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Setup: open subset U C R".

A differential k-form on U =~ “something you can integrate over
a k-dimensional subspace of U”.

Example. o A O-form is a (smooth) function f: U — R.
Integrate over the point {a}:

f=f(a).
{a}

e fdx is a 1-form. Integrate over the interval [a, b]:

b
- fdx = /a f(x)dx.
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Differential forms

Setup: open subset U C R".

A differential k-form on U =~ “something you can integrate over
a k-dimensional subspace of U”.

Example. o A O-form is a (smooth) function f: U — R.
Integrate over the point {a}:

f=f(a).
{a}

e fdx is a 1-form. Integrate over the interval [a, b]:
b
fdx = / f(x)dx.
[a,b] a

a
Why not / f(x)dx? ~~ Orientation convention.
b
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Examples of differential forms

e fdx Adyis a 2-form.
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Examples of differential forms

o fdx Adyis a 2-form. Integrate over the rectangle
R =a,b] x [¢,d]:

/Rfdac/\dy—/Rf(x,y)dA
=/ab/cdf<x,y> dy dz 2" /Cd/:f@:,y) dz dy.

Warning! dy A dx = —dx N dy

/fdy/\dm—/f —dx N dy) = / flz,y)d
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Exterior derivative

The exterior derivative of a k-form w is a (k + 1)-form dw.
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Exterior derivative

The exterior derivative of a k-form w is a (k + 1)-form dw.
Rules

1. Functions:

0 B 0
df = oy + O gy O

dxy,.
o0x1 0x9 Oxy, v

2. Linearity:
dla+ ) = da+dp.

3. Product rule:

dlaAB)=dan B+ (-1)%% A dB.
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Exterior derivative (cont’d)

4. Squares to zero:
d(d.ﬁlfz) =0.
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Exterior derivative (cont’d)

4. Squares to zero:
d(d.ﬁlfz) =0.

Key fact

That is: d(dw) = 0 for any k-form w.
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Example of exterior derivative

Example. The exterior derivative of the 1-form w = Pdz + Q dy is
dw = d(Pdzx + Q dy)
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Example. The exterior derivative of the 1-form w = Pdz + Q dy is
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= d(Pdz) + d(Qdy)
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Example of exterior derivative

Example. The exterior derivative of the 1-form w = Pdz + Q dy is
dw = d(Pdzx + Q dy)
= d(Pdz) + d(Qdy)

0
= dP Adx + (— OP/\MerQAder 1)°Q A d(dg)
=dP Ndzx +dQ Ndy

oP oP oQ oQ
(8—dx+a—d )/\d:c+(%da:+a—ydy)/\dy
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Example. The exterior derivative of the 1-form w = Pdz + Q dy is
dw = d(Pdzx + Q dy)
= d(Pdz) + d(Qdy)

0
= dP Adx + (— OP/\MerQAder 1)°Q A d(dg)
= dP Adx +dQ A dy

opP oP oQ oQ
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Example of exterior derivative

Example. The exterior derivative of the 1-form w = Pdz + Q dy is
dw = d(Pdzx + Q dy)
= d(Pdz) + d(Qdy)

0
= dP Adx + (— OP/\MerQAder 1)°Q A d(dg)
= dP Adx +dQ A dy

opP opP 0Q oQ

(8—d:c+a—dy)/\d +((9 dx +a—dy)/\dy

0
:(lpdm” 8—d ndz+ 29y A dy +8—QM
Ox oy Ox Ay
_opP

oQ
= o dy /\dx+8—dx/\dy

0P oQ
= a—y(—daz Ndy) + %dx A dy
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Example of exterior derivative

Example. The exterior derivative of the 1-form w = Pdz + Q dy is
dw = d(Pdzx + Q dy)
= d(Pdz) + d(Qdy)

0
= dP N da + (—1)°P A d(de) +dQ A dy + (—1)°Q A d(dg)
=dP Ndzx +dQ Ndy
0P oprP 0Q oQ
= (8—$dx + a—ydy) A dz + (%d:p + a—ydy) A dy
0
= 8—PM+8—deAd$+a—deAdy+a—QM0
Ox oy Oz dy
_opP oQ
_opr oQ
_,0Q 0P

0
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Example (cont’d)

Taking the vector field F= (P,Q), we have:
dw = 2d-curl(F) dz: A dy

where 90 0P
2d-Cur1(F) = % — 672/
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The de Rham complex

Definition. Denote

QF(U) = {k-forms on U}.
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The de Rham complex

Definition. Denote
QF(U) = {k-forms on U}.
The de Rham complex of U is

QOU) L= (U) L= 2(U) - .. — Lo QnU) —0
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de Rham complex for n =1

Example. For U C R, the de Rham complex of U is

0

QU) —2—QL(U)

d%

{functions} —“= {functions} —= 0
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de Rham complex for n =1

Example. For U C R, the de Rham complex of U is

f fdx

QU) —L— QL(U)

, k

{functions} —=> {functions} — 0

0

f f

Warning! The equality d? = 0 is saying d(% dx) = 0, not that

. . d2f .
every second derivative # is zero!
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de Rham complex for n = 2

Example. For U C R?, the de Rham complex of U is

0

QOU) —L—0}(U) —L— (V)

l% lg

d -
{functions} > {vector fields} 2d-eugl {functions} ——0
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de Rham complex for n = 2

Example. For U C R?, the de Rham complex of U is
f Pdx+ Qdy fdx Ndy

0

QO(U) d QLU) d 02(U)

i% lg
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f (P,Q) f
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de Rham complex for n = 2

Example. For U C R?, the de Rham complex of U is
f Pdx+ Qdy fdx Ndy

0

QO(U) d QLU) d 02(U)

i% lg

{functions} > {vector fields} 2d-eul {functions} —=0

f (P,Q) f

The gradient of f is the vector field

grad(f) = Vf = <af of > |

oz’ Oy
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de Rham complex for n =3

Example. For U C R3, the de Rham complex of U is

QL) O2(U) BU)——=0

kL

{functions} == {Vector fields} — ol {vector fields} diy {functions} — 0
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de Rham complex for n =3

Example. For U C R3, the de Rham complex of U is

f Pdz+ Qdy + Rdz PdyAdz+ Qdz Adx + Rdx Ady fdx Ady Adz
Q(U) ——Ql(U) ! Q2(U) : 0} (U) —

{functions} L {vector fields} ol {vector fields} _dv {functions}

f (P,Q, R) (P,Q R) f
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de Rham complex for n =3

Example. For U C R3, the de Rham complex of U is

f Pdz+ Qdy + Rdz PdyAdz+ Qdz Adx + Rdx Ady fdx Ady Adz
Q(U) ——Ql(U) ! Q2(U) : 0} (U) —

{functions} L {vector fields} ol {vector fields} _dv {functions}

f (P,Q,R) (P,Q,R) f
The curl of a vector field F is the vector field
curl(F) = V x F.
The divergence of a vector field F= (P,Q, R) is the function
div(F)=v.F= 2P 09 OR
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General Stokes’ theorem

The general Stokes” theorem

For a (k — 1)-form w and a k-dimensional subspace S C U, we have:

/dw:/w
S oS

where 0SS denotes the boundary of S (with appropriate orientation).
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Stokes for n =1

Let U CR.
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Stokes for n =1

Let U CR.

Case k = 1. For any function f on U and interval [a,b] C U, we
have

/[a b ¥ = dla.b] f
/a ;ZJ; dr = f

/f /f

Fundamental theorem of calculus
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Stokes for n = 2

Let U C R2.
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Stokes for n = 2

Let U C R2.

Case k = 1. For any function f on U and path v: [a,b] — U, we

have
[ar=] 1
vy Oy
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Stokes for n = 2

Let U C R2.

Case k = 1. For any function f on U and path v: [a,b] — U, we

have
[ar=] 1
ol Oy

/hm+@@—/ f
v ~v(b)—(a)

(/Vwa—fww»—fww»
Y ’\ X(b)

e\,

¥l

Fundamental theorem of line integrals
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Stokes for n = 2 (cont’d)

Case k = 2. For any vector field F' = (P,Q) on U and region

D c U, we have
// 2d-curl(F) dA —75 F-dF
D oD

// Qm—PydA:yg F - dF.
D oD
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Stokes for n = 2 (cont’d)

Case k = 2. For any vector field F' = (P,Q) on U and region

D c U, we have

// 2d-curl(F) dA = yg F.di
D oD

// Q. — P, dA= ¢ F-dr.
D oD

T

Green’s theorem

D
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Stokes for n = 3

Let U C R3.
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Stokes for n = 3

Let U C R3.
Case k = 1. ~» Still the fundamental theorem of line integrals.

Case k = 2. For any vector field F = (P,Q, R) on U and surface
S C U, we have

// cwl(F)-7dS =@ F-dF
S oS

The special Stokes’ theorem

S
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Stokes for n = 3 (cont’d)

Case k = 3. For any vector field F' = (P,Q,R) on U and solid
region D C U, we have

///Ddiv(ﬁ) dv = %[éD F.iidS
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Stokes for n = 3 (cont’d)

Case k = 3. For any vector field F' = (P,Q,R) on U and solid
region D C U, we have

///Ddiv(ﬁ) dv = 77%@1) F-ids

Divergence theorem
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Outline

The de Rham theorem
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Closed and exact forms

Recall: d(dw) = 0 for any form w.
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Closed and exact forms

Recall: d(dw) = 0 for any form w.

Definition. A k-form w is called:

e closed if dw = 0;

e exact if w = da for some (k — 1)-form a.

exact —=> closed
in general
However: On U = R" or an open ball, every closed form is exact.
Question. To what extent does the converse fail?

Answer. It depends on the shape of U!

23 /42



de Rham cohomology

To measure the failure of the converse:
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de Rham cohomology

To measure the failure of the converse:

Definition. The £ de Rham cohomology group of U is
H: (U) := {closed k-forms}/{exact k-forms}.

The de Rham theorem
HiR(U) = H"(U;R),

the singular cohomology of U with real coefficients.

H*(U;R) = Homgz(Hy(U),R)
The pairing is given by integration:

HY(U;R) x Hy(U) = R
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de Rham for n=1

Let U C R. The cohomology of U is

R#components’ k=0

H*(U;R) = {
0, k # 0.
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de Rham for n=1

Let U C R. The cohomology of U is

R#components’ k=0

HW&M:{
0, k # 0.

Example. Take the union of intervals U = (1,3) U (4,5). Then

R?, k=0

HWMR%:{
0, k#0.
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de Rham for n =1 (cont’d)

Case k = 0. A function f: U — R has derivative f'(z) =0 < f
is locally constant, i.e., constant on each component.

Y

@
@
@

@
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de Rham for n =1 (cont’d)

Case k = 1. Every function f: U — R is the derivative of some
other function F': U — R.
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de Rham for n =1 (cont’d)

Case k = 1. Every function f: U — R is the derivative of some
other function F': U — R.

We knew that. On each component, take the integral

Flz) = / " dt.
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de Rham for n =2

Let U C R2. Focus on k = 1.

28 /42



de Rham for n =2

Let U C R2. Focus on k = 1.

o closed 1-form: irrotational vector field F = (P,Q), i.e.,
2d-curl(F) = Q, — y = 0.

@ exact 1-form: conservative vector field, i.e., F=v f for some
function f, called a potential function for F.
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de Rham for n =2

Let U C R2. Focus on k = 1.

o closed 1-form: irrotational vector field F = (P,Q), i.e.,
2d-curl(F) = Q, — y = 0.

@ exact 1-form: conservative vector field, i.e., F=v f for some
function f, called a potential function for F.

conservative ——> irrotational

in general

An irrotational vector field F' = (P, Q) is conservative <= its
cohomology class in H'(U;R) is trivial.

Example. If U is simply-connected (i.e. “without holes”), then
every irrotational vector field is conservative:

m{U)=0 = H;(U)=0 = H'(U;R) =0.

28 /42



Irrotational versus conservative

Example. Take the punctured plane U = R?\ {(0,0)}, and the
vector field on U

—

1
F(z,y) = —

Sz ) = 5 () = (PQ).
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Irrotational versus conservative

R2\ {(0,0)}, and the

Example. Take the punctured plane U

vector field on U
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Irrotational versus conservative (cont’d)

_y2_w2

Q. =1

2
Y- -z
P, = 1

2

,
— 2d-curl(F) = Q, — y = 0.
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Irrotational versus conservative (cont’d)

2

2
_y -z
Q. =

2
Y- -z
P, = 1

2

,
— 2d-curl(F) = Q, — y = 0.

That is, F is irrotational.
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Irrotational versus conservative (cont’d)

0 _y2—w2
Yy -
4

2

Py ="

— 2d-curl(F) = Q, — y = 0.

That is, F is irrotational.

However, integrating over the unit circle Cy yields:

ygﬁ-dF:/ 1dt =[27]#0.
C
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Irrotational versus conservative (cont’d)

0 _y2—w2
Yy -
4

2

Py ="

— 2d-curl(F) = Q, — y = 0.

That is, F is irrotational.

However, integrating over the unit circle Cy yields:

ygﬁ-dF:/ 1dt =[27]#0.
C

— F' is not conservative.
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Irrotational versus conservative (cont’d)

\
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Irrotational versus conservative (cont’d)

Note: Integrating over the circle C'r of radius R yields:

21
%ﬁ-dfz/ Edt:.
Cr o R
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Irrotational versus conservative (cont’d)

Note: Integrating over the circle C'r of radius R yields:

. 2m R
75 F-dF:/ —dt =[2r].
Cr o R
Both circles represent the same homology class
[Cl] = [CR] € Hl(U) =7
since their difference is a boundary:

Cr — Cy = 0(annulus).
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Irrotational versus conservative (cont’d)

Note: Integrating over the circle C'r of radius R yields:

. 2m R
75 F-dF:/ —dt =[2n]
Cr o R
Both circles represent the same homology class
[Cl] = [CR] € Hl(U) =7
since their difference is a boundary:
Cr — Cy = 0(annulus).
Pairing with the cohomology class [F] € H(U;R) yields the same

number:
(1), 1c1) = (1F).[Cr]) € R,
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A weird curve

What about the this weird curve C?7
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A weird curve (cont’d)

Since C' winds 3 times around the origin, its homology class is

[C] = 3[01] S Hl(U)
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Another example
Example. Still with U = R?\ {(0,0)}, consider the vector field

(,9) = 5 (0.9) = (P,Q).

—

1
F(x,y) = Wyg
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Another example

R\ {(0,0)}, consider the vector field

Example. Still with U

(P,Q).

1 1
72 +y2 <$7y> = Tig <ZL‘,y>
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Another example (cont’d)

—2xy
QQJ - 7’4
—2zy
P =
r4

— 2d-curl(F) = Q, — P, = 0.
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Another example (cont’d)

—2xy
QQJ - 7’4
—2zy
P, =
r4

— 2d-curl(F) = Q, — P, = 0.

That is, F is irrotational.
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Another example (cont’d)

—2xy
Q:E - 7’4
—2zy
P =
r4

— 2d-curl(F) = Q, — P, = 0.

That is, F is irrotational.

Now, integrating over the unit circle C] yields:

21
55 ﬁ-dF:/ 0dt =[0]
Cq 0
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Another example (cont’d)

—2xy
Q:E - 7’4
—2zy
P =
r4

— 2d-curl(F) = Q, — P, = 0.

That is, F is irrotational.

Now, integrating over the unit circle C] yields:
. 27
55 F-dF:/ 0dt =[0]
Cq 0

Hmm... How do we know whether F' is conservative?
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Another example (cont’d)

Since the circle is a generator of the homology
[Ci] € H(U) = Z
the cohomology class of F' is trivial:

[F] =0 e H'(U;R).
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Another example (cont’d)

Since the circle is a generator of the homology
[Ci] € H(U) = Z
the cohomology class of F' is trivial:
[F] =0 e H'(U;R).

de Rham = F'is conservative!
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Another example (cont’d)

Since the circle is a generator of the homology
[Ci] € H(U) = Z
the cohomology class of F' is trivial:
[F] =0 e H'(U;R).
de Rham = F is conservative!

In fact, we can find a potential function:

~ 1
F = grad <2 In(z? + y2)> .
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de Rham for n =3

Let U C R2. Focus on k = 2.
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de Rham for n =3

Let U C R2. Focus on k = 2.

e closed 2-form: divergence-free (a.k.a. incompressible) vector
field F = (P,Q, R), i.e.

div(F) = P, + Q, + R, = 0.

o exact 2-form: F = curl(G) for some vector field G, called a
vector potential for F'.
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being a curl == divergence-free
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Let U C R2. Focus on k = 2.

e closed 2-form: divergence-free (a.k.a. incompressible) vector
field F = (P,Q, R), i.e.

div(F) = P, + Q, + R, = 0.

o exact 2-form: F = curl(G) for some vector field G, called a
vector potential for F'.

being a curl == divergence-free

in general

A divergence-free vector field F' = (P,Q,R) is a curl <= its
cohomology class in H2(U;R) is trivial.
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de Rham for n =3

Let U C R2. Focus on k = 2.

e closed 2-form: divergence-free (a.k.a. incompressible) vector
field F = (P,Q, R), i.e.

div(F) = P, + Q, + R, = 0.

o exact 2-form: F = curl(G) for some vector field G, called a
vector potential for F'.

being a curl == divergence-free

in general

A divergence-free vector field F' = (P,Q,R) is a curl <= its

cohomology class in H2(U;R) is trivial.

Example. On U = R3, every divergence-free vector field is a curl:
H%*(R3:R) = 0.
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Electric field

Example. Take the punctured space U = R3\ {(0,0,0)}, and the
electric field generated by a charge at the origin

" 1 1
F(‘r7yaz): ($2+y2+22)3/2 <x7y7z> :W<x7y7z> :<P7Q7R>
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Electric field

Example. Take the punctured space U = R3\ {(0,0,0)}, and the
electric field generated by a charge at the origin

" 1 1
F(‘r7yaz): ($2+y2+22)3/2 <x7y7z> :W<x7y7z> :<P7Q7R>

div(F) = P, + Q, + R. = 0.
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Electric field

Example. Take the punctured space U = R3\ {(0,0,0)}, and the
electric field generated by a charge at the origin

" 1 1
F(‘r7yaz): ($2+y2+22)3/2 <x7y7z> :W<x7y7z> :<P7Q7R>

div(F) = P, + Q, + R. = 0.

That is, Fis divergence-free.
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Electric field

Example. Take the punctured space U = R3\ {(0,0,0)}, and the
electric field generated by a charge at the origin

1 1

ﬁ(x7yaz): ($2+y2+22)3/2 <=’137.%Z> :W<x7y7z> :<P7Q7R>

div(F) = P, + Q, + R. = 0.
That is, Fis divergence-free.

However, integrating over the unit sphere Sy yields:

#ﬁ-ﬁdS: 1dS = Area(S;) =[4r]# 0.
Sl Sl
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Electric field

Example. Take the punctured space U = R3\ {(0,0,0)}, and the
electric field generated by a charge at the origin

1 1

ﬁ(x7yaz): ($2+y2+22)3/2 <=’137.%Z> :W<x7y7z> :<P7Q7R>

div(F) = P, + Q, + R. = 0.
That is, Fis divergence-free.

However, integrating over the unit sphere Sy yields:

#ﬁ-ﬁdS: 1dS = Area(S;) =[4r]# 0.
Sl Sl

== F is not a curl.
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Another example

Example. Still with U = R?\ {(0,0,0)}, consider the vector field

ﬁ 1

1
e (y—z,z—xz,x—y)=(P,Q,R).

(y—zz—z,2—y)

40/ 42



Another example

Example. Still with U = R?\ {(0,0,0)}, consider the vector field

ﬁ 1

F(x,y,z):m@—zaz—%%—y)

1
:W(y—z,z—x,x—w: (P,Q,R).

div(F) = P, + Q, + R. = 0.
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Another example

Example. Still with U = R?\ {(0,0,0)}, consider the vector field

= 1
F(x,y,z):m@—zaz—%%—y)
1
= ‘Q(y—z,z—x,x—w:(P,Q,R).

171

div(F) = P, + Q, + R. = 0.

That is, F is divergence-free.
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Another example

Example. Still with U = R?\ {(0,0,0)}, consider the vector field

= 1
F(x,y,z):m@—zaz—%%—y)
1
= ‘Q(y—z,z—x,x—w:(P,Q,R).

171

div(F) = P, + Q, + R. = 0.
That is, F is divergence-free.

Now, integrating over the unit sphere .57 yields:

# F.idS = 0dS = 0.
Sl Sl
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Another example

Example. Still with U = R?\ {(0,0,0)}, consider the vector field

= 1
F(x,y,z):m@—zaz—%%—y)
1
= ‘Q(y—z,z—x,x—w:(P,Q,R).

171

div(F) = P, + Q, + R. = 0.
That is, F is divergence-free.

Now, integrating over the unit sphere .57 yields:

# F.idS = 0dS = 0.
S1 Sl

Hmm... How do we know whether F is a curl?
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Another example (cont’d)

Since the sphere is a generator of the homology
[S1] € Hoy(U) =2 Z
the cohomology class of F' is trivial:

[F] =0 e H*(U;R).
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Another example (cont’d)

Since the sphere is a generator of the homology
[S1] € Hoy(U) =2 Z
the cohomology class of F' is trivial:
[F] =0 e H*(U;R).

de Rham =—> F is a curl!
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Another example (cont’d)

Since the sphere is a generator of the homology
[S1] € Hoy(U) =2 Z
the cohomology class of F' is trivial:
[F] =0 e H*(U;R).
de Rham = F is a curl!

In fact, we can find a vector potential:

- 1
F = curl (2 In(z? + 9% + 2%) (1,1, 1>) .
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Thank you!
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