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Differential forms

Setup: open subset U ⊆ Rn.

A differential k-form on U ≈ “something you can integrate over
a k-dimensional subspace of U”.

Example. A 0-form is a (smooth) function f : U → R.
Integrate over the point {a}:�

{a}
f = f(a).

f dx is a 1-form. Integrate over the interval [a, b]:

�
[a,b]

f dx =

� b

a
f(x) dx.

Why not

� a

b
f(x) dx? ⇝ Orientation convention.
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Examples of differential forms

f dx ∧ dy is a 2-form.

Integrate over the rectangle
R = [a, b]× [c, d]:

�
R
f dx ∧ dy =

�
R
f(x, y) dA

=

� b

a

� d

c
f(x, y) dy dx

Fubini
=

� d

c

� b

a
f(x, y) dx dy.

Warning! dy ∧ dx = −dx ∧ dy

�
R
f dy ∧ dx =

�
R
f (−dx ∧ dy) = −

�
R
f(x, y) dA.
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Exterior derivative

The exterior derivative of a k-form ω is a (k + 1)-form dω.

Rules

1. Functions:

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn.

2. Linearity:
d(α+ β) = dα+ dβ.

3. Product rule:

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.
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Exterior derivative (cont’d)

4. Squares to zero:
d(dxi) = 0.

Key fact

d2 = 0

That is: d(dω) = 0 for any k-form ω.
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Example of exterior derivative

Example. The exterior derivative of the 1-form ω = P dx+Qdy is

dω = d(P dx+Qdy)

= d(P dx) + d(Qdy)

= dP ∧ dx+ (−1)0P ∧��
��*0

d(dx) + dQ ∧ dy + (−1)0Q ∧�
���*0

d(dy)

= dP ∧ dx+ dQ ∧ dy

= (
∂P

∂x
dx+

∂P

∂y
dy) ∧ dx+ (

∂Q

∂x
dx+

∂Q

∂y
dy) ∧ dy

=
∂P

∂x
�����:0
dx ∧ dx+

∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy +

∂Q

∂y
�����:0
dy ∧ dy

=
∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy

=
∂P

∂y
(−dx ∧ dy) +

∂Q

∂x
dx ∧ dy

= (
∂Q

∂x
− ∂P

∂y
)dx ∧ dy.
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Example (cont’d)

Taking the vector field F⃗ = ⟨P,Q⟩, we have:

dω = 2d-curl(F⃗ ) dx ∧ dy

where

2d-curl(F⃗ ) =
∂Q

∂x
− ∂P

∂y
.

11 / 42



The de Rham complex

Definition. Denote

Ωk(U) = {k-forms on U}.

The de Rham complex of U is

Ω0(U)
d // Ω1(U)

d // Ω2(U)
d // · · · d // Ωn(U) // 0
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de Rham complex for n = 1

Example. For U ⊆ R, the de Rham complex of U is

Ω0(U)
d // Ω1(U)

∼=
��

// 0

{functions}
d
dx // {functions} // 0

Warning! The equality d2 = 0 is saying d( dfdx dx) = 0, not that

every second derivative d2f
dx2 is zero!
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de Rham complex for n = 2

Example. For U ⊆ R2, the de Rham complex of U is

Ω0(U)
d // Ω1(U)

∼=
��

d // Ω2(U)

∼=
��

// 0

{functions} grad // {vector fields} 2d-curl// {functions} // 0

The gradient of f is the vector field

grad(f) = ∇f =

〈
∂f

∂x
,
∂f

∂y

〉
.

14 / 42



de Rham complex for n = 2

Example. For U ⊆ R2, the de Rham complex of U is

f P dx+Qdy f dx ∧ dy

Ω0(U)
d // Ω1(U)

∼=
��

d // Ω2(U)

∼=
��

// 0

{functions} grad // {vector fields} 2d-curl// {functions} // 0

f ⟨P,Q⟩ f

The gradient of f is the vector field

grad(f) = ∇f =

〈
∂f

∂x
,
∂f

∂y

〉
.

14 / 42



de Rham complex for n = 2

Example. For U ⊆ R2, the de Rham complex of U is

f P dx+Qdy f dx ∧ dy

Ω0(U)
d // Ω1(U)

∼=
��

d // Ω2(U)

∼=
��

// 0

{functions} grad // {vector fields} 2d-curl// {functions} // 0

f ⟨P,Q⟩ f

The gradient of f is the vector field

grad(f) = ∇f =

〈
∂f

∂x
,
∂f

∂y

〉
.

14 / 42



de Rham complex for n = 3

Example. For U ⊆ R3, the de Rham complex of U is

Ω0(U)
d // Ω1(U)

∼=
��

d // Ω2(U)

∼=
��

d // Ω3(U)

∼=
��

// 0

{functions}grad// {vector fields} curl// {vector fields} div // {functions} // 0

The curl of a vector field F⃗ is the vector field
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General Stokes’ theorem

The general Stokes’ theorem

For a (k− 1)-form ω and a k-dimensional subspace S ⊂ U , we have:

�
S
dω =

�
∂S

ω

where ∂S denotes the boundary of S (with appropriate orientation).

16 / 42



Stokes for n = 1

Let U ⊆ R.

Case k = 1. For any function f on U and interval [a, b] ⊂ U , we
have �

[a,b]
df =

�
∂[a,b]

f

� b

a

df

dx
dx =

�
b−a

f

=

�
b
f −

�
a
f

= f(b)− f(a).

Fundamental theorem of calculus
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Stokes for n = 2

Let U ⊆ R2.

Case k = 1. For any function f on U and path γ : [a, b] → U , we
have �

γ
df =

�
∂γ

f

�
γ
fx dx+ fy dy =

�
γ(b)−γ(a)

f

�
γ
∇f · dr⃗ = f(γ(b))− f(γ(a)).

Fundamental theorem of line integrals
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Stokes for n = 2 (cont’d)

Case k = 2. For any vector field F⃗ = ⟨P,Q⟩ on U and region
D ⊂ U , we have

�
D
2d-curl(F⃗ ) dA =

�
∂D

F⃗ · dr⃗
�

D
Qx − Py dA =

�
∂D

F⃗ · dr⃗.

Green’s theorem
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Stokes for n = 3

Let U ⊆ R3.

Case k = 1. ⇝ Still the fundamental theorem of line integrals.

Case k = 2. For any vector field F⃗ = ⟨P,Q,R⟩ on U and surface
S ⊂ U , we have

�
S
curl(F⃗ ) · n⃗ dS =

�
∂S

F⃗ · dr⃗

The special Stokes’ theorem
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Stokes for n = 3 (cont’d)

Case k = 3. For any vector field F⃗ = ⟨P,Q,R⟩ on U and solid
region D ⊂ U , we have

�
D
div(F⃗ ) dV =

�
∂D

F⃗ · n⃗ dS

Divergence theorem
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Stokes for n = 3 (cont’d)

Case k = 3. For any vector field F⃗ = ⟨P,Q,R⟩ on U and solid
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Outline

The general Stokes’ theorem

The de Rham theorem
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Closed and exact forms

Recall: d(dω) = 0 for any form ω.

Definition. A k-form ω is called:

closed if dω = 0;

exact if ω = dα for some (k − 1)-form α.

exact +3 closed

×
in general

Ya

However: On U = Rn or an open ball, every closed form is exact.

Question. To what extent does the converse fail?

Answer. It depends on the shape of U !
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de Rham cohomology

To measure the failure of the converse:

Definition. The kth de Rham cohomology group of U is

Hk
dR(U) := {closed k-forms}/{exact k-forms}.

The de Rham theorem

Hk
dR(U) ∼= Hk(U ;R),

the singular cohomology of U with real coefficients.

Hk(U ;R) ∼= HomZ(Hk(U),R)
The pairing is given by integration:

Hk(U ;R)×Hk(U) → R

⟨[ω], [C]⟩ =
�
C
ω.
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de Rham for n = 1

Let U ⊆ R. The cohomology of U is

Hk(U ;R) =

{
R#components, k = 0

0, k ̸= 0.

Example. Take the union of intervals U = (1, 3) ∪ (4, 5). Then

Hk(U ;R) =

{
R2, k = 0

0, k ̸= 0.
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de Rham for n = 1 (cont’d)

Case k = 0. A function f : U → R has derivative f ′(x) = 0 ⇐⇒ f
is locally constant, i.e., constant on each component.

−1 1 2 3 4 5

2

4

x

y
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de Rham for n = 1 (cont’d)

Case k = 1. Every function f : U → R is the derivative of some
other function F : U → R.

We knew that. On each component, take the integral

F (x) =

� x

a
f(t) dt.
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de Rham for n = 2

Let U ⊆ R2. Focus on k = 1.

closed 1-form: irrotational vector field F⃗ = ⟨P,Q⟩, i.e.,
2d-curl(F⃗ ) = Qx − Py = 0.

exact 1-form: conservative vector field, i.e., F⃗ = ∇f for some
function f , called a potential function for F⃗ .

conservative +3 irrotational

×
in general

_g

An irrotational vector field F⃗ = ⟨P,Q⟩ is conservative ⇐⇒ its
cohomology class in H1(U ;R) is trivial.

Example. If U is simply-connected (i.e. “without holes”), then
every irrotational vector field is conservative:

π1(U) = 0 =⇒ H1(U) = 0 =⇒ H1(U ;R) = 0.
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Irrotational versus conservative

Example. Take the punctured plane U = R2 \ {(0, 0)}, and the
vector field on U

F⃗ (x, y) =
1

x2 + y2
⟨−y, x⟩ = 1

r2
⟨−y, x⟩ = ⟨P,Q⟩ .

×

−2 −1 0 1 2
−2

−1

0

1

2

x

y
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Irrotational versus conservative (cont’d)

Qx =
y2 − x2

r4

Py =
y2 − x2

r4

=⇒ 2d-curl(F⃗ ) = Qx − Py = 0.

That is, F⃗ is irrotational.

However, integrating over the unit circle C1 yields:

�
C1

F⃗ · dr⃗ =

� 2π

0
1 dt = 2π ̸= 0.

=⇒ F⃗ is not conservative.
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Irrotational versus conservative (cont’d)

×
C1

CR

−2 −1 0 1 2
−2

−1

0

1

2

x

y
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Irrotational versus conservative (cont’d)

Note: Integrating over the circle CR of radius R yields:

�
CR

F⃗ · dr⃗ =

� 2π

0

R

R
dt = 2π .

Both circles represent the same homology class

[C1] = [CR] ∈ H1(U) ∼= Z

since their difference is a boundary:

CR − C1 = ∂(annulus).

Pairing with the cohomology class [F⃗ ] ∈ H1(U ;R) yields the same
number: 〈

[F⃗ ], [C1]
〉
=

〈
[F⃗ ], [CR]

〉
∈ R.
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A weird curve

What about the this weird curve C?

×
C

−2 −1 0 1 2
−2

−1

0

1

2

x

y
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A weird curve (cont’d)

Since C winds 3 times around the origin, its homology class is

[C] = 3[C1] ∈ H1(U).

�
C
F⃗ · dr⃗ =

〈
[F⃗ ], [C]

〉
=

〈
[F⃗ ], 3[C1]

〉
= 3

〈
[F⃗ ], [C1]

〉
= 3

�
C
F⃗ · dr⃗

= 3(2π)

= 6π .
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Another example

Example. Still with U = R2 \ {(0, 0)}, consider the vector field

F⃗ (x, y) =
1

x2 + y2
⟨x, y⟩ = 1

r2
⟨x, y⟩ = ⟨P,Q⟩ .

×

−2 −1 0 1 2
−2

−1

0

1

2

x

y
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Another example (cont’d)

Qx =
−2xy

r4

Py =
−2xy

r4

=⇒ 2d-curl(F⃗ ) = Qx − Py = 0.

That is, F⃗ is irrotational.

Now, integrating over the unit circle C1 yields:

�
C1

F⃗ · dr⃗ =

� 2π

0
0 dt = 0 .

Hmm... How do we know whether F⃗ is conservative?
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Another example (cont’d)

Since the circle is a generator of the homology

[C1] ∈ H1(U) ∼= Z

the cohomology class of F⃗ is trivial:

[F⃗ ] = 0 ∈ H1(U ;R).

de Rham =⇒ F⃗ is conservative!

In fact, we can find a potential function:

F⃗ = grad

(
1

2
ln(x2 + y2)

)
.
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de Rham for n = 3

Let U ⊆ R2. Focus on k = 2.

closed 2-form: divergence-free (a.k.a. incompressible) vector
field F⃗ = ⟨P,Q,R⟩, i.e.

div(F⃗ ) = Px +Qy +Rz = 0.

exact 2-form: F⃗ = curl(G⃗) for some vector field G⃗, called a
vector potential for F⃗ .

being a curl +3 divergence-free

×
in general

ai

A divergence-free vector field F⃗ = ⟨P,Q,R⟩ is a curl ⇐⇒ its
cohomology class in H2(U ;R) is trivial.
Example. On U = R3, every divergence-free vector field is a curl:

H2(R3;R) = 0.
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Electric field

Example. Take the punctured space U = R3 \ {(0, 0, 0)}, and the
electric field generated by a charge at the origin

F⃗ (x, y, z) =
1

(x2 + y2 + z2)3/2
⟨x, y, z⟩ = 1

∥r⃗∥3
⟨x, y, z⟩ = ⟨P,Q,R⟩ .

div(F⃗ ) = Px +Qy +Rz = 0.

That is, F⃗ is divergence-free.

However, integrating over the unit sphere S1 yields:

�
S1

F⃗ · n⃗ dS =

�
S1

1 dS = Area(S1) = 4π ̸= 0.

=⇒ F⃗ is not a curl.
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Another example

Example. Still with U = R2 \ {(0, 0, 0)}, consider the vector field

F⃗ (x, y, z) =
1

x2 + y2 + z2
⟨y − z, z − x, x− y⟩

=
1

∥r⃗∥2
⟨y − z, z − x, x− y⟩ = ⟨P,Q,R⟩ .

div(F⃗ ) = Px +Qy +Rz = 0.

That is, F⃗ is divergence-free.

Now, integrating over the unit sphere S1 yields:

�
S1

F⃗ · n⃗ dS =

�
S1

0 dS = 0.

Hmm... How do we know whether F⃗ is a curl?
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Another example (cont’d)

Since the sphere is a generator of the homology

[S1] ∈ H2(U) ∼= Z

the cohomology class of F⃗ is trivial:

[F⃗ ] = 0 ∈ H2(U ;R).

de Rham =⇒ F⃗ is a curl!

In fact, we can find a vector potential:

F⃗ = curl

(
1

2
ln(x2 + y2 + z2) ⟨1, 1, 1⟩

)
.

41 / 42



Another example (cont’d)

Since the sphere is a generator of the homology

[S1] ∈ H2(U) ∼= Z

the cohomology class of F⃗ is trivial:

[F⃗ ] = 0 ∈ H2(U ;R).

de Rham =⇒ F⃗ is a curl!

In fact, we can find a vector potential:

F⃗ = curl

(
1

2
ln(x2 + y2 + z2) ⟨1, 1, 1⟩

)
.

41 / 42



Another example (cont’d)

Since the sphere is a generator of the homology

[S1] ∈ H2(U) ∼= Z

the cohomology class of F⃗ is trivial:

[F⃗ ] = 0 ∈ H2(U ;R).

de Rham =⇒ F⃗ is a curl!

In fact, we can find a vector potential:

F⃗ = curl

(
1

2
ln(x2 + y2 + z2) ⟨1, 1, 1⟩

)
.

41 / 42



Thank you!
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