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Persistence modules

Fix a ground field k.
Definition. For m > 1, an m-parameter persistence module

is a diagram
N™ — Vecty.

= graded module over the graded polynomial algebra
R = k[tl, NN ,tm},
which is N™-graded with multigrading

tl=&=(0,....,71 ,...,0).

—

Write M (d) for the k-vector space in multidegree d € N™.
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Goal / Dream

Work with finitely generated R-modules:

R-mod := R-Mod™ & = R_Mod.

Goal
Classify the indecomposable objects in R-mod.
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One-parameter case

For m = 1, finitely generated k[t]-modules decompose into interval
modules

[a, ) == t°Kk|[t] /t°K]t]

— coker (tak[t] LN t“k[t]) .

Example.

M = t'k[t] ® t?Kk[t] /t k(]
=[4,00) & [2,7).

~~ Barcodes.
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Multiparameter case

Not available for m > 2, because k[t1, t2] has wild representation
type.

How to deal with that?

One approach: Extract invariants that are both computable and
significant. Rank invariant and various refinements. Many authors:
[Botnan, Oppermann, Oudot], etc.

Another approach: Focus on certain families of modules admitting
a nice decomposition, such as rectangle-decomposable modules.
[Botnan, Lebovici, Oudot], [Asashiba, Buchet, Escolar, Nakashima,
Yoshiwaki], etc.
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Approach: localize

Our approach: We localize R-mod until the resulting category

admits a classification of indecomposables, or at least a partial
classification.

Related work: [Harrington, Otter, Schenck, Tillmann| and [Bauer,
Botnan, Oppermann, Steen].
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Localized persistence modules
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Inverting some variables

Fact. The homogeneous prime ideals of R are those of the form
(tiu T ?tik)'

The various localizations of a module M fit together.

Example. For M a module over R = k[t1, t2]:

k[tl, tg:] ®Xpr M fovert & k[tit, tg:] ®r M
invert to Tinvert to
M invert t1 k[tli, tQ] ®R M.
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Inverting some variables (cont’d)

Notation. 1. [m]:={1,2,...,m}

2. For a subset o C [m], denote the localization of rings
R, = R[t;'|ic o],
which is o~ !N™-graded.
3. ; = the localization map “invert t;”.
Example. With this notation, the previous square becomes:

Ry @ M —"— Ry 5y ® M

@2T Tm

M L R{l} KRR M.
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K-localized persistence modules

Idea: Forget the module M but keep some of its localizations.

If we keep a localization R, ®r M, we should keep all further
localizations R, ® g M for o C 7.

Definition. Let K be a simplicial complex on the vertex set [m].
A K-localized persistence module M consists of:

1. For each missing face o ¢ K, a finitely generated R,-module
M,.
2. For each 0 C 7 with 0 ¢ K (and hence 7 ¢ K), a map of

R,-modules ¢, : My — M, such that the induced map of
R--modules

RT ®RU Mo i MT
is an isomorphism.
Let D(K) denote the category of K-localized persistence modules.
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The role of K

Small K ~» Localize a little.
Big K ~~ Localize a lot.
Example. Extreme cases:
1. K ={} =sk g A™! «s Don’t localize:
D(K) = R-mod.

2. K =0A™ ! =gk, o A™ 1 «s Invert all the t;:
D(K) = Rjpy)-mod = vecty.

3. Even more extreme! K = A™~! ~s Localize everything into
oblivion:

D(K) = 0.
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Example: m = 2

Take m =2 and K = {0} = sk_; AL

A K-localized persistence module M consists of modules

My —> M 2

T@Q

My

where ¢; inverts ¢;.
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Example: m =3

Take m = 3 and K = skg A% = {0, {1}, {2}, {3}}.

A K-localized persistence module M consists of modules

1
My,

Mg

Mg, 3

where o; :=[m]\ {i} ~ “all but ¢; have been inverted”

i = Plm)\{i},[m] * M[m]\{z} — M[m] ~ “invert t;”.
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A Serre quotient

Consider the canonical functor
Lg: R-mod — D(K)

that keeps the relevant localizations of M:
LK(M)U =R, ®r M.

Lemma. L is exact.
Proposition. Ly is a Serre quotient functor:

L< . DK).

R-mod
7

-

R\

‘Jl -
-
-

R-mod/ ker(L)
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Classification of indecomposables

16 /38



A hopeless dream?

Denote K, := sky,_3 A" ~» Allow at most one non-inverted ¢;.

Proposition. For any smaller simplicial complex K C K,,, D(K)
has wild representation type.

Proof. D(K) contains a copy of k[z,y]-mod as a retract. O

In this section, focus on D(K,,).
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Some indecomposables

a

[a,b)1 [a,b)2 @, <)

Some indecomposable objects in D(K3).

Theorem (F.-Stanley). Every object in D(K3) decomposes (in a
unique way) as a direct sum of:

[4

e ‘“vertical strips” [a,b)1
e ‘“horizontal strips” [a,b)s

e “quadrants” [d@,c0).
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A torsion pair

Consider two full subcategories of D(K,,):

T ={M | M,, is a torsion R,,-module for all i € [m]}
=A{M | My, = 0}

F ={M | M,, is a torsion-free R,,-module for all i € [m]}.

Proposition. 1. (7,F) is a torsion pair for D(K,,).
2. For all M in D(K,,), the natural short exact sequence

0—-T(M)—M—F(M)—0
splits.
= M=T(M)& F(M)
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Torsion objects

For a < b < oo, consider the “interval [a, b) in the i*" direction”:

(a,0); = Li,, (tR/R).

Lemma. [a,b); is indecomposable in D(K,,).

Proposition. Each torsion object M € T decomposes as a direct
sum of objects of the form [a, b);.
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Dimension count arguments

After inverting all variables, we are left with a vector space:
Ry,-mod =N vecty

M — M(0).

Remark. The grading is crucial here. An ungraded k[t*]-module
corresponds to a k-vector space V equipped with an automorphism
we: V—1V.

Definition. 1. For ¢ C [m] and an R,-module M, the rank of
M is
rank M = dimy (R[m] QR, M) .

2. The rank of an object M in D(K) is

rank M := rank M,

=rank M, for any missing face o ¢ K. 21 )38



Torsion-free objects

Notation. For a multidegree @ € N, consider the object of
D(Km) .
[C_i, OO) = LK’m (taR)7

where % == ¢]* - - - t&m.
“quadrant module starting at @”

Lemma. 1. [@,00) is torsion-free, of rank 1, and indecomposable.

2. Any torsion-free object of rank 1 is of the form [a@, c0).

Proposition. Every torsion-free object M in D(K3) decomposes
as a direct sum of modules of the form [d, 00).

Proof sketch...
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Scanning process

L

dy

dy

d

M=MO

MO

dy
M®

Scan for an element x of lowest degree deN?in lexicographic

order.

The quotient M/ (z) is still torsion-free.
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Battleship game

d} oS

as

d} d} a1
M =M M? M? = [d,00)

Scan, mod out, repeat r — 1 times, where r = rank M.

The composite epimorphism M — [d@, c0) admits a section, splitting
off a rank 1 summand from M.

24 /38



In higher dimension m > 3

Warning: [d@, c0) is not projective in D(K3).

Example. Consider the map in D(K?)

1(1,0),00) @ [(0,1), 00) =22 (0, 0), o0).

—
N - —
— —

S50
The map f is an epimorphism but does not admit a section.

Proposition. For any m > 3, there exists a torsion-free object in
D(K,,) that is of rank 2 and indecomposable.
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Which subcategories are we quotienting out?
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Tensor ideals

Recall: Serre quotient

D(K) = R-mod/ ker(Lg).

The subcategory ker(Lg) C R-mod is a “tensor ideal”: a Serre
subcategory closed under tensoring with a Z"-graded R-module as
long as the result is still N™-graded.

~ Allow shifting the degrees down, but not below 0.
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Classification of tensor ideals

Recall: The support of an R-module M is the set of homogeneous
prime ideals P C R for which the localization Mp # 0.

For P = (t;,,--- ,ti, ), we will record the complement
[m] \ {i1,...,ix}, the variables that may be inverted.

Proposition. [F.—(Don)Stanley] There is a bijection

complemented support

/////,,/~——————~\\\\\\$

“tensor ideals” of R-mod simplicial complexes on [m].

(Richard)Stanley—Reisner

Morever ker(Ly) = the “tensor ideal” generated by k[K].
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Stanley—Reisner ring

Definition. The Stanley—Reisner ring or face ring of a

simplicial complex K is the polynomial ring modulo the monomials
corresponding to missing faces:

k[K] =R/(ty: 0 ¢ K).
Example. K =sk_; A" ! = {))}

= k[K] =R/(t1,...,tm) =k
= Suppk[K] = {(t1,...,tm)}
— complemented Suppk[K] =

{0} = K.
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Simple objects

What about ker(Lg,,)?

Proposition. D(K,,) is obtained from R-mod by quotienting out
the Serre subcategory generated by the simple objects m — 1 times
successively.

Corollary. D(K>) is the category of 2-parameter persistence
modules up to finite diagrams:

D(K9) = Kk[t1, ta]-mod/{finite modules}.

~ Large-scale behavior of the persistence module.
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A link with toric geometry

Coherent sheaves on the projective line Pj:
Coh(P') = Z-graded k[s, t}-mod/{finite modules}.

The Z2-graded variant of our category D(K3) is the bigraded
analogue of the right-hand side:

D(K3)z2 = Z-graded ks, t}-mod/{finite modules}.

Colin Ingalls pointed out that this category is equivalent to
torus-equivariant coherent sheaves on P
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Rank invariant
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Rank invariant

Definition. Let M be an R-module. The rank invariant of M is

the function assigning to each pair of multidegrees a, b € N™ with
a < b the integer

(@, b) = rank (M(d’) kiR (b)> .

Widely studied invariant of multiparameter persistence modules.
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Rank invariant is not enough

The rank invariant of an R-module does not determine Ly (M).

Example. In the case m = 2:

M = (t1,t2) @ t1t2R
N=tiR®t2R

have the same rank invariant.

However, they have different Ks-localizations in D(K>):

LKz(M) = [(an)a OO) ® [(13 1)700)
Lg,(N)=][(1,0),00) & [(0,1), 00).
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Same rank invariant

M N
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Rank invariant is sometimes enough

Proposition. For K = K,,,, the rank invariant of an R-module M
determines the Ry -modules M, and the k-vector space M.

Proposition. If M lies in the image of the right adjoint
(delocalization functor)

PKs: D(KQ) — k[tl, tQ]-mOd,

then the rank invariant of M determines the localization Ly, (M).
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Some questions

Question. Which refinement of the rank invariant of a
k[t1,t2]-module M determines the torsion-free part of L, (M) in
D(K9)?

Question. Does D(K3) have wild representation type?
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Thank you!
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