Multiparameter persistence modules in the large scale

Martin Frankland
University of Regina
Joint with Don Stanley

Séminaire canadien en géométrie et topologie
Université du Québec à Montréal
13 novembre 2022

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Topological data analysis pipeline

filtered space / simplicial complex

$$
\left\{H_{r}(-; \mathbb{k})\right.
$$

filtered \mathbb{k}-vector space

Example. Let X be a finite metric space - "data set". The Vietoris-Rips complex $V R(X)_{\epsilon}$ is the simplicial complex on the vertex set X with

$$
\left\{x_{0}, \ldots, x_{n}\right\} \text { is an } n \text {-simplex } \Longleftrightarrow d\left(x_{i}, x_{j}\right) \leq \epsilon \text { for all } i, j .
$$

Filtered simplicial complex

Image source: Robert Ghrist, Barcodes: The persistent topology of data.

As ϵ varies, $V R(X)_{\epsilon}$ forms a filtered simplicial complex with one parameter $\epsilon \geq 0$, i.e., a functor

$$
V R(X): \mathbb{R}_{+} \rightarrow \text { SimpCpx. }
$$

If instead we let ϵ increase by a fixed small step, we obtain one discrete parameter $\mathbb{N} \rightarrow$ SimpCpx.

Filtered space

Example. Let X be a smooth manifold and $f: X \rightarrow \mathbb{R}$ a Morse function. Filtration by sublevel sets:

$$
X_{s}=\{x \in X \mid f(x) \leq s\}=f^{-1}((-\infty, s])
$$

As s varies, X_{s} forms a filtered space with one parameter $s \in \mathbb{R}$, i.e., a functor

$$
X_{\bullet}: \mathbb{R} \rightarrow \text { Top. }
$$

Given another Morse function $g: X \rightarrow \mathbb{R}$, consider the joint sublevel sets:

$$
X_{s, t}=\{x \in X \mid f(x) \leq s, g(x) \leq t\}
$$

Get a filtered space with two parameters $s, t \in \mathbb{R}$, i.e., a functor $X_{\bullet, \bullet}: \mathbb{R}^{2} \rightarrow$ Top.

In applications, often need multiple parameters.
In this project, we focus on discrete parameters.

Persistence modules

Fix a ground field \mathbb{k}.
Definition. For $m \geq 1$, an m-parameter persistence module is a diagram

$$
\mathbb{N}^{m} \rightarrow \text { Vect }_{\mathbb{k}}
$$

\cong graded module over the graded polynomial algebra

$$
R:=\mathbb{k}\left[t_{1}, \ldots, t_{m}\right]
$$

which is \mathbb{N}^{m}-graded with multigrading

$$
\left|t_{i}\right|=\vec{e}_{i}=(0, \ldots, \overbrace{1}^{i}, \ldots, 0) .
$$

Write $M(\vec{d})$ for the \mathbb{k}-vector space in multidegree $\vec{d} \in \mathbb{N}^{m}$.

Goal / Dream

Work with finitely generated R-modules:

$$
R \text {-mod }:=R \text {-Mod }{ }^{\text {fin.gen. }} \subset R \text {-Mod. }
$$

Goal
Classify the indecomposable objects in R-mod.

One-parameter case

For $m=1$, finitely generated $\mathbb{k}[t]$-modules decompose into interval modules

$$
\begin{aligned}
{[a, b) } & :=t^{a} \mathbb{k}_{\mathbb{k}}[t] / t^{b} \mathbb{\mathbb { k }}[t] \\
& =\operatorname{coker}\left(t^{a} \mathbb{\mathbb { k }}[t] \xrightarrow{t^{b-a}} t^{a} \mathbb{K}_{\mathbb{k}}[t]\right) .
\end{aligned}
$$

Example.

$$
\begin{aligned}
M & =t^{4} \mathbb{k}[t] \oplus t^{2} \mathbb{k}[t] / t^{7} \mathbb{k}[t] \\
& =[4, \infty) \oplus[2,7)
\end{aligned}
$$

\rightsquigarrow Barcode: multiset of intervals. List of intervals appearing in the decomposition (with multiplicity).

Multiparameter case

Not available for $m \geq 2$, because $\mathbb{k}\left[t_{1}, t_{2}\right]$ has wild representation type.

How to deal with that?
One approach: Extract invariants that are both computable and significant. Rank invariant and various refinements. Many authors...

Another approach: Focus on certain families of modules admitting a nice decomposition, such as rectangle-decomposable modules.

Approach: localize

Our approach: We localize R-mod until the resulting category admits a classification of indecomposables, or at least a partial classification.

Related work: [Harrington, Otter, Schenck, Tillmann] and [Bauer, Botnan, Oppermann, Steen].

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Inverting some variables

Fact. The homogeneous prime ideals of R are those of the form $\left(t_{i_{1}}, \cdots, t_{i_{k}}\right)$.

The various localizations of a module M fit together.
Example. For M a module over $R=\mathbb{k}\left[t_{1}, t_{2}\right]$:

$$
\begin{gathered}
\mathbb{k}\left[t_{1}, t_{2}^{ \pm}\right] \otimes_{R} M \xrightarrow{\text { invert } t_{1}} \mathbb{k}\left[t_{1}^{ \pm}, t_{2}^{ \pm}\right] \otimes_{R} M \\
\text { invert } t_{2} \uparrow \\
M \xrightarrow[\text { invert } t_{1}]{\longrightarrow} \mathbb{k}\left[t_{1}^{ \pm}, t_{2}\right] \otimes_{R} M
\end{gathered}
$$

Inverting some variables (cont'd)

Notation. 1. $[m]:=\{1,2, \ldots, m\}$
2. For a subset $\sigma \subseteq[m]$, denote the localization of rings

$$
R_{\sigma}:=R\left[t_{i}^{-1} \mid i \in \sigma\right],
$$

which is $\sigma^{-1} \mathbb{N}^{m}$-graded.
3. $\varphi_{i}:=$ the localization map "invert t_{i} ".

Example. With this notation, the previous square becomes:

$$
\begin{aligned}
& R_{\{2\}} \otimes_{R} M \xrightarrow{\varphi_{1}} R_{\{1,2\}} \otimes_{R} M \\
& \begin{array}{c}
\varphi_{2} \uparrow \\
M \xrightarrow{\varphi_{1}} R_{\{1\}}{ }^{\uparrow} \otimes_{R} M .
\end{array}
\end{aligned}
$$

K-localized persistence modules

Idea: Forget the module M but keep some of its localizations.
If we keep a localization $R_{\sigma} \otimes_{R} M$, we should keep all further localizations $R_{\tau} \otimes_{R} M$ for $\sigma \subseteq \tau$.

Definition. Let K be a simplicial complex on the vertex set $[m]$. A K-localized persistence module M consists of:

1. For each missing face $\sigma \notin K$, a finitely generated R_{σ}-module M_{σ}.
2. For each $\sigma \subseteq \tau$ with $\sigma \notin K$ (and hence $\tau \notin K$), a map of R_{σ}-modules $\varphi_{\sigma, \tau}: M_{\sigma} \rightarrow M_{\tau}$ such that the induced map of R_{τ}-modules

$$
R_{\tau} \otimes_{R_{\sigma}} M_{\sigma} \stackrel{\cong}{\rightrightarrows} M_{\tau}
$$

is an isomorphism.
Let $\mathcal{D}(K)$ denote the category of K-localized persistence modules.

The role of K

Small $K \rightsquigarrow$ Localize a little.
Big $K \rightsquigarrow$ Localize a lot.
Example. Extreme cases:

1. $K=\{ \}=\mathrm{sk}_{-2} \Delta^{m-1} \rightsquigarrow$ Don't localize:

$$
\mathcal{D}(K) \cong R-\bmod
$$

2. $K=\partial \Delta^{m-1}=\operatorname{sk}_{m-2} \Delta^{m-1} \rightsquigarrow$ Invert all the t_{i} :

$$
\mathcal{D}(K)=R_{[m]}-\bmod \cong \operatorname{vect}_{\mathbb{k}} .
$$

3. Even more extreme! $K=\Delta^{m-1} \rightsquigarrow$ Localize everything into oblivion:

$$
\mathcal{D}(K)=0
$$

Example: $m=2$

Take $m=2$ and $K=\{\emptyset\}=\mathrm{sk}_{-1} \Delta^{1}$.
A K-localized persistence module M consists of modules

$$
\begin{aligned}
& M_{\{2\}} \xrightarrow{\varphi_{1}} M_{\{1,2\}} \\
& \vdots \prod_{\{2} \\
& \varphi_{2}
\end{aligned}
$$

where φ_{i} inverts t_{i}.

Example: $m=3$

Take $m=3$ and $K=\operatorname{sk}_{0} \Delta^{2}=\{\emptyset,\{1\},\{2\},\{3\}\}$.
A K-localized persistence module M consists of modules

where $\sigma_{i}:=[m] \backslash\{i\} \quad \rightsquigarrow$ "all but t_{i} have been inverted"

$$
\varphi_{i}:=\varphi_{[m] \backslash\{i\},[m]}: M_{[m] \backslash\{i\}} \rightarrow M_{[m]} \leadsto \text { "invert } t_{i} \text { ". }
$$

A Serre quotient

Consider the canonical functor

$$
L_{K}: R-\bmod \rightarrow \mathcal{D}(K)
$$

that keeps the relevant localizations of M :

$$
L_{K}(M)_{\sigma}=R_{\sigma} \otimes_{R} M
$$

Lemma. L_{K} is exact.
Proposition. L_{K} is a Serre quotient functor:

Outline

Persistence modules
 Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

A hopeless dream?

Denote $K_{m}:=\operatorname{sk}_{m-3} \Delta^{m-1} \rightsquigarrow$ Allow at most one non-inverted t_{i}. Proposition. For any smaller simplicial complex $K \subset K_{m}, \mathcal{D}(K)$ has wild representation type.

Proof. $\mathcal{D}(K)$ contains a copy of $\mathbb{k}[s, t]-\bmod$ as a retract.
In this section, focus on $\mathcal{D}\left(K_{m}\right)$.

Some indecomposables

$[a, b)_{1}$

$[a, b)_{2}$

$[\vec{a}, \infty)$

Some indecomposable objects in $\mathcal{D}\left(K_{2}\right)$.
Theorem (F.-Stanley). Every object in $\mathcal{D}\left(K_{2}\right)$ decomposes (in a unique way) as a direct sum of:

- "vertical strips" $[a, b)_{1}$
- "horizontal strips" $[a, b)_{2}$
- "quadrants" $[\vec{a}, \infty)$.

A torsion pair

Consider two full subcategories of $\mathcal{D}\left(K_{m}\right)$:

$$
\begin{aligned}
\mathcal{T} & =\left\{M \mid M_{\sigma_{i}} \text { is a torsion } R_{\sigma_{i}} \text {-module for all } i \in[m]\right\} \\
& =\left\{M \mid M_{[m]}=0\right\}
\end{aligned}
$$

$\mathcal{F}=\left\{M \mid M_{\sigma_{i}}\right.$ is a torsion-free $R_{\sigma_{i}}$-module for all $\left.i \in[m]\right\}$.

Proposition. 1. $(\mathcal{T}, \mathcal{F})$ is a torsion pair for $\mathcal{D}\left(K_{m}\right)$.
2. For all M in $\mathcal{D}\left(K_{m}\right)$, the natural short exact sequence

$$
0 \rightarrow T(M) \rightarrow M \rightarrow F(M) \rightarrow 0
$$

splits.
$\Longrightarrow M \cong T(M) \oplus F(M)$

Torsion objects

For $a<b<\infty$, consider the "interval $[a, b)$ in the $i^{\text {th }}$ direction":

$$
[a, b)_{i}=L_{K_{m}}\left(t_{i}^{a} R / t_{i}^{b} R\right)
$$

Lemma. $[a, b)_{i}$ is indecomposable in $\mathcal{D}\left(K_{m}\right)$.
Proposition. Each torsion object $M \in \mathcal{T}$ decomposes as a direct sum of objects of the form $[a, b)_{i}$.

Dimension count arguments

After inverting all variables, we are left with a vector space:

$$
\begin{aligned}
R_{[m]}-\bmod & \stackrel{\cong}{\rightrightarrows} \operatorname{vect}_{\mathrm{k}} \\
M & \mapsto M(\overrightarrow{0}) .
\end{aligned}
$$

Remark. The grading is crucial here. An ungraded $\mathbb{k}\left[t^{ \pm}\right]$-module corresponds to a \mathbb{k}-vector space V equipped with an automorphism $\mu_{t}: V \xrightarrow{\cong} V$.
Definition. 1. For $\sigma \subseteq[m]$ and an R_{σ}-module M, the rank of M is

$$
\operatorname{rank} M:=\operatorname{dim}_{\mathbb{k}}\left(R_{[m]} \otimes_{R_{\sigma}} M\right)
$$

2. The rank of an object M in $\mathcal{D}(K)$ is

$$
\begin{aligned}
\operatorname{rank} M & :=\operatorname{rank} M_{[m]} \\
& =\operatorname{rank} M_{\sigma} \quad \text { for any missing face } \sigma \notin K .
\end{aligned}
$$

Torsion-free objects

Notation. For a multidegree $\vec{a} \in \mathbb{N}^{m}$, consider the object of $\mathcal{D}\left(K_{m}\right)$

$$
[\vec{a}, \infty)=L_{K_{m}}\left(t^{\vec{a}} R\right),
$$

where $t^{\vec{a}}:=t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}$.
"quadrant module starting at $\vec{a} "$
Lemma. 1. $[\vec{a}, \infty)$ is torsion-free, of rank 1 , and indecomposable.
2. Any torsion-free object of rank 1 is of the form $[\vec{a}, \infty)$.

Proposition. Every torsion-free object M in $\mathcal{D}\left(K_{2}\right)$ decomposes as a direct sum of modules of the form $[\vec{a}, \infty)$.

Proof sketch...

Scanning process

Scan for an element x of lowest degree $\vec{d} \in \mathbb{N}^{2}$ in lexicographic order.

The quotient $M /\langle x\rangle$ is still torsion-free.

Battleship game

Scan, mod out, repeat $r-1$ times, where $r=\operatorname{rank} M$.
The composite epimorphism $M \rightarrow[\vec{a}, \infty)$ admits a section, splitting off a rank 1 summand from M.

In higher dimension $m \geq 3$

Warning: $[\vec{a}, \infty)$ is not projective in $\mathcal{D}\left(K_{2}\right)$.
Example. Consider the map in $\mathcal{D}\left(K_{2}\right)$

$$
[(1,0), \infty) \oplus[(0,1), \infty) \xrightarrow{f=[\text { inc inc }]}[(0,0), \infty) .
$$

The map f is an epimorphism but does not admit a section.
Proposition. For any $m \geq 3$, there exists a torsion-free object in $\mathcal{D}\left(K_{m}\right)$ that is of rank 2 and indecomposable.

How complicated can the torsion-free objects in $\mathcal{D}\left(K_{m}\right)$ get?
Answer: Pretty complicated!

Classification in higher dimension

Steffen Oppermann kindly provided the following argument.
Theorem (F.-Oppermann-Stanley). The category $\mathcal{D}\left(K_{3}\right)$ has wild representation type.

Proof idea. Reduce to the known fact that this quiver has wild representation type:

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Tensor ideals

Recall: Serre quotient

$$
\mathcal{D}(K) \cong R-\bmod / \operatorname{ker}\left(L_{K}\right)
$$

The subcategory $\operatorname{ker}\left(L_{K}\right) \subseteq R$-mod is a "tensor ideal": a Serre subcategory closed under tensoring with a \mathbb{Z}^{m}-graded R-module as long as the result is still \mathbb{N}^{m}-graded.
\rightsquigarrow Allow shifting the degrees down, but not below 0 .

Classification of tensor ideals

Recall: The support of an R-module M is the set of homogeneous prime ideals $P \subset R$ for which the localization $M_{P} \neq 0$.

For $P=\left(t_{i_{1}}, \cdots, t_{i_{k}}\right)$, we will record the complement $[m] \backslash\left\{i_{1}, \ldots, i_{k}\right\}$, the variables that may be inverted.

Proposition. [F.-(Don)Stanley] There is a bijection

Morever $\operatorname{ker}\left(L_{k}\right)=$ the "tensor ideal" generated by $\mathbb{k}[K]$.

Stanley-Reisner ring

Definition. The Stanley-Reisner ring or face ring of a simplicial complex K is the polynomial ring modulo the monomials corresponding to missing faces:

$$
\mathbb{k}[K]:=R /\left(t_{\sigma}: \sigma \notin K\right)
$$

Example. $K=\mathrm{sk}_{-1} \Delta^{m-1}=\{\emptyset\}$

$$
\begin{aligned}
& \Longrightarrow \mathbb{k}[K]=R /\left(t_{1}, \ldots, t_{m}\right)=\mathbb{k} \\
& \Longrightarrow \text { Supp } \mathbb{k}[K]=\left\{\left(t_{1}, \ldots, t_{m}\right)\right\} \\
& \Longrightarrow \text { complemented Supp } \mathbb{k}[K]=\{\emptyset\}=K .
\end{aligned}
$$

Simple objects

What about $\operatorname{ker}\left(L_{K_{m}}\right)$?
Proposition. $\mathcal{D}\left(K_{m}\right)$ is obtained from R-mod by quotienting out the Serre subcategory generated by the simple objects $m-1$ times successively.

Corollary. $\mathcal{D}\left(K_{2}\right)$ is the category of 2-parameter persistence modules up to finite diagrams:

$$
\mathcal{D}\left(K_{2}\right) \cong \mathbb{k}\left[t_{1}, t_{2}\right]-\bmod /\{\text { finite modules }\}
$$

\rightsquigarrow Large-scale behavior of the persistence module.

A link with toric geometry

Coherent sheaves on the projective line $\mathbb{P}_{\mathbb{k}}^{1}$:

$$
\operatorname{Coh}\left(\mathbb{P}^{1}\right) \cong \mathbb{Z} \text {-graded } \mathbb{k}[s, t] \text {-mod } /\{\text { finite modules }\}
$$

The \mathbb{Z}^{2}-graded variant of our category $\mathcal{D}\left(K_{2}\right)$ is the bigraded analogue of the right-hand side:

$$
\mathcal{D}\left(K_{2}\right)_{\mathbb{Z}^{2}} \cong \mathbb{Z}^{2} \text {-graded } \mathbb{k}[s, t]-\bmod /\{\text { finite modules }\}
$$

Colin Ingalls pointed out that this category is equivalent to torus-equivariant coherent sheaves on \mathbb{P}^{1}.

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Rank invariant

Definition. Let M be an R-module. The rank invariant of M is the function assigning to each pair of multidegrees $\vec{a}, \vec{b} \in \mathbb{N}^{m}$ with $\vec{a} \leq \vec{b}$ the integer

$$
\operatorname{rk}_{M}(\vec{a}, \vec{b})=\operatorname{rank}\left(M(\vec{a}) \xrightarrow{t^{\vec{b}-\vec{a}}} M(\vec{b})\right) .
$$

Introduced by Carlsson and Zomorodian (2009). Widely studied invariant of multiparameter persistence modules.

Rank invariant is not enough

The rank invariant of an R-module does not determine $L_{K}(M)$.
Example. In the case $m=2$:

$$
\begin{aligned}
M & =\left(t_{1}, t_{2}\right) \oplus t_{1} t_{2} R \\
N & =t_{1} R \oplus t_{2} R
\end{aligned}
$$

have the same rank invariant.
However, they have different K_{2}-localizations in $\mathcal{D}\left(K_{2}\right)$:

$$
\begin{aligned}
& L_{K_{2}}(M) \cong[(0,0), \infty) \oplus[(1,1), \infty) \\
& L_{K_{2}}(N) \cong[(1,0), \infty) \oplus[(0,1), \infty) .
\end{aligned}
$$

Same rank invariant

Rank invariant is sometimes enough

Proposition. For $K=K_{m}$, the rank invariant of an R-module M determines the $R_{\sigma_{i}}$-modules $M_{\sigma_{i}}$ and the \mathbb{k}-vector space $M_{[m]}$.

Proposition. If M lies in the image of the right adjoint (delocalization functor)

$$
\rho_{K_{2}}: \mathcal{D}\left(K_{2}\right) \rightarrow \mathbb{k}\left[t_{1}, t_{2}\right]-\bmod ,
$$

then the rank invariant of M determines the localization $L_{K_{2}}(M)$.
Question. Which refinement of the rank invariant determines the torsion-free part of $L_{K_{2}}(M)$ in $\mathcal{D}\left(K_{2}\right)$?

Thank you!

