Multiparameter persistence modules in the large scale

Martin Frankland University of Regina

Joint with Don Stanley

Topology and Geometry Seminar University of Haifa December 20, 2022

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Topological data analysis pipeline

Example. Let X be a finite metric space — "data set". The **Vietoris–Rips complex** $VR(X)_{\epsilon}$ is the simplicial complex on the vertex set X with

 $\{x_0, \ldots, x_n\}$ is an *n*-simplex $\iff d(x_i, x_j) \le \epsilon$ for all i, j.

Filtered simplicial complex

Image source: Robert Ghrist, Barcodes: The persistent topology of data.

As ϵ varies, $VR(X)_{\epsilon}$ forms a filtered simplicial complex with one parameter $\epsilon \geq 0$, i.e., a functor

$$VR(X): \mathbb{R}_+ \to \operatorname{SimpCpx}.$$

If instead we let ϵ increase by a fixed small step, we obtain one discrete parameter $\mathbb{N} \to \text{SimpCpx.}$

Filtered space

Example. Let X be a smooth manifold and $f: X \to \mathbb{R}$ a Morse function. Filtration by sublevel sets:

$$X_s = \{x \in X \mid f(x) \le s\} = f^{-1}((-\infty, s]).$$

As s varies, X_s forms a filtered space with one parameter $s \in \mathbb{R},$ i.e., a functor

$$X_{\bullet} \colon \mathbb{R} \to \text{Top.}$$

Given another Morse function $g: X \to \mathbb{R}$, consider the joint sublevel sets:

$$X_{s,t} = \{x \in X \mid f(x) \le s, g(x) \le t\}.$$

Get a filtered space with two parameters $s, t \in \mathbb{R}$, i.e., a functor $X_{\bullet,\bullet} : \mathbb{R}^2 \to \text{Top.}$

In applications, often need *multiple* parameters.

In this project, we focus on *discrete* parameters.

Persistence modules

Fix a ground field $\Bbbk.$

Definition. For $m \ge 1$, an *m*-parameter persistence module is a diagram

$$\mathbb{N}^m \to \operatorname{Vect}_{\mathbb{k}}$$
.

 \cong graded module over the graded polynomial algebra

$$R \coloneqq \Bbbk[t_1, \ldots, t_m],$$

which is \mathbb{N}^m -graded with multigrading

$$|t_i| = \vec{e_i} = (0, \dots, \overbrace{1}^{i}, \dots, 0).$$

Write $M(\vec{d})$ for the k-vector space in multidegree $\vec{d} \in \mathbb{N}^m$.

Goal / Dream

Work with *finitely generated R*-modules:

R-mod := R-Mod^{fin.gen.} $\subset R$ -Mod.

Goal Classify the indecomposable objects in R-mod.

One-parameter case

For m = 1, finitely generated $\Bbbk[t]$ -modules decompose into interval modules

$$\begin{aligned} [a,b) &\coloneqq t^a \mathbb{k}[t]/t^b \mathbb{k}[t] \\ &= \operatorname{coker} \left(t^a \mathbb{k}[t] \xrightarrow{t^{b-a}} t^a \mathbb{k}[t] \right). \end{aligned}$$

Example.

$$M = t^4 \mathbb{k}[t] \oplus t^2 \mathbb{k}[t] / t^7 \mathbb{k}[t]$$
$$= [4, \infty) \oplus [2, 7).$$

 \rightsquigarrow **Barcode**: multiset of intervals. List of intervals appearing in the decomposition (with multiplicity).

Multiparameter case

Not available for $m \ge 2$, because $\mathbb{k}[t_1, t_2]$ has wild representation type.

How to deal with that?

One approach: Extract invariants that are both computable and significant. Rank invariant and various refinements. Many authors...

Another approach: Focus on certain families of modules admitting a nice decomposition, such as rectangle-decomposable modules.

Approach: localize

Our approach: We localize R-mod until the resulting category admits a classification of indecomposables, or at least a partial classification.

Related work: [Harrington, Otter, Schenck, Tillmann] and [Bauer, Botnan, Oppermann, Steen].

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Inverting some variables

Fact. The homogeneous prime ideals of R are those of the form $(t_{i_1}, \dots, t_{i_k})$.

The various localizations of a module M fit together.

Example. For M a module over $R = \Bbbk[t_1, t_2]$:

$$\begin{aligned} & \mathbb{k}[t_1, t_2^{\pm}] \otimes_R M \xrightarrow{\text{invert } t_1} \mathbb{k}[t_1^{\pm}, t_2^{\pm}] \otimes_R M \\ & \text{invert } t_2 \\ & M \xrightarrow{\text{invert } t_1} \mathbb{k}[t_1^{\pm}, t_2] \otimes_R M. \end{aligned}$$

Inverting some variables (cont'd)

Notation. 1. $[m] \coloneqq \{1, 2, \dots, m\}$

2. For a subset $\sigma \subseteq [m]$, denote the localization of rings

$$R_{\sigma} \coloneqq R[t_i^{-1} \mid i \in \sigma],$$

which is $\sigma^{-1}\mathbb{N}^m$ -graded.

3. $\varphi_i \coloneqq$ the localization map "invert t_i ".

Example. With this notation, the previous square becomes:

$$R_{\{2\}} \otimes_R M \xrightarrow{\varphi_1} R_{\{1,2\}} \otimes_R M$$

$$\varphi_2 \uparrow \qquad \uparrow \varphi_2$$

$$M \xrightarrow{\varphi_1} R_{\{1\}} \otimes_R M.$$

K-localized persistence modules

Idea: Forget the module M but keep some of its localizations.

If we keep a localization $R_{\sigma} \otimes_R M$, we should keep all further localizations $R_{\tau} \otimes_R M$ for $\sigma \subseteq \tau$.

Definition. Let K be a simplicial complex on the vertex set [m]. A **K-localized persistence module** M consists of:

- 1. For each missing face $\sigma \notin K$, a finitely generated R_{σ} -module M_{σ} .
- 2. For each $\sigma \subseteq \tau$ with $\sigma \notin K$ (and hence $\tau \notin K$), a map of R_{σ} -modules $\varphi_{\sigma,\tau} \colon M_{\sigma} \to M_{\tau}$ such that the induced map of R_{τ} -modules

$$R_{\tau} \otimes_{R_{\sigma}} M_{\sigma} \xrightarrow{\cong} M_{\tau}$$

is an isomorphism.

Let $\mathcal{D}(K)$ denote the category of K-localized persistence modules.

The role of K

Small $K \rightsquigarrow$ Localize a little.

Big $K \rightsquigarrow$ Localize a lot.

Example. Extreme cases:

1.
$$K = \{\} = \operatorname{sk}_{-2} \Delta^{m-1} \rightsquigarrow \text{Don't localize:}$$

 $\mathcal{D}(K) \cong R\text{-mod.}$

2.
$$K = \partial \Delta^{m-1} = \operatorname{sk}_{m-2} \Delta^{m-1} \rightsquigarrow \text{ Invert all the } t_i:$$

$$\mathcal{D}(K) = R_{[m]} \operatorname{-mod} \cong \operatorname{vect}_{\Bbbk}.$$

3. Even more extreme! $K = \Delta^{m-1} \rightsquigarrow$ Localize everything into oblivion:

$$\mathcal{D}(K) = 0.$$

Example: m = 2

Take m = 2 and $K = \{\emptyset\} = \operatorname{sk}_{-1} \Delta^1$.

A K-localized persistence module M consists of modules

where φ_i inverts t_i .

Example: m = 3

Take m = 3 and $K = \operatorname{sk}_0 \Delta^2 = \{\emptyset, \{1\}, \{2\}, \{3\}\}.$

A K-localized persistence module M consists of modules

where $\sigma_i := [m] \setminus \{i\} \quad \rightsquigarrow$ "all but t_i have been inverted" $\varphi_i := \varphi_{[m] \setminus \{i\}, [m]} \colon M_{[m] \setminus \{i\}} \to M_{[m]} \quad \rightsquigarrow$ "invert t_i ".

A Serre quotient

Consider the canonical functor

 $L_K \colon R\operatorname{-mod} \to \mathcal{D}(K)$

that keeps the relevant localizations of M:

$$L_K(M)_{\sigma} = R_{\sigma} \otimes_R M.$$

Lemma. L_K is exact.

Proposition. L_K is a Serre quotient functor:

$$\begin{array}{c|c} R\operatorname{-mod} & \xrightarrow{L_K} \mathcal{D}(K). \\ & q \\ & & \swarrow \\ R\operatorname{-mod}/ \ker(L_K) \end{array}$$

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

A hopeless dream?

Denote $K_m := \operatorname{sk}_{m-3} \Delta^{m-1} \rightsquigarrow$ Allow at most one non-inverted t_i .

Proposition. For any smaller simplicial complex $K \subset K_m$, $\mathcal{D}(K)$ has wild representation type.

Proof. $\mathcal{D}(K)$ contains a copy of $\Bbbk[s, t]$ -mod as a retract.

In this section, focus on $\mathcal{D}(K_m)$.

Some indecomposables

Some indecomposable objects in $\mathcal{D}(K_2)$.

Theorem (F.–Stanley). Every object in $\mathcal{D}(K_2)$ decomposes (in a unique way) as a direct sum of:

- "vertical strips" $[a, b)_1$
- "horizontal strips" $[a, b)_2$
- "quadrants" $[\vec{a}, \infty)$.

A torsion pair

Consider two full subcategories of $\mathcal{D}(K_m)$:

$$\mathcal{T} = \{ M \mid M_{\sigma_i} \text{ is a torsion } R_{\sigma_i} \text{-module for all } i \in [m] \}$$
$$= \{ M \mid M_{[m]} = 0 \}$$

 $\mathcal{F} = \{ M \mid M_{\sigma_i} \text{ is a torsion-free } R_{\sigma_i} \text{-module for all } i \in [m] \}.$

Proposition. 1. $(\mathcal{T}, \mathcal{F})$ is a torsion pair for $\mathcal{D}(K_m)$. 2. For all M in $\mathcal{D}(K_m)$, the natural short exact sequence

$$0 \to T(M) \to M \to F(M) \to 0$$

splits.

 $\implies M \cong T(M) \oplus F(M)$

Torsion objects

For $a < b < \infty$, consider the "interval [a, b) in the *i*th direction":

$$[a,b)_i = L_{K_m} \left(t_i^a R / t_i^b R \right).$$

Lemma. $[a,b)_i$ is indecomposable in $\mathcal{D}(K_m)$.

Proposition. Each torsion object $M \in \mathcal{T}$ decomposes as a direct sum of objects of the form $[a, b)_i$.

Dimension count arguments

After inverting all variables, we are left with a vector space:

$$\begin{aligned} R_{[m]}\operatorname{-mod} &\xrightarrow{\cong} \operatorname{vect}_{\Bbbk} \\ M &\mapsto M(\vec{0}). \end{aligned}$$

Remark. The grading is crucial here. An *ungraded* $\Bbbk[t^{\pm}]$ -module corresponds to a \Bbbk -vector space V equipped with an automorphism $\mu_t \colon V \xrightarrow{\cong} V.$

Definition. 1. For $\sigma \subseteq [m]$ and an R_{σ} -module M, the rank of M is

$$\operatorname{rank} M \coloneqq \dim_{\mathbb{K}} \left(R_{[m]} \otimes_{R_{\sigma}} M \right).$$

2. The **rank** of an object M in $\mathcal{D}(K)$ is rank $M \coloneqq \operatorname{rank} M_{[m]}$ = rank M_{σ} for any missing face $\sigma \notin K$.

Torsion-free objects

Notation. For a multidegree $\vec{a} \in \mathbb{N}^m$, consider the object of $\mathcal{D}(K_m)$

$$(\vec{a},\infty) = L_{K_m}(t^{\vec{a}}R),$$

where $t^{\vec{a}} \coloneqq t_1^{a_1} \cdots t_m^{a_m}$.

"quadrant module starting at \vec{a} "

Lemma. 1. [*a*, ∞) is torsion-free, of rank 1, and indecomposable.
2. Any torsion-free object of rank 1 is of the form [*a*, ∞).

Proposition. Every torsion-free object M in $\mathcal{D}(K_2)$ decomposes as a direct sum of modules of the form $[\vec{a}, \infty)$.

Proof sketch...

Scanning process

Scan for an element x of lowest degree $\vec{d} \in \mathbb{N}^2$ in lexicographic order.

The quotient $M/\left\langle x\right\rangle$ is still torsion-free.

Battleship game

Scan, mod out, repeat r - 1 times, where $r = \operatorname{rank} M$.

The composite epimorphism $M \twoheadrightarrow [\vec{a}, \infty)$ admits a section, splitting off a rank 1 summand from M.

In higher dimension $m \ge 3$

Warning: $[\vec{a}, \infty)$ is **not** projective in $\mathcal{D}(K_2)$.

Example. Consider the map in $\mathcal{D}(K_2)$

$$[(1,0),\infty) \oplus [(0,1),\infty) \xrightarrow{f=[\operatorname{inc} \operatorname{inc}]} [(0,0),\infty).$$

The map f is an epimorphism but does not admit a section.

Proposition. For any $m \geq 3$, there exists a torsion-free object in $\mathcal{D}(K_m)$ that is of rank 2 and indecomposable.

How complicated can the torsion-free objects in $\mathcal{D}(K_m)$ get? Answer: Pretty complicated!

Classification in higher dimension

Steffen Oppermann kindly provided the following argument.

Theorem (F.–Oppermann–Stanley). The category $\mathcal{D}(K_3)$ has wild representation type.

Proof idea. Reduce to the known fact that this quiver has wild representation type:

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Tensor ideals

Recall: Serre quotient

 $\mathcal{D}(K) \cong R\text{-mod}/\ker(L_K).$

The subcategory $\ker(L_K) \subseteq R$ -mod is a "tensor ideal": a Serre subcategory closed under tensoring with a \mathbb{Z}^m -graded R-module as long as the result is still \mathbb{N}^m -graded.

 \rightsquigarrow Allow shifting the degrees *down*, but not below 0.

Classification of tensor ideals

Recall: The **support** of an *R*-module *M* is the set of homogeneous prime ideals $P \subset R$ for which the localization $M_P \neq 0$.

For $P = (t_{i_1}, \dots, t_{i_k})$, we will record the *complement* $[m] \setminus \{i_1, \dots, i_k\}$, the variables that *may* be inverted.

Proposition. [F.–(Don)Stanley] There is a bijection

Morever $\ker(L_k)$ = the "tensor ideal" generated by $\Bbbk[K]$.

Stanley–Reisner ring

Definition. The **Stanley–Reisner ring** or *face ring* of a simplicial complex K is the polynomial ring modulo the monomials corresponding to missing faces:

$$\Bbbk[K] \coloneqq R/(t_{\sigma} \colon \sigma \notin K).$$

Example. $K = \operatorname{sk}_{-1} \Delta^{m-1} = \{\emptyset\}$

$$\Longrightarrow \mathbb{k}[K] = R/(t_1, \dots, t_m) = \mathbb{k}$$
$$\Longrightarrow \operatorname{Supp} \mathbb{k}[K] = \{(t_1, \dots, t_m)\}$$
$$\Longrightarrow \operatorname{complemented} \operatorname{Supp} \mathbb{k}[K] = \{\emptyset\} = K.$$

Simple objects

What about $\ker(L_{K_m})$?

Proposition. $\mathcal{D}(K_m)$ is obtained from *R*-mod by quotienting out the Serre subcategory generated by the simple objects m-1 times successively.

Corollary. $\mathcal{D}(K_2)$ is the category of 2-parameter persistence modules up to finite diagrams:

 $\mathcal{D}(K_2) \cong \mathbb{k}[t_1, t_2] \text{-mod}/\{\text{finite modules}\}.$

 \rightsquigarrow Large-scale behavior of the persistence module.

A link with toric geometry

Coherent sheaves on the projective line \mathbb{P}^1_{\Bbbk} :

 $\operatorname{Coh}(\mathbb{P}^1) \cong \mathbb{Z}$ -graded $\Bbbk[s, t]$ -mod/{finite modules}.

The \mathbb{Z}^2 -graded variant of our category $\mathcal{D}(K_2)$ is the bigraded analogue of the right-hand side:

$$\mathcal{D}(K_2)_{\mathbb{Z}^2} \cong \mathbb{Z}^2$$
-graded $\Bbbk[s, t]$ -mod/{finite modules}.

Colin Ingalls pointed out that this category is equivalent to *torus-equivariant* coherent sheaves on \mathbb{P}^1 .

Outline

Persistence modules

Localized persistence modules

Classification of indecomposables

Which subcategories are we quotienting out?

Rank invariant

Rank invariant

Definition. Let M be an R-module. The rank invariant of M is the function assigning to each pair of multidegrees $\vec{a}, \vec{b} \in \mathbb{N}^m$ with $\vec{a} \leq \vec{b}$ the integer

$$\operatorname{rk}_M(\vec{a}, \vec{b}) = \operatorname{rank}\left(M(\vec{a}) \xrightarrow{t^{\vec{b}-\vec{a}}} M(\vec{b})\right).$$

Introduced by Carlsson and Zomorodian (2009). Widely studied invariant of multiparameter persistence modules.

Rank invariant is not enough

The rank invariant of an *R*-module does not determine $L_K(M)$.

Example. In the case m = 2:

$$M = (t_1, t_2) \oplus t_1 t_2 R$$
$$N = t_1 R \oplus t_2 R$$

have the same rank invariant.

However, they have different K_2 -localizations in $\mathcal{D}(K_2)$:

$$L_{K_2}(M) \cong [(0,0),\infty) \oplus [(1,1),\infty)$$
$$L_{K_2}(N) \cong [(1,0),\infty) \oplus [(0,1),\infty).$$

Same rank invariant

Rank invariant is sometimes enough

Proposition. For $K = K_m$, the rank invariant of an *R*-module *M* determines the R_{σ_i} -modules M_{σ_i} and the k-vector space $M_{[m]}$.

Proposition. If M lies in the image of the right adjoint (delocalization functor)

$$\rho_{K_2} \colon \mathcal{D}(K_2) \to \Bbbk[t_1, t_2] \text{-mod},$$

then the rank invariant of M determines the localization $L_{K_2}(M)$.

Question. Which refinement of the rank invariant determines the torsion-free part of $L_{K_2}(M)$ in $\mathcal{D}(K_2)$?

Thank you!