Completed power operations for Morava E-theory

Tobias Barthel¹ Martin Frankland^{*2}

¹Harvard University

²University of Western Ontario

AMS Session on Homotopy Theory Joint Mathematics Meetings, Baltimore January 17, 2014

Power operations and completion

3 Main result

5 Height 1 case

Let *R* be a ring spectrum and *X* a spectrum. R^*X is an R^*R -module. R_*X is an R_*R -comodule. Let K be complex periodic K-theory and X a space. Exterior powers of vector bundles induce operations

$$\lambda^k \colon K^0(X) \to K^0(X)$$

making $\mathcal{K}^{0}(X)$ into a λ -ring. Obtain Adams operations $\psi^{k} \colon \mathcal{K}^{0}(X) \to \mathcal{K}^{0}(X)$. Operation $\theta^{p} \colon \mathcal{K}^{0}(X) \to \mathcal{K}^{0}(X)$ satisfying

$$\psi^p(x) = x^p + p\theta^p(x).$$

Every λ -ring has an underlying θ -ring.

For X a spectrum, the homology

 $H_*(\Omega^\infty X; \mathbb{F}_p)$

supports Dyer-Lashof operations.

More generally, if *A* is a commutative $H\mathbb{F}_p$ -algebra, then its homotopy π_*A is an algebra over the Dyer-Lashof algebra.

Free commutative algebra monad

 $\mathbb{P}\colon \mathrm{Mod}_R\to\mathrm{Mod}_R.$

Induces

 $\mathbb{P} \colon h \mathrm{Mod}_R \to h \mathrm{Mod}_R$

which is the free \mathbb{H}_{∞} *R*-algebra monad. $\mathbb{P}M = \bigvee_{n \ge 0} \mathbb{P}_n M$ where

$$\mathbb{P}_n M = (\overbrace{M \wedge_R \dots \wedge_R M}^{n \text{ times}})_{h \Sigma_n}$$

is the n^{th} extended power of M.

Question

What algebraic structure is present on the homotopy of commutative *R*-algebras?

$$\pi_*\colon \operatorname{Alg}_R \to \red{}$$
?

 $? = Mod_{R_*} + extra structure...$

FROM NOW ON

Fix a prime *p* and height $h \ge 1$. Take $R = E = E_h$, Morava *E*-theory at chromatic height *h*.

$$E_* = W \mathbb{F}_{p^h} \llbracket u_1, \ldots, u_{h-1} \rrbracket [u^{\pm}]$$

with $|u_i| = 0$ and |u| = 2, and W means (p-typical) Witt vectors. E_* is a complete Noetherian regular local (graded) ring with maximal ideal $\mathfrak{m} = (p, u_1, \dots, u_{h-1}) \subset E_*$ Write $L_K := L_{K(h)}$ for Bousfield localization with respect to Morava *K*-theory *K*(*h*).

Power operations for Morava *E*-theory have been studied (Ando-Hopkins-Strickland, Rezk, ...) and are understood in the K(h)-local category, because of the following.

Theorem (Rezk, using work of Strickland)

If $F \simeq \bigvee_{i=1}^{k} \Sigma^{d_i} E$ is a finitely generated free *E*-module, then so is $L_K \mathbb{P}_n F$.

[Rezk 2009] Functors $\mathbb{T}_n \colon \operatorname{Mod}_{E_*} \to \operatorname{Mod}_{E_*}$ defined as left Kan extension of the functor defined by

$$\mathbb{T}_n(\pi_*F) = \pi_*L_K\mathbb{P}_nF$$

for F finitely generated free. In particular:

$$\mathbb{T}_n(E_*) = E_*^{\wedge}(B\Sigma_{n+})$$

where $E_*^{\wedge}(X) := \pi_* L_{\mathcal{K}}(E \wedge X)$ is the **completed** *E***-homology** of *X*. Note: \mathbb{T}_n preserves filtered colimits and reflexive coequalizers.

Algebraic approximation functors (cont'd)

$$\mathbb{T} = \bigoplus_{n \ge 0} \mathbb{T}_n \colon \mathrm{Mod}_{E_*} \to \mathrm{Mod}_{E_*}$$

inherits a monad structure from that of \mathbb{P} , or rather $\hat{\mathbb{P}} := L_{\mathcal{K}}\mathbb{P}$. Here, we use the equivalence $L_{\mathcal{K}}\mathbb{P} \xrightarrow{\simeq} L_{\mathcal{K}}\mathbb{P}L_{\mathcal{K}}$:

If *A* is a K(h)-local commutative *E*-algebra, then π_*A is naturally a \mathbb{T} -algebra.

$$\pi_* L_K \colon \mathrm{Alg}_E \to \mathrm{Alg}_{\mathbb{T}}$$

m-adic completion

$$(-)^{\wedge}_{\mathfrak{m}} \colon \mathrm{Mod}_{E_*} \to \mathrm{Mod}_{E_*}$$

is neither left nor right exact. Let $L_s \colon Mod_{E_*} \to Mod_{E_*}$ be its s^{th} left derived functor. In particular:

$$M \xrightarrow{\eta} L_0 M \to M_{\mathfrak{m}}^{\wedge}$$

and *M* is *L*-complete if η is an isomorphism. Note that *E*_{*} is *L*-complete.

Let $\operatorname{Mod}_{E_*} \subset \operatorname{Mod}_{E_*}$ denote the full subcategory of *L*-complete modules, which is a reflective abelian subcategory, with reflector $L_0 \colon \operatorname{Mod}_{E_*} \to \widehat{\operatorname{Mod}}_{E_*}$.

Proposition

An *E*-module *M* is K(h)-local if and only if its homotopy π_*M is an *L*-complete E_* -module.

Therefore, $L_0\mathbb{T}$ better approximates the homotopy of K(h)-local commutative *E*-algebras.

Let $\widehat{\operatorname{Alg}}_E \subset \operatorname{Alg}_E$ denote the full subcategory of K(h)-local commutative *E*-algebras.

Question

Is $\hat{\mathbb{T}} = L_0 \mathbb{T}\iota \colon \widehat{\mathrm{Mod}}_{E_*} \to \widehat{\mathrm{Mod}}_{E_*}$ also a monad?

If \mathbb{T} preserves L_0 -equivalences, i.e., $L_0\mathbb{T} \xrightarrow{\simeq} L_0\mathbb{T}L_0$, then $\hat{\mathbb{T}}$ inherits a monad structure from \mathbb{T} .

Theorem (Barthel-F.)

The algebraic approximation functor $\mathbb{T} \colon Mod_{E_*} \to Mod_{E_*}$ preserves L_0 -equivalences, i.e., the natural map

$$L_0\mathbb{T}(M) \xrightarrow{L_0\mathbb{T}\eta} L_0\mathbb{T}L_0(M)$$

is an isomorphism for all E_{*}-module M.

Corollary

The completed algebraic approximation functor $\hat{\mathbb{T}} = L_0 \mathbb{T} \iota \colon \widehat{\mathrm{Mod}}_{E_*} \to \widehat{\mathrm{Mod}}_{E_*}$ inherits a monad structure from that of \mathbb{T} .

The homotopy of K(h)-local commutative *E*-algebras takes values in $\hat{\mathbb{T}}$ -algebras:

$$\pi_* \colon \widehat{\operatorname{Alg}}_E \to \widehat{\operatorname{Alg}}_{\mathbb{T}} \cong \operatorname{Alg}_{\widehat{\mathbb{T}}}.$$

Upshot: *L*-completeness is now built into the algebraic structure.

- Computations with power operations at higher height [Rezk].
- Compute $\pi_*(\hat{\mathbb{P}}M)$ for any *E*-module *M*. The comparison map

$$\hat{\mathbb{T}}(\pi_*M) \to \pi_*(\hat{\mathbb{P}}M)$$

is an isomorphism when M is flat.

 Compute topological André-Quillen homology TAQ(X) of a K(h)-local commutative E-algebra [Behrens-Rezk]. Consider height h = 1.

- $E = K_p^{\wedge}$ is *p*-complete *K*-theory.
- $E_* = \mathbb{Z}_{\rho}[u^{\pm}]$ with maximal ideal $\mathfrak{m} = (\rho) \subset E_*$.
- L₀ is "Ext-p-completion"

$$L_0M = \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/p^{\infty}, M)$$

or, equivalently, "analytic p-completion"

$$L_0 M = M[[x]]/(x-p)M[[x]].$$

By work of McClure and Bousfield:

Theorem At height h = 1, the monad $\mathbb{T} \colon \operatorname{Mod}_{E_*} \to \operatorname{Mod}_{E_*}$ is the free $\mathbb{Z}/2$ -graded θ -ring over \mathbb{Z}_p .

The main result (that \mathbb{T} preserves L_0 -equivalences) can be proved more explicitly at height 1.

- Alternate proof based on formulas and the combinatorics of λ -rings.
- Alternate proof based on the representation theory of symmetric groups.

Thank you!