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Pre-n-angulated categories

Idea: n-angulated ≈ “triangulated but with longer triangles”.

Introduced by Geiss, Keller, and Oppermann (2013). Motivated by
examples in quiver representation theory.

Let C be an additive category, Σ: C
∼=−→ C an automorphism, and

n ≥ 3.

Definition. An n-Σ-sequence is a diagram in C of the form

X1 X2 · · · Xn ΣX1.
f1 f2 fn−1 fn

Definition. A pre-n-angulation of C is a collection N of
n-Σ-sequences in C, called n-angles, satisfying the following
axioms.
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The axioms

(N1)

(a) N is closed under direct sums, direct summands and
isomorphisms of n-Σ-sequences.

(b) For all X ∈ C, the trivial n-Σ-sequence

X X 0 · · · 0 ΣX1
1

belongs to N .

(c) For each morphism f : X1 → X2 in C, there exists an
n-Σ-sequence in N whose first morphism is f .

(N2) An n-Σ-sequence belongs to N if and only if its rotation

X2 X3 · · · ΣX1 ΣX2
f2 f3 fn (−1)nΣf1

belongs to N .
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The axioms (cont’d)

(N3) Given the solid part of the commutative diagram

X1 X2 X3 · · · Xn ΣX1

Y1 Y2 Y3 · · · Yn ΣY1

f1

ϕ1

f2

ϕ2

f3

ϕ3

fn−1 fn

ϕn Σϕ1

g1 g2 g3 gn−1 gn

with rows in N , the dotted morphisms exist and give a
morphism of n-Σ-sequences.

Remark. pre-3-angulated = pretriangulated
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Getting rid of “pre”

Recall: triangulated = pretriangulated + octahedral axiom.

Definition. A pre-n-angulated category C is an n-angulated
category if it also satisfies the “mapping cone axiom”, i.e., every
fill-in problem admits a good fill-in.

Reformulated as a “higher octahedral axiom” by Bergh and Thaule
(2013).

Remark. This entire talk is pre-n-angulated.
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Non-unique “cofibers”

Main difference: When n ≥ 4, an n-angle extension of
f : X1 → X2 is not unique up to isomorphism.

Example. In a 4-angulated category C, given a 4-angle

X1 X2 X3 X4 ΣX1
f1 f2 f3 f4

and an object Y , we can add a trivial summand to obtain another
4-angle:

X1 X2 X3 ⊕ Y X4 ⊕ Y ΣX1.
f1

[
f2
0

] [
f3 0
0 1

]
[ f4 0 ]
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Source of examples

Theorem (GKO 2013). Let T be a triangulated category with an
(n− 2)-cluster tilting subcategory C closed under Σn−2 where Σ
denotes the suspension in T . Then (C,Σn−2,N ) is an n-angulated
category where N is the class of all n-Σn−2-sequences

X1 X2 · · · Xn Σn−2X1
f1 f2 fn−1 fn

in C such that there exists a diagram in T

X2 X3 · · · Xn−1

X1 X2.5 X3.5 · · · Xn−1.5 Xn

f2 f3 fn−2

fn−1f1

with Xi ∈ T for all i /∈ Z such that all triangles with base a
degree-shifting morphism are triangles in T , and fn is the
composition of the bottom row.
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Triangulated case

Idea: A Toda bracket is constructed by picking nullhomotopies
fi+1fi ∼ 0 that witness fi+1fi = 0 in the homotopy category.

Definition. Let T be a triangulated category and let

X1 X2 X3 X4
f1 f2 f3

be a diagram in T . Consider the following subsets of T (ΣX1, X4).

The iterated cofiber Toda bracket
⟨f3, f2, f1⟩cc ⊆ T (ΣX1, X4) consists of all morphisms
ψ : ΣX1 → X4 that appear in a commutative diagram

X1 X2 Y3 ΣX1

X1 X2 X3 X4

f1 y2 y3

ϕ ψ
f1 f2 f3

where the top row is distinguished.
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Triangulated case (cont’d)

The iterated fiber Toda bracket ⟨f3, f2, f1⟩ff ⊆ T (ΣX1, X4)
consists of all morphisms Σδ : ΣX1 → X4 where δ appears in a
commutative diagram

X1 X2 X3 X4

Σ−1X4 W2 X3 X4

f1

δ

f2

γ

f3

w1 w2 f3

where the bottom row is distinguished.

The fiber-cofiber Toda bracket ⟨f3, f2, f1⟩fc ⊆ T (ΣX1, X4)
consists of all composites Σ(β21β

1
1) : ΣX1 → X4, where β

1
1 and

β21 appear in a commutative diagram

X1 X2 ΣX1

Z2
1 X2 X3 ΣZ2

1

X3 X4.

f1

β1
1 Σβ1

1z21 f2 z23

Σβ2
1f3

where the middle row is distinguished.
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The constructions agree

Remark. Each bracket is non-empty if and only if fi+1fi = 0.

Proposition. The three definitions of Toda bracket agree.

Classical for triangulated categories. Turns out to be a
pretriangulated fact.

In fact, the three brackets are the same coset of the
indeterminacy subgroup

(f3)∗T (ΣX1, X3) + (Σf1)
∗T (ΣX2, X4) ⊆ T (ΣX1, X4).
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For higher n

How to generalize Toda brackets to higher n?

The two “extreme” constructions centered at f1 or fn have
straightforward analogues.

The “balanced” construction centered at f2 generalizes in two
different ways:

Center the construction at one of the intermediate maps fi.

Use all the intermediate maps f2, . . . , fn−1.

Fix a pre-n-angulated category C and n composable maps in C

X1 X2 X3 · · · Xn Xn+1
f1 f2 f3 fn−1 fn

We will define certain subsets of C(ΣX1, Xn+1).
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Iterated cofiber

Definition. The iterated cofiber Toda bracket

⟨fn, . . . , f2, f1⟩cc ⊆ C(ΣX1, Xn+1)

consists of all morphisms ψ : ΣX1 → Xn+1 that appear in a
commutative diagram

X1 X2 Y3 Y4 · · · Yn ΣX1

X1 X2 X3 X4 · · · Xn Xn+1

f1 y2 y3

ϕ3 ϕ4

y4 yn−1 yn

ϕn ψ

f1 f2 f3 f4 fn−1 fn

where the top row is an n-angle extension of f1.
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Iterated fiber

Dually, the iterated fiber Toda bracket

⟨fn, . . . , f2, f1⟩ff ⊆ C(ΣX1, Xn+1)

consists of all morphisms Σδ : ΣX1 → Xn+1 where δ appears in
a commutative diagram

X1 X2 X3 · · · Xn−1 Xn Xn+1

Σ−1Xn+1 W2 W3 · · · Wn−1 Xn Xn+1

f1

δ

f2

γ2

f3

γ3

fn−2 fn−1

γn−1

fn

w1 w2 w3 wn−2 wn−1 fn

where the bottom row is an n-angle.

Generalizing those two extreme choices:
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Intermediate brackets

For each 1 ≤ i ≤ n the [i]-intermediate Toda bracket

⟨fn, . . . , f2, f1⟩[i] ⊆ C(ΣX1, Xn+1)

consists of morphisms ψ = Σ(β1α1) : ΣX1 → Xn+1 such that
α1 and β1 occur in a commutative diagram:

Prepare for a big diagram...
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Intermediate brackets (cont’d)

X1 X2 · · ·

Z1 Z2 · · ·

f1

α1

f2

α2

z1 z2

· · · Xi−1 Xi

· · · Zi−1 Xi Xi+1 Zi+2 · · ·

Xi+1 Xi+2 · · ·

fi−2 fi−1

αi−1

zi−2 zi−1 fi zi+1 zi+2

βi+2
fi+1 fi+2

· · · Zn ΣZ1

· · · Xn Xn+1

zn−1 zn

βn Σβ1
fn−1 fn

where the middle row is some n-angle Z• in which fi occurs as the
ith morphism.
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Fiber-cofiber

The fiber-cofiber Toda bracket

⟨fn, . . . , f2, f1⟩fc ⊆ C(ΣX1, Xn+1)

consists of all composites

Σ(βn−1
1 · · ·β21β11) : ΣX1 Xn+1

where β11 , β
2
1 , . . . , β

n−1
1 appear in a commutative diagram of the

following form:

Prepare for an even bigger diagram...
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Fiber-cofiber (cont’d)

X1 X2 ΣX1

Z2
1 X2 X3 Z2

4 · · · Z2
n ΣZ2

1

Z3
1 Z3

2 X3 X4 · · · Z3
n ΣZ3

1

Z4
1 Z4

2 Z4
3 X4 · · · Z4

n ΣZ4
1

...
...

...
...

...
...

Zn−1
1 Zn−1

2 Zn−1
3 Zn−1

4 · · · Xn ΣZn−1
1

Xn Xn+1

f1

β1
1 Σβ1

1
z21

β2
1

f2

β2
2

z23 z24

β2
4

z2n−1 z2n

β2
n Σβ2

1
z31

β3
1

z32

β3
2

f3

β3
3

z34 z3n−1 z3n

β3
n Σβ3

1
z41

β4
1

z42

β4
2

z43

β4
3

f4

β4
4

z4n−1 z4n

β4
n Σβ4

1

βn−2
1 βn−2

2 βn−2
3 βn−2

4 βn−2
n Σβn−2

1
zn−1
1 zn−1

2 zn−1
3 zn−1

4 fn−1 zn−1
n

Σβn−1
1

fn

where row i is an n-angle Zi• in which fi occurs as the i
th morphism.
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Example: n = 4

For n = 4, an element of the fiber-cofiber Toda bracket
ψ ∈ ⟨f4, f3, f2, f1⟩fc is defined by a diagram

X1 X2 ΣX1

Z2
1 X2 X3 Z2

4 ΣZ2
1

Z3
1 Z3

2 X3 X4 ΣZ3
1

X4 X5.

f1

z21 f2 z23 z24

z31 z32 f3 z34

f4

β1
1 Σβ1

1

β2
1 β2

2 β2
3 Σβ2

1

Σβ3
1

for some choices of n-angles containing f2 and f3 such that

ψ = Σ(β31β
2
1β

1
1).
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The constructions agree

Theorem (F., Martensen, Thaule). Assuming fi+1fi = 0 for all i,
all the given definitions of Toda bracket agree.

Hence, we can safely talk about the Toda bracket

⟨fn, . . . , f2, f1⟩ ⊆ C(ΣX1, Xn+1).

In fact, the definitions of the bracket are all the same coset of the
indeterminacy subgroup

(fn)∗C(ΣX1, Xn) + (Σf1)
∗C(ΣX2, Xn+1) ⊆ C(ΣX1, Xn+1).

Remark. If fi+1fi ̸= 0 for some i, then the fiber-cofiber bracket is
empty:

⟨fn, . . . , f2, f1⟩fc = ∅

but the other brackets might be non-empty.
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Exotic example

Consider the category C = modffZ/p2 of finitely generated free
modules over R = Z/p2, with p = 2 if n is odd (and p is any prime
number if n is even). Take the identity automorphism Σ = Id.

Muro, Schwede, and Strickland (2007) constructed an exotic
triangulated structure on modffZ/4.

Bergh, Jasso, and Thaule (2016) constructed an exotic n-angulated
structure on C, for any n ≥ 3.

Example. Taking n = 4, the Toda bracket of the diagram

R R R R R
p p p p

as a subset of C(ΣR,R) = C(R,R) ∼= Z/p2 is

⟨p, p, p, p⟩ = {1 + cp | c ∈ Z} = 1 + (p) ⊂ Z/p2.
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Quiver representation theory

Example. Consider the quiver Q with relations J3 depicted here:

1 2 3 4
a b c

J = arrow ideal, generated by paths of length 1.

J3 = ideal generated by all paths of length 3, namely cba.

Path algebra Γ = kQ/J3.

Take A := modΓ the category of finitely generated right Γ-modules.
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Quiver example (cont’d)

The category A can be visualized as:

2
3
4

1
2
3

3
4

2
3

1
2

4 3 2 1

where we denote the quiver representation

1
2 =

(
k k 0 0

)1

and so on.

Take M := direct sum of the encircled modules.
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Quiver example (cont’d)

In the category A = modΓ, M is a 2-cluster tilting module in the
sense of Iyama:

addM = {X ∈ A | Ext1Γ(X,M) = 0}
= {X ∈ A | Ext1Γ(M,X) = 0}.

Indecomposable projectives in A:

P1 =
1
2
3

P2 =
2
3
4

P3 =
3
4 P4 = 4.

Indecomposable injectives in A:

I1 = 1 I2 =
1
2 I3 = P1 I4 = P2.

Γ is a finite-dimensional k-algebra of global dimension gldimΓ = 2.

26 / 37



Quiver example (cont’d)

⇝ Get a 4-angulated structure on the subcategory

U = add{M [2i] | i ∈ Z} ⊆ Db(A).

Some 4-angles in U :

P4 P2 P1 I1 Σ2P4

P4 P3 P1 I2 Σ2P4.

f1 f2 f3 f4

g1 g2 g3 g4

Toda bracket of the diagram in U :

P4 P2 I2 Σ2P4 Σ2P3
f1 g3f2 g4 Σ2g1

⟨Σ2g1, g4, g3f2, f1⟩ = spank{Σ2g1} = U(Σ2P4,Σ
2P3)

See the paper for details.
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Juggling formulas

Fix a pre-n-angulated category C and n composable maps in C

X1 X2 X3 · · · Xn Xn+1
f1 f2 f3 fn−1 fn

satisfying fi+1fi = 0 for all i.
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Subadditivity

Relations between brackets and addition:

Proposition. 1. ⟨fn + f ′n, fn−1, . . . , f2, f1⟩ ⊆
⟨fn, fn−1, . . . , f2, f1⟩+ ⟨f ′n, fn−1, . . . , f2, f1⟩.

2. ⟨fn, . . . , f2, f1 + f ′1⟩ ⊆ ⟨fn, . . . , f2, f1⟩+ ⟨fn, fn−1, . . . , f2, f
′
1⟩.

3. For 2 ≤ i ≤ n− 1, we have the identities

⟨fn, . . . , fi + f ′i , . . . , f2, f1⟩ =
⟨fn, . . . , fi, . . . , f2, f1⟩+ ⟨fn, . . . , f ′i , . . . , f2, f1⟩.

4. For 1 ≤ i ≤ n, we have

⟨fn, . . . ,−fi, . . . , f1⟩ = −⟨fn, . . . , fi, . . . , f1⟩.
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Submultiplicativity

Relations between brackets and composition:

Proposition. 1. fn+1⟨fn, . . . , f2, f1⟩ ⊆ ⟨fn+1fn, . . . , f2, f1⟩.
2. ⟨fn+1, . . . , f3, f2⟩Σf1 ⊆ ⟨fn+1, . . . , f3, f2f1⟩.
3. ⟨fn+1, . . . , f3, f2f1⟩ ⊆ ⟨fn+1, . . . , f3f2, f1⟩.
4. ⟨fn+1fn, fn−1, . . . , f2, f1⟩ ⊆ ⟨fn+1, fnfn−1, . . . , f2, f1⟩.
5. For all 3 ≤ i ≤ n− 1 we have the identities

⟨fn+1, . . . , fi+1fi, fi−1, . . . , f2, f1⟩ = ⟨fn+1, . . . , fi+1, fifi−1, . . . , f2, f1⟩.

6. fn+1⟨fn, . . . , f2, f1⟩ = ⟨fn+1, . . . , f3, f2⟩(−1)nΣf1.

Remark. Collected reference for 3-fold Toda brackets in
(pre)triangulated categories.
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Heller’s theorem

Lemma (GKO 2013). In a pre-n-angulated category C, every
n-angle

X1 X2 X3 · · · Xn ΣX1
f1 f2 f3 fn−1 fn

is Yoneda exact, i.e., the sequence of abelian groups

C(A,X1) C(A,X2) · · · C(A,ΣX1) C(A,ΣX2)
(f1)∗ (f2)∗ (fn)∗ (Σf1)∗

is exact for every object A of C.
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Heller’s theorem (cont’d)

Proposition. Let C be a pre-n-angulated category. An
n-Σ-sequence

X1 X2 X3 · · · Xn ΣX1
f1 f2 f3 fn−1 fn

in C is an n-angle if and only if the following two conditions hold.

1. The n-Σ-sequence X• is Yoneda exact.

2. The Toda bracket ⟨fn, . . . , f2, f1⟩cc ⊆ C(ΣX1,ΣX1) contains
the identity morphism 1ΣX1 .

The case n = 3 is due to Heller (1968).

The proof for n ≥ 3 is similar, using facts from GKO (2013).

33 / 37



Longer = Higher

In the GKO setup, higher Toda brackets in the ambient
triangulated category are also available.

Theorem (F., Martensen, Thaule). Let T be a triangulated
category with an (n− 2)-cluster tilting subcategory C closed under
Σn−2 and let

X1 X2 X3 · · · Xn Xn+1
f1 f2 f3 fn−1 fn

be a diagram in C satisfying fi+1fi = 0 for all i. Then

⟨fn, . . . , f2, f1⟩n-angulated = (−1)
∑n−3

ℓ=1 ℓ⟨fn, . . . , f2, f1⟩triangulated.
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Massey products

Combining the previous result with a theorem of Jasso and Muro
(2023) yields the following in the presence of a DG enhancement.

Corollary. Let k be a field and A a small DG category over k such
that the homotopy category H0(Moddg A) of the DG category of
right DG A-modules is triangulated and has a (n− 2)-cluster
tilting subcategory U closed with respect to the shift [n− 2] such
that U is n-angulated. For n composable maps fi in U , we have

⟨⟨fn, . . . , f2, f1⟩⟩[n− 2] = −⟨fn, . . . , f2, f1⟩

where the left side is the Massey product computed using the DG
category A and the right side is the Toda bracket in the
n-angulated category U .
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Future directions

A few ideas for related research.

Computations and applications.

Do n-angulated categories have a homotopical interpretation?
Are Toda brackets obstructions to something?

Higher and longer. Toda brackets of m composable maps fi in
an n-angulated category, for m ≥ n.

Adams spectral sequence in n-angulated categories, cf.
Beligiannis (2015). Relation between differentials and Toda
brackets?

36 / 37



Thank you!

37 / 37


	n-angulated categories
	Toda brackets
	Examples
	Some results

