, \vec{F} is irrotational.
Now, integrating over the unit circle C_{1} yields:

$$
\oint_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} 0 d t=0 .
$$

Another example (cont'd)

$$
\begin{aligned}
Q_{x} & =\frac{-2 x y}{r^{4}} \\
& P_{y}=\frac{-2 x y}{r^{4}} \\
\Longrightarrow & 2 \mathrm{~d}-\operatorname{curl}(\vec{F})=Q_{x}-P_{y}=0 .
\end{aligned}
$$

That is, \vec{F} is irrotational.
Now, integrating over the unit circle C_{1} yields:

$$
\oint_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} 0 d t=0 .
$$

Hmm... How do we know whether \vec{F} is conservative?

Another example (cont'd)

Since the circle is a generator of the homology

$$
\left[C_{1}\right] \in H_{1}(U) \cong \mathbb{Z}
$$

the cohomology class of \vec{F} is trivial:

$$
[\vec{F}]=0 \in H^{1}(U ; \mathbb{R})
$$

Another example (cont'd)

Since the circle is a generator of the homology

$$
\left[C_{1}\right] \in H_{1}(U) \cong \mathbb{Z}
$$

the cohomology class of \vec{F} is trivial:

$$
[\vec{F}]=0 \in H^{1}(U ; \mathbb{R})
$$

de Rham $\Longrightarrow \vec{F}$ is conservative!

Another example (cont'd)

Since the circle is a generator of the homology

$$
\left[C_{1}\right] \in H_{1}(U) \cong \mathbb{Z}
$$

the cohomology class of \vec{F} is trivial:

$$
[\vec{F}]=0 \in H^{1}(U ; \mathbb{R})
$$

de Rham $\Longrightarrow \vec{F}$ is conservative!
In fact, we can find a potential function:

$$
\vec{F}=\operatorname{grad}\left(\frac{1}{2} \ln \left(x^{2}+y^{2}\right)\right)
$$

de Rham for $n=3$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=2$.

de Rham for $n=3$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=2$.

- closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F}=\langle P, Q, R\rangle$, i.e.

$$
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
$$

- exact 2 -form: $\vec{F}=\operatorname{curl}(\vec{G})$ for some vector field \vec{G}, called a vector potential for \vec{F}.

de Rham for $n=3$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=2$.

- closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F}=\langle P, Q, R\rangle$, i.e.

$$
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
$$

- exact 2 -form: $\vec{F}=\operatorname{curl}(\vec{G})$ for some vector field \vec{G}, called a vector potential for \vec{F}.

de Rham for $n=3$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=2$.

- closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F}=\langle P, Q, R\rangle$, i.e.

$$
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
$$

- exact 2-form: $\vec{F}=\operatorname{curl}(\vec{G})$ for some vector field \vec{G}, called a vector potential for \vec{F}.

A divergence-free vector field $\vec{F}=\langle P, Q, R\rangle$ is a curl \Longleftrightarrow its cohomology class in $H^{2}(U ; \mathbb{R})$ is trivial.

de Rham for $n=3$

Let $U \subseteq \mathbb{R}^{2}$. Focus on $k=2$.

- closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F}=\langle P, Q, R\rangle$, i.e.

$$
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
$$

- exact 2-form: $\vec{F}=\operatorname{curl}(\vec{G})$ for some vector field \vec{G}, called a vector potential for \vec{F}.

A divergence-free vector field $\vec{F}=\langle P, Q, R\rangle$ is a curl \Longleftrightarrow its cohomology class in $H^{2}(U ; \mathbb{R})$ is trivial.
Example. On $U=\mathbb{R}^{3}$, every divergence-free vector field is a curl:

$$
H^{2}\left(\mathbb{R}^{3} ; \mathbb{R}\right)=0
$$

Electric field

Example. Take the punctured space $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, and the electric field generated by a charge at the origin

$$
\vec{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\langle x, y, z\rangle=\frac{1}{\|\vec{r}\|^{3}}\langle x, y, z\rangle=\langle P, Q, R\rangle
$$

Electric field

Example. Take the punctured space $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, and the electric field generated by a charge at the origin

$$
\begin{gathered}
\vec{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\langle x, y, z\rangle=\frac{1}{\|\vec{r}\|^{3}}\langle x, y, z\rangle=\langle P, Q, R\rangle \\
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
\end{gathered}
$$

Electric field

Example. Take the punctured space $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, and the electric field generated by a charge at the origin

$$
\begin{gathered}
\vec{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\langle x, y, z\rangle=\frac{1}{\|\vec{r}\|^{3}}\langle x, y, z\rangle=\langle P, Q, R\rangle . \\
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0 .
\end{gathered}
$$

That is, \vec{F} is divergence-free.

Electric field

Example. Take the punctured space $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, and the electric field generated by a charge at the origin

$$
\begin{gathered}
\vec{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\langle x, y, z\rangle=\frac{1}{\|\vec{r}\|^{3}}\langle x, y, z\rangle=\langle P, Q, R\rangle . \\
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0 .
\end{gathered}
$$

That is, \vec{F} is divergence-free.
However, integrating over the unit sphere S_{1} yields:

$$
\oiint_{S_{1}} \vec{F} \cdot \vec{n} d S=\oiint_{S_{1}} 1 d S=\operatorname{Area}\left(S_{1}\right)=4 \pi \neq 0
$$

Electric field

Example. Take the punctured space $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, and the electric field generated by a charge at the origin

$$
\begin{gathered}
\vec{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\langle x, y, z\rangle=\frac{1}{\|\vec{r}\|^{3}}\langle x, y, z\rangle=\langle P, Q, R\rangle . \\
\operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0 .
\end{gathered}
$$

That is, \vec{F} is divergence-free.
However, integrating over the unit sphere S_{1} yields:

$$
\oiint_{S_{1}} \vec{F} \cdot \vec{n} d S=\oiint_{S_{1}} 1 d S=\operatorname{Area}\left(S_{1}\right)=4 \pi \neq 0
$$

$\Longrightarrow \vec{F}$ is not a curl.

Another example

Example. Still with $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, consider the vector field

$$
\begin{aligned}
\vec{F}(x, y, z) & =\frac{1}{x^{2}+y^{2}+z^{2}}\langle y-z, z-x, x-y\rangle \\
& =\frac{1}{\|\vec{r}\|^{2}}\langle y-z, z-x, x-y\rangle=\langle P, Q, R\rangle
\end{aligned}
$$

Another example

Example. Still with $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, consider the vector field

$$
\begin{aligned}
\vec{F}(x, y, z)= & \frac{1}{x^{2}+y^{2}+z^{2}}\langle y-z, z-x, x-y\rangle \\
= & \frac{1}{\|\vec{r}\|^{2}}\langle y-z, z-x, x-y\rangle=\langle P, Q, R\rangle \\
& \operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0 .
\end{aligned}
$$

Another example

Example. Still with $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, consider the vector field

$$
\begin{aligned}
\vec{F}(x, y, z)= & \frac{1}{x^{2}+y^{2}+z^{2}}\langle y-z, z-x, x-y\rangle \\
= & \frac{1}{\|\vec{r}\|^{2}}\langle y-z, z-x, x-y\rangle=\langle P, Q, R\rangle \\
& \operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
\end{aligned}
$$

That is, \vec{F} is divergence-free.

Another example

Example. Still with $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, consider the vector field

$$
\begin{aligned}
\vec{F}(x, y, z)= & \frac{1}{x^{2}+y^{2}+z^{2}}\langle y-z, z-x, x-y\rangle \\
= & \frac{1}{\|\vec{r}\|^{2}}\langle y-z, z-x, x-y\rangle=\langle P, Q, R\rangle \\
& \operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
\end{aligned}
$$

That is, \vec{F} is divergence-free.
Now, integrating over the unit sphere S_{1} yields:

$$
\oiint_{S_{1}} \vec{F} \cdot \vec{n} d S=\oiint_{S_{1}} 0 d S=0 .
$$

Another example

Example. Still with $U=\mathbb{R}^{3} \backslash\{(0,0,0)\}$, consider the vector field

$$
\begin{aligned}
\vec{F}(x, y, z)= & \frac{1}{x^{2}+y^{2}+z^{2}}\langle y-z, z-x, x-y\rangle \\
= & \frac{1}{\|\vec{r}\|^{2}}\langle y-z, z-x, x-y\rangle=\langle P, Q, R\rangle \\
& \operatorname{div}(\vec{F})=P_{x}+Q_{y}+R_{z}=0
\end{aligned}
$$

That is, \vec{F} is divergence-free.
Now, integrating over the unit sphere S_{1} yields:

$$
\oiint_{S_{1}} \vec{F} \cdot \vec{n} d S=\oiint_{S_{1}} 0 d S=0 .
$$

Hmm... How do we know whether \vec{F} is a curl?

Another example (cont'd)

Since the sphere is a generator of the homology

$$
\left[S_{1}\right] \in H_{2}(U) \cong \mathbb{Z}
$$

the cohomology class of \vec{F} is trivial:

$$
[\vec{F}]=0 \in H^{2}(U ; \mathbb{R}) .
$$

Another example (cont'd)

Since the sphere is a generator of the homology

$$
\left[S_{1}\right] \in H_{2}(U) \cong \mathbb{Z}
$$

the cohomology class of \vec{F} is trivial:

$$
[\vec{F}]=0 \in H^{2}(U ; \mathbb{R})
$$

de Rham $\Longrightarrow \vec{F}$ is a curl!

Another example (cont'd)

Since the sphere is a generator of the homology

$$
\left[S_{1}\right] \in H_{2}(U) \cong \mathbb{Z}
$$

the cohomology class of \vec{F} is trivial:

$$
[\vec{F}]=0 \in H^{2}(U ; \mathbb{R})
$$

de Rham $\Longrightarrow \vec{F}$ is a curl!
In fact, we can find a vector potential:

$$
\vec{F}=\operatorname{curl}\left(\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)\langle 1,1,1\rangle\right) .
$$

Thank you!

