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Persistence modules

Fix a ground field k.

Definition. For m ≥ 1, an m-parameter persistence module
is a diagram

Nm → Vectk.

∼= graded module over the graded polynomial algebra

R := k[t1, . . . , tm],

which is Nm-graded with multigrading

|ti| = e⃗i = (0, . . . ,

i︷︸︸︷
1 , . . . , 0).

Write M(d⃗) for the k-vector space in multidegree d⃗ ∈ Nm.
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Goal / Dream

Work with finitely generated R-modules:

R-mod := R-Modfin.gen. ⊂ R-Mod.

Goal
Classify the indecomposable objects in R-mod.

4 / 38



One-parameter case

For m = 1, finitely generated k[t]-modules decompose into interval
modules

[a, b) := tak[t]/tbk[t]

= coker

(
tak[t] tb−a

−−−→ tak[t]
)
.

Example.

M = t4k[t]⊕ t2k[t]/t7k[t]
= [4,∞)⊕ [2, 7).

⇝ Barcodes.
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Multiparameter case

Not available for m ≥ 2, because k[t1, t2] has wild representation
type.

How to deal with that?

One approach: Extract invariants that are both computable and
significant. Rank invariant and various refinements. Many authors:
[Botnan, Oppermann, Oudot], etc.

Another approach: Focus on certain families of modules admitting
a nice decomposition, such as rectangle-decomposable modules.
[Botnan, Lebovici, Oudot], [Asashiba, Buchet, Escolar, Nakashima,
Yoshiwaki], etc.
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Approach: localize

Our approach: We localize R-mod until the resulting category
admits a classification of indecomposables, or at least a partial
classification.

Related work: [Harrington, Otter, Schenck, Tillmann] and [Bauer,
Botnan, Oppermann, Steen].
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Inverting some variables

Fact. The homogeneous prime ideals of R are those of the form
(ti1 , · · · , tik).

The various localizations of a module M fit together.

Example. For M a module over R = k[t1, t2]:

k[t1, t±2 ]⊗R M
invert t1 // k[t±1 , t

±
2 ]⊗R M

M

invert t2

OO

invert t1 // k[t±1 , t2]⊗R M.

invert t2

OO
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Inverting some variables (cont’d)

Notation. 1. [m] := {1, 2, . . . ,m}
2. For a subset σ ⊆ [m], denote the localization of rings

Rσ := R[t−1
i | i ∈ σ],

which is σ−1Nm-graded.

3. φi := the localization map “invert ti”.

Example. With this notation, the previous square becomes:

R{2} ⊗R M
φ1 // R{1,2} ⊗R M

M

φ2

OO

φ1 // R{1} ⊗R M.

φ2

OO

10 / 38



K-localized persistence modules

Idea: Forget the module M but keep some of its localizations.

If we keep a localization Rσ ⊗R M , we should keep all further
localizations Rτ ⊗R M for σ ⊆ τ .

Definition. Let K be a simplicial complex on the vertex set [m].
A K-localized persistence module M consists of:

1. For each missing face σ /∈ K, a finitely generated Rσ-module
Mσ.

2. For each σ ⊆ τ with σ /∈ K (and hence τ /∈ K), a map of
Rσ-modules φσ,τ : Mσ → Mτ such that the induced map of
Rτ -modules

Rτ ⊗Rσ Mσ
∼=−→ Mτ

is an isomorphism.

Let D(K) denote the category of K-localized persistence modules.
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The role of K

Small K ⇝ Localize a little.

Big K ⇝ Localize a lot.

Example. Extreme cases:

1. K = {} = sk−2∆
m−1 ⇝ Don’t localize:

D(K) ∼= R-mod.

2. K = ∂∆m−1 = skm−2∆
m−1 ⇝ Invert all the ti:

D(K) = R[m]-mod ∼= vectk.

3. Even more extreme! K = ∆m−1 ⇝ Localize everything into
oblivion:

D(K) = 0.
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Example: m = 2

Take m = 2 and K = {∅} = sk−1∆
1.

A K-localized persistence module M consists of modules

M{2}
φ1 //M{1,2}

M{1}

φ2

OO

where φi inverts ti.
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Example: m = 3

Take m = 3 and K = sk0∆
2 = {∅, {1}, {2}, {3}}.

A K-localized persistence module M consists of modules

Mσ1

φ1 //M[3]

Mσ2

φ2

<<

Mσ3

φ3

OO

where σi := [m] \ {i} ⇝ “all but ti have been inverted”

φi := φ[m]\{i},[m] : M[m]\{i} → M[m] ⇝ “invert ti”.
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A Serre quotient

Consider the canonical functor

LK : R-mod → D(K)

that keeps the relevant localizations of M :

LK(M)σ = Rσ ⊗R M.

Lemma. LK is exact.

Proposition. LK is a Serre quotient functor:

R-mod

q

��

LK // D(K).

R-mod/ ker(LK)

∼=

77
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A hopeless dream?

Denote Km := skm−3∆
m−1 ⇝ Allow at most one non-inverted ti.

Proposition. For any smaller simplicial complex K ⊂ Km, D(K)
has wild representation type.

Proof. D(K) contains a copy of k[x, y]-mod as a retract.

In this section, focus on D(Km).
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Some indecomposables

a b

[a, b)1

a

b

[a, b)2

a1

a2

[⃗a,∞)

Some indecomposable objects in D(K2).

Theorem (F.–Stanley). Every object in D(K2) decomposes (in a
unique way) as a direct sum of:

“vertical strips” [a, b)1
“horizontal strips” [a, b)2
“quadrants” [⃗a,∞).
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A torsion pair

Consider two full subcategories of D(Km):

T = {M | Mσi is a torsion Rσi-module for all i ∈ [m]}
= {M | M[m] = 0}

F = {M | Mσi is a torsion-free Rσi-module for all i ∈ [m]}.

Proposition. 1. (T ,F) is a torsion pair for D(Km).

2. For all M in D(Km), the natural short exact sequence

0 → T (M) → M → F (M) → 0

splits.

=⇒ M ∼= T (M)⊕ F (M)
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Torsion objects

For a < b < ∞, consider the “interval [a, b) in the ith direction”:

[a, b)i = LKm

(
taiR/tbiR

)
.

Lemma. [a, b)i is indecomposable in D(Km).

Proposition. Each torsion object M ∈ T decomposes as a direct
sum of objects of the form [a, b)i.
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Dimension count arguments

After inverting all variables, we are left with a vector space:

R[m]-mod
∼=−→ vectk

M 7→ M (⃗0).

Remark. The grading is crucial here. An ungraded k[t±]-module
corresponds to a k-vector space V equipped with an automorphism

µt : V
∼=−→ V .

Definition. 1. For σ ⊆ [m] and an Rσ-module M , the rank of
M is

rankM := dimk
(
R[m] ⊗Rσ M

)
.

2. The rank of an object M in D(K) is

rankM := rankM[m]

= rankMσ for any missing face σ /∈ K.
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Torsion-free objects

Notation. For a multidegree a⃗ ∈ Nm, consider the object of
D(Km)

[⃗a,∞) = LKm(t
a⃗R),

where ta⃗ := ta11 · · · tamm .

“quadrant module starting at a⃗”

Lemma. 1. [⃗a,∞) is torsion-free, of rank 1, and indecomposable.

2. Any torsion-free object of rank 1 is of the form [⃗a,∞).

Proposition. Every torsion-free object M in D(K2) decomposes
as a direct sum of modules of the form [⃗a,∞).

Proof sketch...
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Scanning process

d1
M = M (0)

d2

M (1)

d1

d2

M (2)

Scan for an element x of lowest degree d⃗ ∈ N2 in lexicographic
order.

The quotient M/ ⟨x⟩ is still torsion-free.
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Battleship game

d11

d12 ×

M = M0
d21

d22 ×

M1

a1

a2

M2 ∼= [⃗a,∞)

Scan, mod out, repeat r − 1 times, where r = rankM .

The composite epimorphism M ↠ [⃗a,∞) admits a section, splitting
off a rank 1 summand from M .
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In higher dimension m ≥ 3

Warning: [⃗a,∞) is not projective in D(K2).

Example. Consider the map in D(K2)

[(1, 0),∞)⊕ [(0, 1),∞)
f=[ inc inc ]// [(0, 0),∞).

̸∃ s

hh

The map f is an epimorphism but does not admit a section.

Proposition. For any m ≥ 3, there exists a torsion-free object in
D(Km) that is of rank 2 and indecomposable.
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Tensor ideals

Recall: Serre quotient

D(K) ∼= R-mod/ ker(LK).

The subcategory ker(LK) ⊆ R-mod is a “tensor ideal”: a Serre
subcategory closed under tensoring with a Zm-graded R-module as
long as the result is still Nm-graded.

⇝ Allow shifting the degrees down, but not below 0.
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Classification of tensor ideals

Recall: The support of an R-module M is the set of homogeneous
prime ideals P ⊂ R for which the localization MP ̸= 0.

For P = (ti1 , · · · , tik), we will record the complement
[m] \ {i1, . . . , ik}, the variables that may be inverted.

Proposition. [F.–(Don)Stanley] There is a bijection

“tensor ideals” of R-mod

complemented support

))
simplicial complexes on [m].

(Richard)Stanley–Reisner

ii

Morever ker(Lk) = the “tensor ideal” generated by k[K].
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Stanley–Reisner ring

Definition. The Stanley–Reisner ring or face ring of a
simplicial complex K is the polynomial ring modulo the monomials
corresponding to missing faces:

k[K] := R/(tσ : σ /∈ K).

Example. K = sk−1∆
m−1 = {∅}

=⇒ k[K] = R/(t1, . . . , tm) = k
=⇒ Suppk[K] = {(t1, . . . , tm)}
=⇒ complemented Supp k[K] = {∅} = K.
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Simple objects

What about ker(LKm)?

Proposition. D(Km) is obtained from R-mod by quotienting out
the Serre subcategory generated by the simple objects m− 1 times
successively.

Corollary. D(K2) is the category of 2-parameter persistence
modules up to finite diagrams:

D(K2) ∼= k[t1, t2]-mod/{finite modules}.

⇝ Large-scale behavior of the persistence module.
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A link with toric geometry

Coherent sheaves on the projective line P1
k:

Coh(P1) ∼= Z-graded k[s, t]-mod/{finite modules}.

The Z2-graded variant of our category D(K2) is the bigraded
analogue of the right-hand side:

D(K2)Z2
∼= Z2-graded k[s, t]-mod/{finite modules}.

Colin Ingalls pointed out that this category is equivalent to
torus-equivariant coherent sheaves on P1.
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Rank invariant

Definition. Let M be an R-module. The rank invariant of M is
the function assigning to each pair of multidegrees a⃗, b⃗ ∈ Nm with
a⃗ ≤ b⃗ the integer

rM (⃗a, b⃗) = rank

(
M (⃗a)

tb⃗−a⃗·−−−→ M (⃗b)

)
.

Widely studied invariant of multiparameter persistence modules.
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Rank invariant is not enough

The rank invariant of an R-module does not determine LK(M).

Example. In the case m = 2:

M = (t1, t2)⊕ t1t2R

N = t1R⊕ t2R

have the same rank invariant.

However, they have different K2-localizations in D(K2):

LK2(M) ∼= [(0, 0),∞)⊕ [(1, 1),∞)

LK2(N) ∼= [(1, 0),∞)⊕ [(0, 1),∞).
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Same rank invariant

M N
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Rank invariant is sometimes enough

Proposition. For K = Km, the rank invariant of an R-module M
determines the Rσi-modules Mσi and the k-vector space M[m].

Proposition. If M lies in the image of the right adjoint
(delocalization functor)

ρK2 : D(K2) → k[t1, t2]-mod,

then the rank invariant of M determines the localization LK2(M).
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Some questions

Question. Which refinement of the rank invariant of a
k[t1, t2]-module M determines the torsion-free part of LK2(M) in
D(K2)?

Question. Does D(K3) have wild representation type?
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Thank you!
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