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Adams spectral sequence
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Classical Adams spectral sequence

Given finite spectra X and Y, the classical Adams spectral
sequence has the form

Ey' = BExty(H'Y, %' H*X) = [2"°X, ;)]
where A denotes the mod p Steenrod algebra.

For E a nice ring spectrum (e.g. MU or BP), the E-based Adams
spectral sequence is:

Ey' = Ext, p(S'E.X, E\Y) = [S'7°X, LgY].
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Triangulated version

e Brinkmann (1968): Adams spectral sequence in a triangulated
category.

o Franke (1996): Application to E(1)-local (=KU;)-local)
spectra.

e Further work related to Franke’s construction (2007 and on):
Roitzheim, Barnes, Patchkoria, and others. Applications to
E-local spectra and E-module spectra for various F.

o Christensen (1998): Application to ghost lengths and stable
module categories.
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Examples of triangulated categories

Example. The homotopy category of spectra, a.k.a. the stable
homotopy category.

Example. The derived category of a ring D(R).

Example. The stable module category of a group algebra
StMod(kG).
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Projective and injective classes

Eilenberg and Moore (1965) gave a framework for relative
homological algebra in any pointed category. When the category is
triangulated, their axioms are equivalent to the following.

Definition. A projective class in 7 is a pair (P, N), where
P CobT and N C mor T, such that:

(i) P consists of exactly the objects P such that every composite
P — X —Y is zero for each X - Y in V.

(ii) N consists of exactly the maps X — Y such that every
composite P — X — Y is zero for each P in P.

(iii) For each X in T, there is a triangle P — X — Y with P in P
and X - Y in V.

An injective class in T is a projective class in 7°P.
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Examples

Example. In spectra, take:

P = retracts of wedges of spheres \/ S

2

N = maps inducing zero on homotopy groups.

(P,N) is the ghost projective class.
Example. For E any spectrum, take:

7T = retracts of products H SME

7

N = maps inducing zero on E*(—).
Then (Z,N) is an injective class.

For F = HT,, this injective class leads to the classical
(cohomological) Adams spectral sequence.
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Examples

Example. For F a homotopy commutative ring spectrum, take:

7 =retracts of EAW
N =maps f: X =Y with EAf~0: EAX = EAY.

The injective class (Z,N) leads to the E-based (homological)
Adams spectral sequence.

Remark. We always assume that our projective and injective

classes are stable, i.e., closed under suspension and desuspension.
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Examples

Example. Let A be a differential graded (dg) algebra. In
dg- A-modules, take:

P = retracts of sums @ Aln;]

7

N = maps inducing zero on homology.

(P,N) is the ghost projective class.

The Adams spectral sequence relative to P is the universal
coefficient spectral sequence

Exty 4(H M[t], H.N) = Ext (M|t], N) = D(A)(M][t], N[s])
from ordinary Ext to differential Ext.

Remark. A monoidal version also recovers the Eilenberg—Moore
spectral sequence

Toryy, A(H. M, H,N) = Tor (M, N).
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Adams resolutions

Definition. An Adams resolution of an object Y in 7 with
respect to an injective class (Z, ) is a diagram

Y=Y~ vy v~y
DN N N
Iy I I

where each I, is injective, each map i, is in N, and the triangles
are triangles.

Axiom (iii) says that you can form such a resolution.

Applying T (X, —) leads to an exact couple and therefore a spectral
sequence, called the Adams spectral sequence.

Ey' = Ext3(2'X,Y)
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... But why?

Why work with a triangulated category instead of a stable
oo-category or stable model category?

e Fewer hypotheses.
@ There’s a lot we can do using only the triangulated structure.

@ Get derived invariants.
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Cofibers in an Adams tower

Starting point: an Z-Adams tower

1

X = X, X,

Xo

For intervals [n, m] < [n/,m/], there is a fill-in in the diagram

X, X, Xt | Xy —— S X
|
L |
A
X,, X, X,/ X — XX

Question. How convenient can those choices be made?
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Good morphisms
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Mapping cone

Definition (Neeman). The mapping cone of a map of triangles

XY "7 -"s¥%X

T

X —>Y —> 7 —> %X
u v w
is the sequence
(5 9] (5 %] [ 2]
X' oY Yz .7 onX v X' @YY,

The map of triangles (f, g, h) is good if its mapping cone is an
exact triangle.
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Middling good morphisms

Proposition (Neeman). If the map of triangles (f, g, h) is good,
then it extends to a 4 x 4 diagram
X—=Yy—">7—"=3%X
f 9 lh of
Xy v vy
\
fl g/ \\Vh/
X// 7717// >_le 71£/ >_leiwiﬁ>2])(/l
\

f// g/l ‘ h// Zf//

Y

v X Y VA ¥2X
Su v Sw

Sf

where the first three rows and columns are exact.
Definition (Neeman). A map of triangles is middling good if it

extends to a 4 x 4 diagram.
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Verdier good morphisms

Definition. A map of triangles

Xty Ys7 Y.¥%X

T

X —=Y —= 7 —> %X
u v w

is Verdier good if h can be constructed as in Verdier’s proof of
the 4 x 4 lemma.

Explicitly: ...
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Verdier good morphisms, cont’d

... There exists an octahedron for the composite X — Y NG

X

sy Y7
|
g (o3
w ~ \
g Y/ v A
|
g I B1
y” }ZN
g’ l71
NY — Y7,
v

Y nX
LN 3)'¢
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Verdier good morphisms, cont’d

. an octahedron for the composite X o xr 2y,

X f X/ f/ X// fl/
u! \ a9
\
v’ | Ba
z z
w’ l'ﬂ

X —= XX,

Sf

and h: Z — Z' is given by h = 33 0 a.
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Enhanced 4 x 4 lemma

Lemma (Miller). A map of triangles (f, g, h) is Verdier good if
and only if it extends to a 4 x 4 diagram and there is an object A
(= cofiber of gu: X — Y”) together with three diagrams:

X gu=u'f

A N R
I
/ \
B1 7/ N\ a2
(E’U)g” // \\ (Ef’)w’
¥ \
YN< 777777 )(l/7
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Enhanced 4 x 4 lemma, cont’d

XX Y’
jii//// \\\\Ez; ///f////f \\\\\31\\
¥X' @ Y Y 0] X'
w’ A g" v A I
7N 7 ~
B2 - NgEst a1 7 N an
P N - NN
BN s
VA Yy s N H
: ) 7 X
AN 7 N -
JNARN /’U” AN v
//% n=1p //2—1w//
Z
x-1iz".
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Examples and non-examples
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Fill-in of zero

Example (Neeman). The map of triangles
Xty *s>7-"-%X

0 |-~
L/

X —=Y =7 —>¥%X

u v w

is good <= h =v'0w for some 0: XX — Y.

We call such a map h a “lightning flash”.

Proposition (Christensen—F.). The equivalent conditions above
are further equivalent to:

1. The map (0,0, h) is Verdier good.
2. The map (0,0, k) is middling good.
3. The Toda bracket (w’, h,v) C T(XY,XX’) contains zero.

Similarly for maps (0, ¢,0) and (f,0,0).
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Not middling good

Example. In the derived category D(Z), the map of triangles

Z[0] —— Z[0] —X—~ Z/n[0] —— Z][1]

I R |

Z[0] —= Z/n[0] 2| ——~2[1]

q €

is not middling good.

Example. In the stable homotopy category, the map of triangles

SO " .60 T Af(n) =St

b b

SO?M(W/) 5 Sl .y Sl

is not middling good.
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Chain homotopy

Definition. A map of triangles (f, g, h) is nullhomotopic if there
are maps (F,G, H) as in

Xty “s7 Y.¥%X

N b

X Y — 7' nX
u v w
with
f=Fu+ (W) (Z1H)
g=Guv+uF
h=Huw+ vG.

Two maps of triangles (f, g, h) and (f, g, h) are chain homotopic
if their difference is nullhomotopic:

25 /48



Chain homotopy invariance

Fact. Chain homotopic maps have isomorphic mapping cones.

= Goodness is invariant under chain homotopy.

What about Verdier goodness?

Proposition (Neeman). If (f, g, h) is Verdier good, then so is
(f,9,h+ v 0w) for any §: XX — Y.

In other words: Adding a lightning flash preserves Verdier
goodness.
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Contractible triangles

Definition. A triangle X — Y — Z — ¥ X is contractible if its
identity map (1x,1ly,1z) is nullhomotopic.

Example. A split triangle X - Y — Z 9 21X is contractible.

Proposition (Neeman). If the top row or bottom row of

XY "7 -"+¥%X

T

X —>Y —>7 —>¥%X'
u v w

is contractible, then the map of triangles is Verdier good.
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Middling good but not good

Example (Neeman). The map of triangles

XY -7 -"-%X

T

Y A YX Y

v w —Yu

is always middling good.
It is good <= w = whw for some #: XX — Z.

For instance, with 7(XX, Z) = 0 and w # 0, the map of triangles is
not good.

Fact. The map (u,v,w) above is Verdier good <= w = whw for
some 0: XX — Z.
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Middling goodness, cont’d

Corollary. Middling goodness is not invariant under chain
homotopy.

Indeed, consider (u,v,w) ~ (0,0, w).
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middling good

Verdier good
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Questions and results
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Main questions

1. Is Verdier goodness equivalent to goodness?
(Does one imply the other?)

2. Is Verdier goodness invariant under chain homotopy?
(Does nullhomotopic imply Verdier good?)

3. Is Verdier goodness invariant under rotation?
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Warning: Composition

Proposition (Neeman+e). Every map of triangles is a composite
of two maps that are good and Verdier good.

In particular, a composite of Verdier good maps need not be
Verdier good.
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Some special cases

Consider a map of triangles (f, g, h).

o If f and g are (split) monomorphisms, then good <= Verdier
good.

e If f and g are (split) epimorphisms, then good <= Verdier
good.
e Case (1,g,h): good = Verdier good (Neeman). More later.

e If one component is zero...
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A zero component

Lemma. A map of triangles (f, g,0) is nullhomotopic <= it is
nullhomotopic via a nullhomotopy with a single component

(F,0,0).
Theorem (Christensen—F.).

1. A map of triangles (f,g,0) is good (if and) only if it is
nullhomotopic.

Likewise for (f,0,h) and (0, g, h). (Automatic.)

2. For (f,0,h) and (0, g, h), the condition is further equivalent to
Verdier goodness.

3. If the triangulated structure admits a 3-triangulated
enhancement, then (f, g,0) being good = Verdier good.
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Lifting criterion

Corollary. In the diagram with exact rows

X—-Y "7 s¥%X

k g |
fl v lg | J/Ef
»o ¥

X —>Y —> 7 —>¥X,
u v w

there exists a lift k: Y — X’ satisfying ku = f and v’k = ¢
<= The map 0: Z — 7’ is a good fill-in.

Remark. Zero being a fill-in is not a sufficient condition. In the
map of triangles in D(Z)

-2

Z—1>7/2—>7[1) Z[1]

I
72—~ 7[1] Z[1] z,/201],

the fill-in map is zero, but no lift k exists.
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Homotopy cartesian squares
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Homotopy cartesian squares

Definition. A commutative square

v,z

T

Y — g
f/

is called homotopy cartesian if there is a “Mayer—Vietoris” exact
triangle

g
v [f] Y'® 7 [ =d']

7 —9 ¥y

for some map 9: Z' — XY, called the differential.
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Relationship with good maps

Lemma (Neeman). Consider a homotopy cartesian square

Y —2Z

]

Y,4/>Z/
v

with given differential 9: Z’ — XY. Then the square extends to a
good map of triangles of the form (1, g, h)

Xtoy Yoz Y.owx

| b

X—sY —>7 —>¥%X
u v w

satisfying 0 = (Xu)w’. Moreover, we may prescribe the top row or
the bottom row.

Can we make the relationship more precise? 29 18



Replaceably exact triangle

Definition (Vaknin 2001). In a candidate triangle

Xty -Ysz - Y.¥X,

the map u is replaceable with replacing map u if

XY "7 -"s3X

is exact. Replaceability of v or w is defined similarly.

The candidate triangle is replaceably exact if its three maps are
replaceable.
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Homotopy cartesian versus goodness

Proposition. Consider a map of triangles (1, g, h)

Xty Yoz Yowx
o b
X Y —= 27 X

and its “Mayer—Vietoris” candidate triangle

[g] [v —=h] ,, Cu)w’

Yy vz Z %Y. (MV)

1. The map (1, g, h) is good if and only if the middle square is
homotopy cartesian with differential 9 = (Xu)w’: Z/ — XY,
i.e., (MV) is exact.

2. The middle square is homotopy cartesian if and only if the
candidate triangle (MV) is replaceably exact.

3. The map (1, g, h) is Verdier good if and only if it extends to an
octahedron. 41/48



Homotopy cartesian squares

Remark. See also Canonaco—Kiinzer (2011).

42/48



Pasting lemma

Proposition (Christensen-F.). Consider a diagram

Yy .7

/| |
Y 7
S
Yl/ Z//
If the two squares are homotopy cartesian, then so is their pasting,

the big rectangle.

Moreover, given differentials 9y : Z/ — XY and 9r,: Z” — XY’ of
the upper square and lower square respectively, there exists a
differential Op: Z” — XY for the pasted rectangle satisfying

(Eg)ap = aL and 3Ph, = 8U.

Strengthens a result of Vaknin (2001).
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Examples in a stable module category

Let C4 be the cyclic group of order 4, with generator g. Consider
the group algebra
R = FQC4 = ]Fg[w]/ZLA

with z :=¢g — 1.
We will work in the stable module category StMod(R).

For r € R, let ' '
pr: Rjx* — R/a’

denote the R-module map sending 1 to r, when it is defined. For
example:

pe: R/z — R/
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Examples in StMod(F,C}y) (cont’d)

The following map of triangles is good and Verdier good:

210 4] L1

R/z*® R/ Y Ry @ RJe — " L Rya R/z & R/a?
i o |L2]

3 2 2 2 2

R/x>® R/x 0] R/x ] R/x* @ R/x Tl(l)]R/x@R/x.

The following map with the same homotopy cartesian middle
square is neither good nor Verdier good:

10 0
R/z® & R/ [O#I]R/x 3¢ R/2d — L Ry Lie) R/z ® R/
ol 2]
R/x3 @ R/z? 0] R/x 03 R/x? ® R/2? i m]R/az@R/m .
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Examples in StMod(F,C}y) (cont’d)

Consider the diagram with exact rows

100
[01 o]
00 pg

H

R/23® R/2®> ® R/2* —5 R/2®* ® R/2®> ® R/ 00 m] R/x R/z® R/x* & R/x?
12100 ] 0
H (oo MUOJ ﬁ:g} M?} [%138] ‘
R/2® ® R/2? @ Rfx? 221" R/v & R/a? M R/2?® R/2®® R/z—— %' R/z & R/a? & R/2?
10 0
| Jiro |li4)
R/2®® R/x* ® R/x? [0 0] R/z [ur] R/zzeaR/x?eaR/xQ[m /x ® R/z*® R/
0 0170
0 001

The top map is good.
The bottom map is good.
The composite is not good. Its “Mayer—Vietoris” triangle is

replaceably exact but not exact.
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Some future directions

@ Search for counterexamples ~» Computer-assisted calculations
in StMod(kG)? See Kiinzer (2009).

o Exotic triangulated categories? See Muro—Schwede—Strickland
(2007), Bergh-Jasso-Thaule (2016).

e n-angulated categories? Work in progress by Thaule and
Martensen.
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Thank you!
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