Toda brackets in *n*-angulated categories

Martin Frankland University of Regina

Joint with Sebastian Martensen and Marius Thaule

New Directions in Group Theory and Triangulated Categories October 17, 2024 Outline

n-angulated categories

Toda brackets

Examples

Some results

Pre-*n***-angulated categories**

Idea: *n*-angulated \approx "triangulated but with longer triangles".

Introduced by Geiss, Keller, and Oppermann (2013). Motivated by examples in quiver representation theory.

Let \mathcal{C} be an additive category, $\Sigma \colon \mathcal{C} \xrightarrow{\cong} \mathcal{C}$ an automorphism, and $n \geq 3$.

Definition. An n- Σ -sequence is a diagram in C of the form

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1.$$

Definition. A pre-*n*-angulation of C is a collection \mathcal{N} of n- Σ -sequences in C, called *n*-angles, satisfying the following axioms.

The axioms

(N1)

- (a) \mathscr{N} is closed under direct sums, direct summands and isomorphisms of n- Σ -sequences.
- (b) For all $X \in \mathcal{C}$, the trivial *n*- Σ -sequence

$$X \xrightarrow{1} X \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \Sigma X_1$$

belongs to \mathcal{N} .

(c) For each morphism $f: X_1 \to X_2$ in \mathcal{C} , there exists an $n - \Sigma$ -sequence in \mathscr{N} whose first morphism is f.

(N2) An n- Σ -sequence belongs to \mathcal{N} if and only if its rotation

$$X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_n} \Sigma X_1 \xrightarrow{(-1)^n \Sigma f_1} \Sigma X_2$$

belongs to $\mathcal N.$

The axioms (cont'd)

(N3) Given the solid part of the commutative diagram

with rows in \mathcal{N} , the dotted morphisms exist and give a morphism of n- Σ -sequences.

Remark. pre-3-angulated = pretriangulated

Getting rid of "pre"

Recall: triangulated = pretriangulated + octahedral axiom.

Definition. A pre-*n*-angulated category C is an *n*-angulated category if it also satisfies the "mapping cone axiom", i.e., every fill-in problem admits a good fill-in.

Reformulated as a "higher octahedral axiom" by Bergh and Thaule (2013).

Remark. This entire talk is pre-*n*-angulated.

Non-unique "cofibers"

Main difference: When $n \ge 4$, an *n*-angle extension of $f: X_1 \to X_2$ is not unique up to isomorphism.

Example. In a 4-angulated category C, given a 4-angle

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} X_4 \xrightarrow{f_4} \Sigma X_1$$

and an object Y, we can add a trivial summand to obtain another 4-angle:

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{\begin{bmatrix} f_2 \\ 0 \end{bmatrix}} X_3 \oplus Y \xrightarrow{\begin{bmatrix} f_3 & 0 \\ 0 & 1 \end{bmatrix}} X_4 \oplus Y \xrightarrow{\begin{bmatrix} f_4 & 0 \end{bmatrix}} \Sigma X_1.$$

Source of examples

Theorem (GKO 2013). Let \mathcal{T} be a triangulated category with an (n-2)-cluster tilting subcategory \mathcal{C} closed under Σ^{n-2} where Σ denotes the suspension in \mathcal{T} . Then $(\mathcal{C}, \Sigma^{n-2}, \mathcal{N})$ is an *n*-angulated category where \mathcal{N} is the class of all n- Σ^{n-2} -sequences

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma^{n-2} X_1$$

in ${\mathcal C}$ such that there exists a diagram in ${\mathcal T}$

with $X_i \in \mathcal{T}$ for all $i \notin \mathbb{Z}$ such that all triangles with base a degree-shifting morphism are triangles in \mathcal{T} , and f_n is the composition of the bottom row.

Outline

n-angulated categories

Toda brackets

Examples

Some results

Triangulated case

Idea: A Toda bracket is constructed by picking nullhomotopies $f_{i+1}f_i \sim 0$ that witness $f_{i+1}f_i = 0$ in the homotopy category.

Definition. Let \mathcal{T} be a triangulated category and let

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} X_4$$

be a diagram in \mathcal{T} . Consider the following subsets of $\mathcal{T}(\Sigma X_1, X_4)$.

• The iterated cofiber Toda bracket $\langle f_3, f_2, f_1 \rangle_{cc} \subseteq \mathcal{T}(\Sigma X_1, X_4)$ consists of all morphisms $\psi \colon \Sigma X_1 \to X_4$ that appear in a commutative diagram

$$\begin{array}{cccc} X_1 & \stackrel{f_1}{\longrightarrow} & X_2 & \stackrel{y_2}{\longrightarrow} & Y_3 & \stackrel{y_3}{\longrightarrow} & \Sigma X_1 \\ \parallel & & \parallel & & \downarrow \phi & & \downarrow \psi \\ X_1 & \stackrel{f_1}{\longrightarrow} & X_2 & \stackrel{f_2}{\longrightarrow} & X_3 & \stackrel{f_3}{\longrightarrow} & X_4 \end{array}$$

where the top row is distinguished.

Triangulated case (cont'd)

• The iterated fiber Toda bracket $\langle f_3, f_2, f_1 \rangle_{\text{ff}} \subseteq \mathcal{T}(\Sigma X_1, X_4)$ consists of all morphisms $\Sigma \delta \colon \Sigma X_1 \to X_4$ where δ appears in a commutative diagram

where the bottom row is distinguished.

• The fiber-cofiber Toda bracket $\langle f_3, f_2, f_1 \rangle_{\text{fc}} \subseteq \mathcal{T}(\Sigma X_1, X_4)$ consists of all composites $\Sigma(\beta_1^2 \beta_1^1) \colon \Sigma X_1 \to X_4$, where β_1^1 and β_1^2 appear in a commutative diagram

where the middle row is distinguished.

The constructions agree

Remark. Each bracket is non-empty if and only if $f_{i+1}f_i = 0$. **Proposition.** The three definitions of Toda bracket agree.

Classical for triangulated categories. Turns out to be a pretriangulated fact.

In fact, the three brackets are the same coset of the **indeterminacy subgroup**

 $(f_3)_*\mathcal{T}(\Sigma X_1, X_3) + (\Sigma f_1)^*\mathcal{T}(\Sigma X_2, X_4) \subseteq \mathcal{T}(\Sigma X_1, X_4).$

For higher n

How to generalize Toda brackets to higher n?

The two "extreme" constructions centered at f_1 or f_n have straightforward analogues.

The "balanced" construction centered at f_2 generalizes in two different ways:

- Center the construction at one of the intermediate maps f_i .
- Use all the intermediate maps f_2, \ldots, f_{n-1} .

Fix a pre-*n*-angulated category \mathcal{C} and *n* composable maps in \mathcal{C}

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} X_{n+1}$$

We will define certain subsets of $\mathcal{C}(\Sigma X_1, X_{n+1})$.

Iterated cofiber

Definition. • The iterated cofiber Toda bracket

$$\langle f_n, \ldots, f_2, f_1 \rangle_{\mathrm{cc}} \subseteq \mathcal{C}(\Sigma X_1, X_{n+1})$$

consists of all morphisms $\psi \colon \Sigma X_1 \to X_{n+1}$ that appear in a commutative diagram

where the top row is an *n*-angle extension of f_1 .

Iterated fiber

• Dually, the iterated fiber Toda bracket

$$\langle f_n, \ldots, f_2, f_1 \rangle_{\mathrm{ff}} \subseteq \mathcal{C}(\Sigma X_1, X_{n+1})$$

consists of all morphisms $\Sigma \delta \colon \Sigma X_1 \to X_{n+1}$ where δ appears in a commutative diagram

where the bottom row is an n-angle.

Generalizing those two extreme choices:

Intermediate brackets

• For each $1 \le i \le n$ the [i]-intermediate Toda bracket

$$\langle f_n, \ldots, f_2, f_1 \rangle_{[i]} \subseteq \mathcal{C}(\Sigma X_1, X_{n+1})$$

consists of morphisms $\psi = \Sigma(\beta_1 \alpha_1) \colon \Sigma X_1 \to X_{n+1}$ such that α_1 and β_1 occur in a commutative diagram:

Prepare for a big diagram...

Intermediate brackets (cont'd)

where the middle row is some *n*-angle Z_{\bullet} in which f_i occurs as the i^{th} morphism.

Fiber-cofiber

• The fiber-cofiber Toda bracket

$$\langle f_n, \ldots, f_2, f_1 \rangle_{\mathrm{fc}} \subseteq \mathcal{C}(\Sigma X_1, X_{n+1})$$

consists of all composites

$$\Sigma(\beta_1^{n-1}\cdots\beta_1^2\beta_1^1)\colon \Sigma X_1\longrightarrow X_{n+1}$$

where $\beta_1^1, \beta_1^2, \ldots, \beta_1^{n-1}$ appear in a commutative diagram of the following form:

Prepare for an even bigger diagram...

Fiber-cofiber (cont'd)

where row *i* is an *n*-angle Z_{\bullet}^{i} in which f_{i} occurs as the *i*th morphism.

Example: n = 4

For n = 4, an element of the fiber-cofiber Toda bracket $\psi \in \langle f_4, f_3, f_2, f_1 \rangle_{\rm fc}$ is defined by a diagram

for some choices of *n*-angles containing f_2 and f_3 such that

$$\psi = \Sigma(\beta_1^3 \beta_1^2 \beta_1^1).$$

The constructions agree

Theorem (F., Martensen, Thaule). Assuming $f_{i+1}f_i = 0$ for all i, all the given definitions of Toda bracket agree.

Hence, we can safely talk about the Toda bracket

$$\langle f_n,\ldots,f_2,f_1\rangle \subseteq \mathcal{C}(\Sigma X_1,X_{n+1}).$$

In fact, the definitions of the bracket are all the same coset of the **indeterminacy subgroup**

$$(f_n)_*\mathcal{C}(\Sigma X_1, X_n) + (\Sigma f_1)^*\mathcal{C}(\Sigma X_2, X_{n+1}) \subseteq \mathcal{C}(\Sigma X_1, X_{n+1}).$$

Remark. If $f_{i+1}f_i \neq 0$ for some *i*, then the fiber-cofiber bracket is empty:

$$\langle f_n,\ldots,f_2,f_1\rangle_{\rm fc}=\emptyset$$

but the other brackets might be non-empty.

Outline

n-angulated categories

Toda brackets

Examples

Some results

Exotic example

Consider the category $C = \text{mod}^{\text{ff}} \mathbb{Z}/p^2$ of finitely generated free modules over $R = \mathbb{Z}/p^2$, with p = 2 if n is odd (and p is any prime number if n is even). Take the identity automorphism $\Sigma = \text{Id}$.

Muro, Schwede, and Strickland (2007) constructed an exotic triangulated structure on $\text{mod}^{\text{ff}}\mathbb{Z}/4$.

Bergh, Jasso, and Thaule (2016) constructed an exotic *n*-angulated structure on C, for any $n \geq 3$.

Example. Taking n = 4, the Toda bracket of the diagram

$$R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} R \xrightarrow{p} R$$

as a subset of $\mathcal{C}(\Sigma R,R)=\mathcal{C}(R,R)\cong \mathbb{Z}/p^2$ is

$$\langle p, p, p, p \rangle = \{1 + cp \mid c \in \mathbb{Z}\} = 1 + (p) \subset \mathbb{Z}/p^2.$$

Quiver representation theory

Example. Consider the quiver Q with relations J^3 depicted here:

$$1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} 4$$

J = arrow ideal, generated by paths of length 1. $J^3 =$ ideal generated by all paths of length 3, namely *cba*. Path algebra $\Gamma = \Bbbk Q/J^3$.

Take $\mathcal{A} \coloneqq \text{mod}\Gamma$ the category of finitely generated right Γ -modules.

Quiver example (cont'd)

The category \mathcal{A} can be visualized as:

where we denote the quiver representation

$${}^1_2 = \left({\Bbbk} \xrightarrow{1} {\Bbbk} \to 0 \to 0 \right)$$

and so on.

Take $M \coloneqq$ direct sum of the encircled modules.

Quiver example (cont'd)

In the category $\mathcal{A} = \text{mod}\Gamma$, M is a 2-cluster tilting module in the sense of Iyama:

add
$$M = \{X \in \mathcal{A} \mid \operatorname{Ext}_{\Gamma}^{1}(X, M) = 0\}$$

= $\{X \in \mathcal{A} \mid \operatorname{Ext}_{\Gamma}^{1}(M, X) = 0\}.$

Indecomposable projectives in \mathcal{A} :

$$P_1 = \frac{1}{2}$$
 $P_2 = \frac{2}{3}$ $P_3 = \frac{3}{4}$ $P_4 = 4.$

Indecomposable injectives in \mathcal{A} :

$$I_1 = 1$$
 $I_2 = \frac{1}{2}$ $I_3 = P_1$ $I_4 = P_2.$

 Γ is a finite-dimensional k-algebra of global dimension gldim $\Gamma = 2$.

Quiver example (cont'd)

 \rightsquigarrow Get a 4-angulated structure on the subcategory

$$\mathcal{U} = \mathrm{add}\{M[2i] \mid i \in \mathbb{Z}\} \subseteq \mathrm{D}^{b}(\mathcal{A}).$$

Some 4-angles in \mathcal{U} :

$$P_4 \xrightarrow{f_1} P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_3} I_1 \xrightarrow{f_4} \Sigma^2 P_4$$
$$P_4 \xrightarrow{g_1} P_3 \xrightarrow{g_2} P_1 \xrightarrow{g_3} I_2 \xrightarrow{g_4} \Sigma^2 P_4.$$

Toda bracket of the diagram in \mathcal{U} :

$$P_4 \xrightarrow{f_1} P_2 \xrightarrow{g_3f_2} I_2 \xrightarrow{g_4} \Sigma^2 P_4 \xrightarrow{\Sigma^2 g_1} \Sigma^2 P_3$$

$$\langle \Sigma^2 g_1, g_4, g_3 f_2, f_1 \rangle = \operatorname{span}_{\Bbbk} \{ \Sigma^2 g_1 \} = \mathcal{U}(\Sigma^2 P_4, \Sigma^2 P_3)$$

See the paper for details.

Outline

n-angulated categories

Toda brackets

Examples

Some results

Juggling formulas

Fix a pre-*n*-angulated category \mathcal{C} and *n* composable maps in \mathcal{C}

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} X_{n+1}$$

satisfying $f_{i+1}f_i = 0$ for all i.

Subadditivity

Relations between brackets and addition:

Proposition. 1. $\langle f_n + f'_n, f_{n-1}, \dots, f_2, f_1 \rangle \subseteq \langle f_n, f_{n-1}, \dots, f_2, f_1 \rangle + \langle f'_n, f_{n-1}, \dots, f_2, f_1 \rangle$. 2. $\langle f_n, \dots, f_2, f_1 + f'_1 \rangle \subseteq \langle f_n, \dots, f_2, f_1 \rangle + \langle f_n, f_{n-1}, \dots, f_2, f'_1 \rangle$. 3. For $2 \leq i \leq n-1$, we have the identities

$$\langle f_n, \dots, f_i + f'_i, \dots, f_2, f_1 \rangle = \langle f_n, \dots, f_i, \dots, f_2, f_1 \rangle + \langle f_n, \dots, f'_i, \dots, f_2, f_1 \rangle.$$

4. For $1 \leq i \leq n$, we have

$$\langle f_n, \ldots, -f_i, \ldots, f_1 \rangle = -\langle f_n, \ldots, f_i, \ldots, f_1 \rangle.$$

Submultiplicativity

Relations between brackets and composition:

Proposition. 1. $f_{n+1}\langle f_n, \ldots, f_2, f_1 \rangle \subset \langle f_{n+1}f_n, \ldots, f_2, f_1 \rangle$. 2. $\langle f_{n+1}, \ldots, f_3, f_2 \rangle \Sigma f_1 \subset \langle f_{n+1}, \ldots, f_3, f_2 f_1 \rangle$. 3. $\langle f_{n+1}, \ldots, f_3, f_2 f_1 \rangle \subset \langle f_{n+1}, \ldots, f_3 f_2, f_1 \rangle$. 4. $\langle f_{n+1}f_n, f_{n-1}, \dots, f_2, f_1 \rangle \subset \langle f_{n+1}, f_n f_{n-1}, \dots, f_2, f_1 \rangle$. 5. For all $3 \le i \le n-1$ we have the identities $\langle f_{n+1}, \ldots, f_{i+1}, f_i, f_{i-1}, \ldots, f_2, f_1 \rangle = \langle f_{n+1}, \ldots, f_{i+1}, f_i, f_{i-1}, \ldots, f_2, f_1 \rangle.$ 6. $f_{n+1}\langle f_n, \ldots, f_2, f_1 \rangle = \langle f_{n+1}, \ldots, f_3, f_2 \rangle (-1)^n \Sigma f_1.$

Remark. Collected reference for 3-fold Toda brackets in (pre)triangulated categories.

Heller's theorem

Lemma (GKO 2013). In a pre-*n*-angulated category C, every *n*-angle

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1$$

is Yoneda exact, i.e., the sequence of abelian groups

$$\mathcal{C}(A, X_1) \xrightarrow{(f_1)_*} \mathcal{C}(A, X_2) \xrightarrow{(f_2)_*} \cdots \xrightarrow{(f_n)_*} \mathcal{C}(A, \Sigma X_1) \xrightarrow{(\Sigma f_1)_*} \mathcal{C}(A, \Sigma X_2)$$

is exact for every object A of C.

Heller's theorem (cont'd)

Proposition. Let \mathcal{C} be a pre-*n*-angulated category. An $n-\Sigma$ -sequence

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} \Sigma X_1$$

in \mathcal{C} is an *n*-angle if and only if the following two conditions hold.

- 1. The *n*- Σ -sequence X_{\bullet} is Yoneda exact.
- 2. The Toda bracket $\langle f_n, \ldots, f_2, f_1 \rangle_{cc} \subseteq \mathcal{C}(\Sigma X_1, \Sigma X_1)$ contains the identity morphism $1_{\Sigma X_1}$.

The case n = 3 is due to Heller (1968).

The proof for $n \ge 3$ is similar, using facts from GKO (2013).

Longer = Higher

In the GKO setup, *higher* Toda brackets in the ambient triangulated category are also available.

Theorem (F., Martensen, Thaule). Let \mathcal{T} be a triangulated category with an (n-2)-cluster tilting subcategory \mathcal{C} closed under Σ^{n-2} and let

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots \xrightarrow{f_{n-1}} X_n \xrightarrow{f_n} X_{n+1}$$

be a diagram in C satisfying $f_{i+1}f_i = 0$ for all i. Then

 $\langle f_n, \ldots, f_2, f_1 \rangle_{n-\text{angulated}} = (-1)^{\sum_{\ell=1}^{n-3} \ell} \langle f_n, \ldots, f_2, f_1 \rangle_{\text{triangulated}}.$

Massey products

Combining the previous result with a theorem of Jasso and Muro (2023) yields the following in the presence of a DG enhancement.

Corollary. Let k be a field and \mathcal{A} a small DG category over k such that the homotopy category $H^0(\operatorname{Mod}_{\operatorname{dg}} \mathcal{A})$ of the DG category of right DG \mathcal{A} -modules is triangulated and has a (n-2)-cluster tilting subcategory \mathcal{U} closed with respect to the shift [n-2] such that \mathcal{U} is *n*-angulated. For *n* composable maps f_i in \mathcal{U} , we have

$$\langle\!\langle f_n,\ldots,f_2,f_1\rangle\!\rangle [n-2] = -\langle f_n,\ldots,f_2,f_1\rangle$$

where the left side is the Massey product computed using the DG category \mathcal{A} and the right side is the Toda bracket in the *n*-angulated category \mathcal{U} .

Future directions

A few ideas for related research.

- Computations and applications.
- Do *n*-angulated categories have a homotopical interpretation? Are Toda brackets obstructions to something?
- Higher and longer. Toda brackets of m composable maps f_i in an n-angulated category, for $m \ge n$.
- Adams spectral sequence in *n*-angulated categories, cf. Beligiannis (2015). Relation between differentials and Toda brackets?

Thank you!