Is calculus secretly algebraic topology?

Martin Frankland University of Regina

Pi Day University of Regina March 14, 2022

No.

Thank you!

The general Stokes' theorem

The de Rham theorem

The general Stokes' theorem

The de Rham theorem

Setup: open subset $U \subseteq \mathbb{R}^n$.

Setup: open subset $U \subseteq \mathbb{R}^n$.

A differential k-form on $U \approx$ "something you can integrate over a k-dimensional subspace of U".

Setup: open subset $U \subseteq \mathbb{R}^n$.

A differential k-form on $U \approx$ "something you can integrate over a k-dimensional subspace of U".

Example. • A 0-form is a (smooth) function $f: U \to \mathbb{R}$.

Setup: open subset $U \subseteq \mathbb{R}^n$.

A differential k-form on $U \approx$ "something you can integrate over a k-dimensional subspace of U".

Example. • A 0-form is a (smooth) function $f: U \to \mathbb{R}$. Integrate over the point $\{a\}$:

$$\int_{\{a\}} f = f(a).$$

Setup: open subset $U \subseteq \mathbb{R}^n$.

A differential k-form on $U \approx$ "something you can integrate over a k-dimensional subspace of U".

Example. • A 0-form is a (smooth) function $f: U \to \mathbb{R}$. Integrate over the point $\{a\}$:

$$\int_{\{a\}} f = f(a).$$

• f dx is a 1-form.

Setup: open subset $U \subseteq \mathbb{R}^n$.

A differential k-form on $U \approx$ "something you can integrate over a k-dimensional subspace of U".

Example. • A 0-form is a (smooth) function $f: U \to \mathbb{R}$. Integrate over the point $\{a\}$:

$$\int_{\{a\}} f = f(a).$$

• f dx is a 1-form. Integrate over the interval [a, b]:

$$\int_{[a,b]} f \, dx = \int_a^b f(x) \, dx.$$

Setup: open subset $U \subseteq \mathbb{R}^n$.

A differential k-form on $U \approx$ "something you can integrate over a k-dimensional subspace of U".

Example. • A 0-form is a (smooth) function $f: U \to \mathbb{R}$. Integrate over the point $\{a\}$:

$$\int_{\{a\}} f = f(a).$$

• f dx is a 1-form. Integrate over the interval [a, b]:

$$\int_{[a,b]} f \, dx = \int_a^b f(x) \, dx.$$

Why not $\int_{b}^{a} f(x) dx$? \rightsquigarrow Orientation convention.

• $f dx \wedge dy$ is a 2-form.

• $f \, dx \wedge dy$ is a 2-form. Integrate over the rectangle $R = [a, b] \times [c, d]$:

$$\int_{R} f \, dx \wedge dy = \iint_{R} f(x, y) \, dA$$
$$= \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx \stackrel{\text{Fubini}}{=} \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy.$$

• $f \, dx \wedge dy$ is a 2-form. Integrate over the rectangle $R = [a, b] \times [c, d]$:

$$\int_{R} f \, dx \wedge dy = \iint_{R} f(x, y) \, dA$$
$$= \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx \stackrel{\text{Fubini}}{=} \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy.$$

Warning! $dy \wedge dx = -dx \wedge dy$

• $f \, dx \wedge dy$ is a 2-form. Integrate over the rectangle $R = [a, b] \times [c, d]$:

$$\int_{R} f \, dx \wedge dy = \iint_{R} f(x, y) \, dA$$
$$= \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx \stackrel{\text{Fubini}}{=} \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy.$$

Warning! $dy \wedge dx = -dx \wedge dy$

$$\int_{R} f \, dy \wedge dx = \int_{R} f \left(-dx \wedge dy \right) = -\iint_{R} f(x, y) \, dA.$$

The exterior derivative of a k-form ω is a (k + 1)-form $d\omega$.

The **exterior derivative** of a k-form ω is a (k + 1)-form $d\omega$. Rules

1. Functions:

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

The **exterior derivative** of a k-form ω is a (k + 1)-form $d\omega$. Rules

1. Functions:

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

2. Linearity:

$$d(\alpha + \beta) = d\alpha + d\beta.$$

The **exterior derivative** of a k-form ω is a (k + 1)-form $d\omega$. Rules

1. Functions:

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

2. Linearity:

$$d(\alpha + \beta) = d\alpha + d\beta.$$

3. Product rule:

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge d\beta.$$

Exterior derivative (cont'd)

4. Squares to zero:

$$d(dx_i) = 0.$$

Exterior derivative (cont'd)

4. Squares to zero:

$$d(dx_i) = 0.$$

Key fact

$$d^2 = 0$$

That is: $d(d\omega) = 0$ for any k-form ω .

Example. The exterior derivative of the 1-form $\omega = P dx + Q dy$ is $d\omega = d(P dx + Q dy)$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ $= d(P \, dx) + d(Q \, dy)$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ $= d(P \, dx) + d(Q \, dy)$ $= dP \wedge dx + (-1)^0 P \wedge d(dx) + dQ \wedge dy + (-1)^0 Q \wedge d(dy)$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ $= d(P \, dx) + d(Q \, dy)$ $= dP \wedge dx + (-1)^0 P \wedge d(dx) + dQ \wedge dy + (-1)^0 Q \wedge d(dy)^{-0}$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ $= d(P \, dx) + d(Q \, dy)$ $= dP \wedge dx + (-1)^0 P \wedge d(dx) + dQ \wedge dy + (-1)^0 Q \wedge d(dy)^0$ $= dP \wedge dx + dQ \wedge dy$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ $= d(P \, dx) + d(Q \, dy)$ $= dP \wedge dx + (-1)^0 P \wedge d(dx) + dQ \wedge dy + (-1)^0 Q \wedge d(dy)^{-0}$ $= dP \wedge dx + dQ \wedge dy$ $= (\frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy) \wedge dx + (\frac{\partial Q}{\partial x} dx + \frac{\partial Q}{\partial y} dy) \wedge dy$

Example. The exterior derivative of the 1-form $\omega = P dx + Q dy$ is $d\omega = d(P \, dx + Q \, dy)$ = d(P dx) + d(Q dy) $= dP \wedge dx + (-1)^{0}P \wedge d(dx) + dQ \wedge dy + (-1)^{0}Q \wedge d(dy)^{0}$ $= dP \wedge dx + dQ \wedge dy$ $= \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy$ $= \frac{\partial P}{\partial x}dx \wedge dx + \frac{\partial P}{\partial y}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy + \frac{\partial Q}{\partial y}dy \wedge dy$

Example. The exterior derivative of the 1-form $\omega = P dx + Q dy$ is $d\omega = d(P \, dx + Q \, dy)$ = d(P dx) + d(Q dy) $= dP \wedge dx + (-1)^{0}P \wedge d(dx) + dQ \wedge dy + (-1)^{0}Q \wedge d(dy)^{0}$ $= dP \wedge dx + dQ \wedge dy$ $= \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy$ $= \frac{\partial P}{\partial x} dx \wedge dx + \frac{\partial P}{\partial y} dy \wedge dx + \frac{\partial Q}{\partial x} dx \wedge dy + \frac{\partial Q}{\partial y} dy \wedge dy^{0}$

Example. The exterior derivative of the 1-form $\omega = P dx + Q dy$ is $d\omega = d(P \, dx + Q \, dy)$ = d(P dx) + d(Q dy) $= dP \wedge dx + (-1)^{0}P \wedge d(dx) + dQ \wedge dy + (-1)^{0}Q \wedge d(dy)^{0}$ $= dP \wedge dx + dQ \wedge dy$ $= \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy$ $= \frac{\partial P}{\partial x} dx \wedge dx + \frac{\partial P}{\partial y} dy \wedge dx + \frac{\partial Q}{\partial x} dx \wedge dy + \frac{\partial Q}{\partial y} dy \wedge dy^{0}$ $=\frac{\partial P}{\partial u}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ = d(P dx) + d(Q dy) $= dP \wedge dx + (-1)^{0}P \wedge d(dx) + dQ \wedge dy + (-1)^{0}Q \wedge d(dy)^{0}$ $= dP \wedge dx + dQ \wedge dy$ $= \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy$ $= \frac{\partial P}{\partial x} dx \wedge dx + \frac{\partial P}{\partial y} dy \wedge dx + \frac{\partial Q}{\partial x} dx \wedge dy + \frac{\partial Q}{\partial y} dy \wedge dy^{0}$ $=\frac{\partial P}{\partial u}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy$ $=\frac{\partial P}{\partial u}(-dx\wedge dy)+\frac{\partial Q}{\partial x}dx\wedge dy$

Example. The exterior derivative of the 1-form $\omega = P \, dx + Q \, dy$ is $d\omega = d(P \, dx + Q \, dy)$ = d(P dx) + d(Q dy) $= dP \wedge dx + (-1)^{0}P \wedge d(dx) + dQ \wedge dy + (-1)^{0}Q \wedge d(dy)^{0}$ $= dP \wedge dx + dQ \wedge dy$ $= \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy$ $=\frac{\partial P}{\partial x}dx\wedge dx+\frac{\partial P}{\partial y}dy\wedge dx+\frac{\partial Q}{\partial x}dx\wedge dy+\frac{\partial Q}{\partial y}dy\wedge dy \overset{0}{\rightarrow} 0$ $=\frac{\partial P}{\partial u}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy$ $=\frac{\partial P}{\partial u}(-dx\wedge dy)+\frac{\partial Q}{\partial x}dx\wedge dy$ $= (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dx \wedge dy.$ 10/42

Example (cont'd)

Taking the vector field $\vec{F} = \langle P, Q \rangle$, we have: $d\omega = 2 \text{d-curl}(\vec{F}) \, dx \wedge dy$

where

$$2\mathrm{d}\text{-}\mathrm{curl}(\vec{F}) = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}.$$

The de Rham complex

Definition. Denote

$$\Omega^k(U) = \{k \text{-forms on } U\}.$$

The de Rham complex

Definition. Denote

 $\Omega^k(U) = \{k \text{-forms on } \mathbf{U}\}.$

The de Rham complex of U is

$$\Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{d} \Omega^2(U) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n(U) \longrightarrow 0$$
Example. For $U \subseteq \mathbb{R}$, the de Rham complex of U is

$$\begin{array}{ccc} \Omega^0(U) & & \overset{d}{\longrightarrow} \Omega^1(U) & \longrightarrow 0 \\ & & & & & \\ & & & & & \\ \left. \begin{array}{c} & & \\ & &$$

Example. For $U \subseteq \mathbb{R}$, the de Rham complex of U is

Example. For $U \subseteq \mathbb{R}$, the de Rham complex of U is

Warning! The equality $d^2 = 0$ is saying $d(\frac{df}{dx} dx) = 0$, not that every second derivative $\frac{d^2f}{dx^2}$ is zero!

Example. For $U \subseteq \mathbb{R}^2$, the de Rham complex of U is

$$\begin{array}{cccc} \Omega^{0}(U) & \overset{d}{\longrightarrow} \Omega^{1}(U) & \overset{d}{\longrightarrow} \Omega^{2}(U) & \longrightarrow 0 \\ \\ & & & & \downarrow \cong & & \downarrow \cong \\ \{\text{functions}\} & \overset{\text{grad}}{\longrightarrow} \{\text{vector fields}\} \overset{2d-\text{curl}}{\longrightarrow} \{\text{functions}\} & \longrightarrow 0 \end{array}$$

Example. For $U \subseteq \mathbb{R}^2$, the de Rham complex of U is

 $\begin{array}{cccc} f & P \, dx + Q \, dy & f \, dx \wedge dy \\ \\ \Omega^0(U) & \xrightarrow{d} & \Omega^1(U) & \xrightarrow{d} & \Omega^2(U) \longrightarrow 0 \\ & & & \downarrow \cong & & \downarrow \cong \\ \\ \{\text{functions}\} & \xrightarrow{\text{grad}} \{\text{vector fields}\} \xrightarrow{2\text{d-curl}} \{\text{functions}\} \longrightarrow 0 \\ & f & \langle P, Q \rangle & f \end{array}$

Example. For $U \subseteq \mathbb{R}^2$, the de Rham complex of U is

The **gradient** of f is the vector field

$$\operatorname{grad}(f) = \nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle.$$

Example. For $U \subseteq \mathbb{R}^3$, the de Rham complex of U is

$$\begin{array}{cccc} \Omega^{0}(U) & \stackrel{d}{\longrightarrow} \Omega^{1}(U) & \stackrel{d}{\longrightarrow} \Omega^{2}(U) & \stackrel{d}{\longrightarrow} \Omega^{3}(U) & \longrightarrow 0 \\ \\ & & & & & \downarrow \cong & & \downarrow \cong \\ \{ \text{functions} \} \stackrel{\text{grad}}{\longrightarrow} \{ \text{vector fields} \} \stackrel{\text{curl}}{\longrightarrow} \{ \text{vector fields} \} \stackrel{\text{div}}{\longrightarrow} \{ \text{functions} \} \rightarrow 0 \end{array}$$

Example. For $U \subseteq \mathbb{R}^3$, the de Rham complex of U is

 $f \qquad \qquad P\,dx + Q\,dy + R\,dz \qquad P\,dy \wedge dz + Q\,dz \wedge dx + R\,dx \wedge dy \qquad f\,dx \wedge dy \wedge dz$

Example. For $U \subseteq \mathbb{R}^3$, the de Rham complex of U is

 $f \qquad \qquad P \, dx + Q \, dy + R \, dz \qquad P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy \qquad f \, dx \wedge dy \wedge dz$

$$\begin{array}{cccc} \Omega^{0}(U) & \stackrel{d}{\longrightarrow} \Omega^{1}(U) & \stackrel{d}{\longrightarrow} \Omega^{2}(U) & \stackrel{d}{\longrightarrow} \Omega^{3}(U) & \stackrel{d}{\longrightarrow} \Omega^{$$

 $f \qquad \langle P, Q, R \rangle \qquad \langle P, Q, R \rangle \qquad f$

The **curl** of a vector field \vec{F} is the vector field $\operatorname{curl}(\vec{F}) = \nabla \times \vec{F}.$

Example. For $U \subseteq \mathbb{R}^3$, the de Rham complex of U is

 $P \, dx + Q \, dy + R \, dz$ $P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy$ $f \, dx \wedge dy \wedge dz$

$$\begin{array}{cccc} \Omega^{0}(U) & \stackrel{d}{\longrightarrow} \Omega^{1}(U) & \stackrel{d}{\longrightarrow} \Omega^{2}(U) & \stackrel{d}{\longrightarrow} \Omega^{3}(U) & - \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

 $f \qquad \langle P,Q,R \rangle \qquad \langle P,Q,R \rangle \qquad f$

The ${\bf curl}$ of a vector field \vec{F} is the vector field

$$\operatorname{curl}(\vec{F}) = \nabla \times \vec{F}.$$

The **divergence** of a vector field $\vec{F} = \langle P, Q, R \rangle$ is the function

$$\operatorname{div}(\vec{F}) = \nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

General Stokes' theorem

The general Stokes' theorem

For a (k-1)-form ω and a k-dimensional subspace $S \subset U$, we have:

$$\int_S d\omega = \int_{\partial S} \omega$$

where ∂S denotes the boundary of S (with appropriate orientation).

Let $U \subseteq \mathbb{R}$.

Let $U \subseteq \mathbb{R}$.

Case k = 1. For any function f on U and interval $[a, b] \subset U$, we have

$$\int_{[a,b]} df = \int_{\partial [a,b]} f$$
$$\int_{a}^{b} \frac{df}{dx} dx = \int_{b-a} f$$
$$= \int_{b} f - \int_{a} f$$
$$= f(b) - f(a).$$

Let $U \subseteq \mathbb{R}$.

Case k = 1. For any function f on U and interval $[a, b] \subset U$, we have

$$\int_{[a,b]} df = \int_{\partial [a,b]} f$$
$$\int_{a}^{b} \frac{df}{dx} dx = \int_{b-a} f$$
$$= \int_{b} f - \int_{a} f$$
$$= f(b) - f(a).$$

Fundamental theorem of calculus

Let $U \subseteq \mathbb{R}^2$.

Let $U \subseteq \mathbb{R}^2$.

Case k = 1. For any function f on U and path $\gamma \colon [a, b] \to U$, we have

$$\int_{\gamma} df = \int_{\partial \gamma} f$$
$$\int_{\gamma} f_x \, dx + f_y \, dy = \int_{\gamma(b) - \gamma(a)} f$$
$$\int_{\gamma} \nabla f \cdot d\vec{r} = f(\gamma(b)) - f(\gamma(a))$$

•

Let $U \subseteq \mathbb{R}^2$.

Case k = 1. For any function f on U and path $\gamma \colon [a, b] \to U$, we have

$$\int_{\gamma} df = \int_{\partial \gamma} f$$
$$\int_{\gamma} f_x \, dx + f_y \, dy = \int_{\gamma(b) - \gamma(a)} f$$
$$\int_{\gamma} \nabla f \cdot d\vec{r} = f(\gamma(b)) - f(\gamma(a)).$$

Fundamental theorem of line integrals

Stokes for n = 2 (cont'd)

Case k = 2. For any vector field $\vec{F} = \langle P, Q \rangle$ on U and region $D \subset U$, we have

$$\iint_{D} 2\operatorname{d-curl}(\vec{F}) \, dA = \oint_{\partial D} \vec{F} \cdot d\vec{r}$$
$$\iint_{D} Q_x - P_y \, dA = \oint_{\partial D} \vec{F} \cdot d\vec{r}.$$

Stokes for n = 2 (cont'd)

Case k = 2. For any vector field $\vec{F} = \langle P, Q \rangle$ on U and region $D \subset U$, we have

$$\iint_{D} 2\operatorname{d-curl}(\vec{F}) \, dA = \oint_{\partial D} \vec{F} \cdot d\vec{r}$$
$$\iint_{D} Q_x - P_y \, dA = \oint_{\partial D} \vec{F} \cdot d\vec{r}.$$

Green's theorem

Let $U \subseteq \mathbb{R}^3$.

Let $U \subseteq \mathbb{R}^3$.

Case k = 1. \rightarrow Still the fundamental theorem of line integrals.

Let $U \subseteq \mathbb{R}^3$.

Case k = 1. \rightsquigarrow Still the fundamental theorem of line integrals.

Case k = 2. For any vector field $\vec{F} = \langle P, Q, R \rangle$ on U and surface $S \subset U$, we have

$$\iint_{S} \operatorname{curl}(\vec{F}) \cdot \vec{n} \, dS = \oint_{\partial S} \vec{F} \cdot d\vec{r}$$

Let $U \subseteq \mathbb{R}^3$.

Case k = 1. \rightsquigarrow Still the fundamental theorem of line integrals.

Case k = 2. For any vector field $\vec{F} = \langle P, Q, R \rangle$ on U and surface $S \subset U$, we have

$$\iint_{S} \operatorname{curl}(\vec{F}) \cdot \vec{n} \, dS = \oint_{\partial S} \vec{F} \cdot d\vec{r}$$

The special Stokes' theorem

Stokes for n = 3 (cont'd)

Case k = 3. For any vector field $\vec{F} = \langle P, Q, R \rangle$ on U and solid region $D \subset U$, we have

$$\iiint_D \operatorname{div}(\vec{F}) \, dV = \oint_{\partial D} \vec{F} \cdot \vec{n} \, dS$$

Stokes for n = 3 (cont'd)

Case k = 3. For any vector field $\vec{F} = \langle P, Q, R \rangle$ on U and solid region $D \subset U$, we have

$$\iiint_D \operatorname{div}(\vec{F}) \, dV = \oiint_{\partial D} \vec{F} \cdot \vec{n} \, dS$$

Divergence theorem

The general Stokes' theorem

The de Rham theorem

Recall: $d(d\omega) = 0$ for any form ω .

Recall: $d(d\omega) = 0$ for any form ω .

Definition. A *k*-form ω is called:

- closed if $d\omega = 0$;
- exact if $\omega = d\alpha$ for some (k-1)-form α .

Recall: $d(d\omega) = 0$ for any form ω .

Definition. A *k*-form ω is called:

- closed if $d\omega = 0$;
- exact if $\omega = d\alpha$ for some (k-1)-form α .

Recall: $d(d\omega) = 0$ for any form ω .

Definition. A k-form ω is called:

- closed if $d\omega = 0$;
- exact if $\omega = d\alpha$ for some (k-1)-form α .

However: On $U = \mathbb{R}^n$ or an open ball, every closed form *is* exact.

Recall: $d(d\omega) = 0$ for any form ω .

Definition. A *k*-form ω is called:

- closed if $d\omega = 0$;
- exact if $\omega = d\alpha$ for some (k-1)-form α .

However: On $U = \mathbb{R}^n$ or an open ball, every closed form *is* exact. Question. To what extent does the converse fail?

Recall: $d(d\omega) = 0$ for any form ω .

Definition. A *k*-form ω is called:

- closed if $d\omega = 0$;
- exact if $\omega = d\alpha$ for some (k-1)-form α .

However: On $U = \mathbb{R}^n$ or an open ball, every closed form *is* exact. Question. To what extent does the converse fail? Answer. It depends on the shape of U!

To measure the failure of the converse:

To measure the failure of the converse:

Definition. The k^{th} de Rham cohomology group of U is $H^k_{dR}(U) := \{\text{closed } k\text{-forms}\}/\{\text{exact } k\text{-forms}\}.$

To measure the failure of the converse:

Definition. The k^{th} de Rham cohomology group of U is $H^k_{dR}(U) := \{\text{closed } k\text{-forms}\}/\{\text{exact } k\text{-forms}\}.$

The de Rham theorem

$$H^k_{\mathrm{dR}}(U) \cong H^k(U;\mathbb{R}),$$

the singular cohomology of U with real coefficients.

To measure the failure of the converse:

Definition. The k^{th} de Rham cohomology group of U is $H^k_{dR}(U) := \{\text{closed } k\text{-forms}\}/\{\text{exact } k\text{-forms}\}.$

The de Rham theorem

$$H^k_{\mathrm{dR}}(U) \cong H^k(U;\mathbb{R}),$$

the singular cohomology of U with real coefficients.

 $H^k(U;\mathbb{R}) \cong \operatorname{Hom}_{\mathbb{Z}}(H_k(U),\mathbb{R})$
de Rham cohomology

To measure the failure of the converse:

Definition. The k^{th} de Rham cohomology group of U is $H^k_{dR}(U) := \{\text{closed } k\text{-forms}\}/\{\text{exact } k\text{-forms}\}.$

The de Rham theorem

$$H^k_{\mathrm{dR}}(U) \cong H^k(U;\mathbb{R}),$$

the singular cohomology of U with real coefficients.

$$H^k(U;\mathbb{R}) \cong \operatorname{Hom}_{\mathbb{Z}}(H_k(U),\mathbb{R})$$

The pairing is given by integration:

$$H^{k}(U;\mathbb{R}) \times H_{k}(U) \to \mathbb{R}$$
$$\langle [\omega], [C] \rangle = \oint_{C} \omega$$

Let $U \subseteq \mathbb{R}$. The cohomology of U is

$$H^k(U;\mathbb{R}) = \begin{cases} \mathbb{R}^{\text{\#components}}, & k = 0\\ 0, & k \neq 0. \end{cases}$$

Let $U \subseteq \mathbb{R}$. The cohomology of U is

$$H^{k}(U;\mathbb{R}) = \begin{cases} \mathbb{R}^{\text{\#components}}, & k = 0\\ 0, & k \neq 0. \end{cases}$$

Example. Take the union of intervals $U = (1,3) \cup (4,5)$. Then

$$H^{k}(U;\mathbb{R}) = \begin{cases} \mathbb{R}^{2}, & k = 0\\ 0, & k \neq 0. \end{cases}$$

de Rham for n = 1 (cont'd)

Case k = 0. A function $f: U \to \mathbb{R}$ has derivative $f'(x) = 0 \iff f$ is locally constant, i.e., constant on each component.

de Rham for n = 1 (cont'd)

Case k = 1. Every function $f: U \to \mathbb{R}$ is the derivative of some other function $F: U \to \mathbb{R}$.

de Rham for n = 1 (cont'd)

Case k = 1. Every function $f: U \to \mathbb{R}$ is the derivative of some other function $F: U \to \mathbb{R}$.

We knew that. On each component, take the integral

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

Let $U \subseteq \mathbb{R}^2$. Focus on k = 1.

Let $U \subseteq \mathbb{R}^2$. Focus on k = 1.

- closed 1-form: irrotational vector field $\vec{F} = \langle P, Q \rangle$, i.e., 2d-curl $(\vec{F}) = Q_x P_y = 0$.
- exact 1-form: conservative vector field, i.e., $\vec{F} = \nabla f$ for some function f, called a **potential function** for \vec{F} .

Let $U \subseteq \mathbb{R}^2$. Focus on k = 1.

- closed 1-form: irrotational vector field $\vec{F} = \langle P, Q \rangle$, i.e., 2d-curl $(\vec{F}) = Q_x P_y = 0$.
- exact 1-form: conservative vector field, i.e., $\vec{F} = \nabla f$ for some function f, called a **potential function** for \vec{F} .

Let $U \subseteq \mathbb{R}^2$. Focus on k = 1.

- closed 1-form: irrotational vector field $\vec{F} = \langle P, Q \rangle$, i.e., 2d-curl $(\vec{F}) = Q_x P_y = 0$.
- exact 1-form: conservative vector field, i.e., $\vec{F} = \nabla f$ for some function f, called a **potential function** for \vec{F} .

An irrotational vector field $\vec{F} = \langle P, Q \rangle$ is conservative \iff its cohomology class in $H^1(U; \mathbb{R})$ is trivial.

Let $U \subseteq \mathbb{R}^2$. Focus on k = 1.

- closed 1-form: irrotational vector field $\vec{F} = \langle P, Q \rangle$, i.e., 2d-curl $(\vec{F}) = Q_x P_y = 0$.
- exact 1-form: conservative vector field, i.e., $\vec{F} = \nabla f$ for some function f, called a **potential function** for \vec{F} .

An irrotational vector field $\vec{F} = \langle P, Q \rangle$ is conservative \iff its cohomology class in $H^1(U; \mathbb{R})$ is trivial.

Example. If U is simply-connected (i.e. "without holes"), then every irrotational vector field is conservative:

$$\pi_1(U) = 0 \implies H_1(U) = 0 \implies H^1(U; \mathbb{R}) = 0.$$

Irrotational versus conservative

Example. Take the punctured plane $U = \mathbb{R}^2 \setminus \{(0,0)\}$, and the vector field on U

$$\vec{F}(x,y) = \frac{1}{x^2 + y^2} \left\langle -y, x \right\rangle = \frac{1}{r^2} \left\langle -y, x \right\rangle = \left\langle P, Q \right\rangle.$$

Irrotational versus conservative

Example. Take the punctured plane $U = \mathbb{R}^2 \setminus \{(0,0)\}$, and the vector field on U

$$\vec{F}(x,y) = \frac{1}{x^2 + y^2} \left\langle -y, x \right\rangle = \frac{1}{r^2} \left\langle -y, x \right\rangle = \left\langle P, Q \right\rangle.$$

x

$$Q_x = \frac{y^2 - x^2}{r^4}$$
$$P_y = \frac{y^2 - x^2}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

$$Q_x = \frac{y^2 - x^2}{r^4}$$
$$P_y = \frac{y^2 - x^2}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

That is, \vec{F} is irrotational.

$$Q_x = \frac{y^2 - x^2}{r^4}$$
$$P_y = \frac{y^2 - x^2}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

That is, \vec{F} is irrotational.

However, integrating over the unit circle C_1 yields:

$$\oint_{C_1} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} 1 \, dt = \boxed{2\pi} \neq 0.$$

$$Q_x = \frac{y^2 - x^2}{r^4}$$
$$P_y = \frac{y^2 - x^2}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

That is, \vec{F} is irrotational.

However, integrating over the unit circle C_1 yields:

$$\oint_{C_1} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} 1 \, dt = \boxed{2\pi} \neq 0.$$

 $\implies \vec{F}$ is not conservative.

Note: Integrating over the circle C_R of radius R yields:

$$\oint_{C_R} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \frac{R}{R} dt = \boxed{2\pi}.$$

Note: Integrating over the circle C_R of radius R yields:

$$\oint_{C_R} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \frac{R}{R} dt = \boxed{2\pi}.$$

Both circles represent the same homology class

$$[C_1] = [C_R] \in H_1(U) \cong \mathbb{Z}$$

since their difference is a boundary:

$$C_R - C_1 = \partial(\text{annulus}).$$

Note: Integrating over the circle C_R of radius R yields:

$$\oint_{C_R} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \frac{R}{R} dt = \boxed{2\pi}.$$

Both circles represent the same homology class

$$[C_1] = [C_R] \in H_1(U) \cong \mathbb{Z}$$

since their difference is a boundary:

$$C_R - C_1 = \partial(\text{annulus}).$$

Pairing with the cohomology class $[\vec{F}] \in H^1(U; \mathbb{R})$ yields the same number:

$$\left\langle [\vec{F}], [C_1] \right\rangle = \left\langle [\vec{F}], [C_R] \right\rangle \in \mathbb{R}.$$

A weird curve

What about the this weird curve C?

A weird curve (cont'd)

Since C winds 3 times around the origin, its homology class is

$$[C] = 3[C_1] \in H_1(U).$$

$$\begin{split} \oint_C \vec{F} \cdot d\vec{r} &= \left\langle [\vec{F}], [C] \right\rangle \\ &= \left\langle [\vec{F}], 3[C_1] \right\rangle \\ &= 3 \left\langle [\vec{F}], [C_1] \right\rangle \\ &= 3 \oint_{C_4} \vec{F} \cdot d\vec{r} \\ &= 3(2\pi) \\ &= \boxed{6\pi}. \end{split}$$

Another example

Example. Still with $U = \mathbb{R}^2 \setminus \{(0,0)\}$, consider the vector field $\vec{F}(x,y) = \frac{1}{x^2 + y^2} \langle x, y \rangle = \frac{1}{r^2} \langle x, y \rangle = \langle P, Q \rangle$.

Another example

Example. Still with $U = \mathbb{R}^2 \setminus \{(0,0)\}$, consider the vector field

$$\vec{F}(x,y) = \frac{1}{x^2 + y^2} \langle x, y \rangle = \frac{1}{r^2} \langle x, y \rangle = \langle P, Q \rangle$$

x

$$Q_x = \frac{-2xy}{r^4}$$
$$P_y = \frac{-2xy}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

$$Q_x = \frac{-2xy}{r^4}$$
$$P_y = \frac{-2xy}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

That is, \vec{F} is irrotational.

$$Q_x = \frac{-2xy}{r^4}$$
$$P_y = \frac{-2xy}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

That is, \vec{F} is irrotational.

Now, integrating over the unit circle C_1 yields:

$$\oint_{C_1} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} 0 \, dt = \boxed{0}.$$

$$Q_x = \frac{-2xy}{r^4}$$
$$P_y = \frac{-2xy}{r^4}$$
$$\implies 2d\text{-curl}(\vec{F}) = Q_x - P_y = 0.$$

That is, \vec{F} is irrotational.

Now, integrating over the unit circle C_1 yields:

$$\oint_{C_1} \vec{F} \cdot d\vec{r} = \int_0^{2\pi} 0 \, dt = \boxed{0}.$$

Hmm... How do we know whether \vec{F} is conservative?

Since the circle is a generator of the homology

 $[C_1] \in H_1(U) \cong \mathbb{Z}$

the cohomology class of \vec{F} is trivial:

$$[\vec{F}] = 0 \in H^1(U; \mathbb{R}).$$

Since the circle is a generator of the homology

 $[C_1] \in H_1(U) \cong \mathbb{Z}$

the cohomology class of \vec{F} is trivial:

$$[\vec{F}] = 0 \in H^1(U; \mathbb{R}).$$

de Rham $\implies \vec{F}$ is conservative!

Since the circle is a generator of the homology

 $[C_1] \in H_1(U) \cong \mathbb{Z}$

the cohomology class of \vec{F} is trivial:

$$[\vec{F}] = 0 \in H^1(U;\mathbb{R}).$$

de Rham $\implies \vec{F}$ is conservative!

In fact, we can find a potential function:

$$\vec{F} = \operatorname{grad}\left(\frac{1}{2}\ln(x^2 + y^2)\right).$$

Let $U \subseteq \mathbb{R}^2$. Focus on k = 2.

Let $U \subseteq \mathbb{R}^2$. Focus on k = 2.

• closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F} = \langle P, Q, R \rangle$, i.e.

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

• exact 2-form: $\vec{F} = \operatorname{curl}(\vec{G})$ for some vector field \vec{G} , called a vector potential for \vec{F} .

Let $U \subseteq \mathbb{R}^2$. Focus on k = 2.

• closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F} = \langle P, Q, R \rangle$, i.e.

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

• exact 2-form: $\vec{F} = \operatorname{curl}(\vec{G})$ for some vector field \vec{G} , called a vector potential for \vec{F} .

Let $U \subseteq \mathbb{R}^2$. Focus on k = 2.

• closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F} = \langle P, Q, R \rangle$, i.e.

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

• exact 2-form: $\vec{F} = \operatorname{curl}(\vec{G})$ for some vector field \vec{G} , called a vector potential for \vec{F} .

A divergence-free vector field $\vec{F} = \langle P, Q, R \rangle$ is a curl \iff its cohomology class in $H^2(U; \mathbb{R})$ is trivial.
de Rham for n = 3

Let $U \subseteq \mathbb{R}^2$. Focus on k = 2.

• closed 2-form: divergence-free (a.k.a. incompressible) vector field $\vec{F} = \langle P, Q, R \rangle$, i.e.

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

• exact 2-form: $\vec{F} = \operatorname{curl}(\vec{G})$ for some vector field \vec{G} , called a vector potential for \vec{F} .

A divergence-free vector field $\vec{F} = \langle P, Q, R \rangle$ is a curl \iff its cohomology class in $H^2(U; \mathbb{R})$ is trivial.

Example. On $U = \mathbb{R}^3$, every divergence-free vector field is a curl: $H^2(\mathbb{R}^3; \mathbb{R}) = 0.$

Example. Take the punctured space $U = \mathbb{R}^3 \setminus \{(0, 0, 0)\}$, and the electric field generated by a charge at the origin

$$\vec{F}(x,y,z) = \frac{1}{(x^2+y^2+z^2)^{3/2}} \left\langle x,y,z \right\rangle = \frac{1}{\|\vec{r}\|^3} \left\langle x,y,z \right\rangle = \left\langle P,Q,R \right\rangle.$$

Example. Take the punctured space $U = \mathbb{R}^3 \setminus \{(0, 0, 0)\}$, and the electric field generated by a charge at the origin

$$\vec{F}(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle = \frac{1}{\|\vec{r}\|^3} \langle x, y, z \rangle = \langle P, Q, R \rangle.$$

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

Example. Take the punctured space $U = \mathbb{R}^3 \setminus \{(0, 0, 0)\}$, and the electric field generated by a charge at the origin

$$\vec{F}(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle = \frac{1}{\|\vec{r}\|^3} \langle x, y, z \rangle = \langle P, Q, R \rangle.$$
$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

That is, \vec{F} is divergence-free.

Example. Take the punctured space $U = \mathbb{R}^3 \setminus \{(0, 0, 0)\}$, and the electric field generated by a charge at the origin

$$\vec{F}(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle = \frac{1}{\|\vec{r}\|^3} \langle x, y, z \rangle = \langle P, Q, R \rangle.$$
$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

That is, \vec{F} is divergence-free.

However, integrating over the unit sphere S_1 yields:

$$\oint_{S_1} \vec{F} \cdot \vec{n} \, dS = \oint_{S_1} 1 \, dS = \operatorname{Area}(S_1) = \boxed{4\pi} \neq 0.$$

Example. Take the punctured space $U = \mathbb{R}^3 \setminus \{(0, 0, 0)\}$, and the electric field generated by a charge at the origin

$$\vec{F}(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle = \frac{1}{\|\vec{r}\|^3} \langle x, y, z \rangle = \langle P, Q, R \rangle.$$

 $\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$

That is, \vec{F} is divergence-free.

However, integrating over the unit sphere S_1 yields:

$$\oint_{S_1} \vec{F} \cdot \vec{n} \, dS = \oint_{S_1} 1 \, dS = \operatorname{Area}(S_1) = \boxed{4\pi} \neq 0.$$

 $\implies \vec{F}$ is not a curl.

Example. Still with $U = \mathbb{R}^2 \setminus \{(0, 0, 0)\}$, consider the vector field

$$\vec{F}(x,y,z) = \frac{1}{x^2 + y^2 + z^2} \langle y - z, z - x, x - y \rangle$$
$$= \frac{1}{\|\vec{r}\|^2} \langle y - z, z - x, x - y \rangle = \langle P, Q, R \rangle.$$

Example. Still with $U = \mathbb{R}^2 \setminus \{(0, 0, 0)\}$, consider the vector field

$$\vec{F}(x,y,z) = \frac{1}{x^2 + y^2 + z^2} \langle y - z, z - x, x - y \rangle$$
$$= \frac{1}{\|\vec{r}\|^2} \langle y - z, z - x, x - y \rangle = \langle P, Q, R \rangle.$$

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

Example. Still with $U = \mathbb{R}^2 \setminus \{(0, 0, 0)\}$, consider the vector field

$$\vec{F}(x,y,z) = \frac{1}{x^2 + y^2 + z^2} \langle y - z, z - x, x - y \rangle$$
$$= \frac{1}{\|\vec{r}\|^2} \langle y - z, z - x, x - y \rangle = \langle P, Q, R \rangle.$$

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

That is, \vec{F} is divergence-free.

Example. Still with $U = \mathbb{R}^2 \setminus \{(0, 0, 0)\}$, consider the vector field

$$\vec{F}(x,y,z) = \frac{1}{x^2 + y^2 + z^2} \langle y - z, z - x, x - y \rangle$$
$$= \frac{1}{\|\vec{r}\|^2} \langle y - z, z - x, x - y \rangle = \langle P, Q, R \rangle.$$

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

That is, \vec{F} is divergence-free.

Now, integrating over the unit sphere S_1 yields:

Example. Still with $U = \mathbb{R}^2 \setminus \{(0, 0, 0)\}$, consider the vector field

$$\begin{split} \vec{F}(x,y,z) &= \frac{1}{x^2 + y^2 + z^2} \left\langle y - z, z - x, x - y \right\rangle \\ &= \frac{1}{\|\vec{r}\|^2} \left\langle y - z, z - x, x - y \right\rangle = \left\langle P, Q, R \right\rangle. \end{split}$$

$$\operatorname{div}(\vec{F}) = P_x + Q_y + R_z = 0.$$

That is, \vec{F} is divergence-free.

Now, integrating over the unit sphere S_1 yields:

Hmm... How do we know whether \vec{F} is a curl?

Another example (cont'd)

Since the sphere is a generator of the homology

 $[S_1] \in H_2(U) \cong \mathbb{Z}$

the cohomology class of \vec{F} is trivial:

$$[\vec{F}] = 0 \in H^2(U;\mathbb{R}).$$

Another example (cont'd)

Since the sphere is a generator of the homology

 $[S_1] \in H_2(U) \cong \mathbb{Z}$

the cohomology class of \vec{F} is trivial:

$$[\vec{F}] = 0 \in H^2(U;\mathbb{R}).$$

de Rham $\implies \vec{F}$ is a curl!

Another example (cont'd)

Since the sphere is a generator of the homology

 $[S_1] \in H_2(U) \cong \mathbb{Z}$

the cohomology class of \vec{F} is trivial:

$$[\vec{F}] = 0 \in H^2(U;\mathbb{R}).$$

de Rham $\implies \vec{F}$ is a curl!

In fact, we can find a vector potential:

$$\vec{F} = \operatorname{curl}\left(\frac{1}{2}\ln(x^2 + y^2 + z^2)\langle 1, 1, 1 \rangle\right)$$

Thank you!