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Topological data analysis pipeline

filtered space / simplicial complex

Hr(−;k)
��

filtered k-vector space

Example. Let X be a finite metric space — “data set”. The
Vietoris–Rips complex V R(X)ϵ is the simplicial complex on the
vertex set X with

{x0, . . . , xn} is an n-simplex ⇐⇒ d(xi, xj) ≤ ϵ for all i, j.
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Filtered simplicial complex

Image source: Robert Ghrist, Barcodes: The persistent topology of data.

As ϵ varies, V R(X)ϵ forms a filtered simplicial complex with one
parameter ϵ ≥ 0, i.e., a functor

V R(X) : R+ → SimpCpx.

If instead we let ϵ increase by a fixed small step, we obtain one
discrete parameter N → SimpCpx.
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Filtered space

Example. Let X be a smooth manifold and f : X → R a Morse
function. Filtration by sublevel sets:

Xs = {x ∈ X | f(x) ≤ s} = f−1((−∞, s]).

As s varies, Xs forms a filtered space with one parameter s ∈ R,
i.e., a functor

X• : R → Top.

Given another Morse function g : X → R, consider the joint
sublevel sets:

Xs,t = {x ∈ X | f(x) ≤ s, g(x) ≤ t}.

Get a filtered space with two parameters s, t ∈ R, i.e., a functor
X•,• : R2 → Top.

In applications, often need multiple parameters.

In this project, we focus on discrete parameters.
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Persistence modules

Fix a ground field k.

Definition. For m ≥ 1, an m-parameter persistence module
is a diagram

Nm → Vectk.

∼= graded module over the graded polynomial algebra

R := k[t1, . . . , tm],

which is Nm-graded with multigrading

|ti| = e⃗i = (0, . . . ,

i︷︸︸︷
1 , . . . , 0).

Write M(d⃗) for the k-vector space in multidegree d⃗ ∈ Nm.
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Goal / Dream

Work with finitely generated R-modules:

R-mod := R-Modfin.gen. ⊂ R-Mod.

Goal
Classify the indecomposable objects in R-mod.
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One-parameter case

For m = 1, finitely generated k[t]-modules decompose into interval
modules

[a, b) := tak[t]/tbk[t]

= coker

(
tak[t] tb−a

−−−→ tak[t]
)
.

Example.

M = t4k[t]⊕ t2k[t]/t7k[t]
= [4,∞)⊕ [2, 7).

⇝ Barcode: multiset of intervals. List of intervals appearing in
the decomposition (with multiplicity).
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Multiparameter case

Not available for m ≥ 2, because k[t1, t2] has wild representation
type.

How to deal with that?

One approach: Extract invariants that are both computable and
significant. Rank invariant and various refinements. Many
authors...

Another approach: Focus on certain families of modules admitting
a nice decomposition, such as rectangle-decomposable modules.
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Approach: localize

Our approach: We localize R-mod until the resulting category
admits a classification of indecomposables, or at least a partial
classification.

Related work: [Harrington, Otter, Schenck, Tillmann] and [Bauer,
Botnan, Oppermann, Steen].
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Inverting some variables

Fact. The homogeneous prime ideals of R are those of the form
(ti1 , · · · , tik).

The various localizations of a module M fit together.

Example. For M a module over R = k[t1, t2]:

k[t1, t±2 ]⊗R M
invert t1 // k[t±1 , t

±
2 ]⊗R M

M

invert t2

OO

invert t1 // k[t±1 , t2]⊗R M.

invert t2

OO
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Inverting some variables (cont’d)

Notation. 1. [m] := {1, 2, . . . ,m}
2. For a subset σ ⊆ [m], denote the localization of rings

Rσ := R[t−1
i | i ∈ σ],

which is σ−1Nm-graded.

3. φi := the localization map “invert ti”.

Example. With this notation, the previous square becomes:

R{2} ⊗R M
φ1 // R{1,2} ⊗R M

M

φ2

OO

φ1 // R{1} ⊗R M.

φ2

OO
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K-localized persistence modules

Idea: Forget the module M but keep some of its localizations.

If we keep a localization Rσ ⊗R M , we should keep all further
localizations Rτ ⊗R M for σ ⊆ τ .

Definition. Let K be a simplicial complex on the vertex set [m].
A K-localized persistence module M consists of:

1. For each missing face σ /∈ K, a finitely generated Rσ-module
Mσ.

2. For each σ ⊆ τ with σ /∈ K (and hence τ /∈ K), a map of
Rσ-modules φσ,τ : Mσ → Mτ such that the induced map of
Rτ -modules

Rτ ⊗Rσ Mσ
∼=−→ Mτ

is an isomorphism.

Let D(K) denote the category of K-localized persistence modules.
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The role of K

Small K ⇝ Localize a little.

Big K ⇝ Localize a lot.

Example. Extreme cases:

1. K = {} = sk−2∆
m−1 ⇝ Don’t localize:

D(K) ∼= R-mod.

2. K = ∂∆m−1 = skm−2∆
m−1 ⇝ Invert all the ti:

D(K) = R[m]-mod ∼= vectk.

3. Even more extreme! K = ∆m−1 ⇝ Localize everything into
oblivion:

D(K) = 0.
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Example: m = 2

Take m = 2 and K = {∅} = sk−1∆
1.

A K-localized persistence module M consists of modules

M{2}
φ1 //M{1,2}

M{1}

φ2

OO

where φi inverts ti.
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Example: m = 3

Take m = 3 and K = sk0∆
2 = {∅, {1}, {2}, {3}}.

A K-localized persistence module M consists of modules

Mσ1

φ1 //M[3]

Mσ2

φ2

<<

Mσ3

φ3

OO

where σi := [m] \ {i} ⇝ “all but ti have been inverted”

φi := φ[m]\{i},[m] : M[m]\{i} → M[m] ⇝ “invert ti”.
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A Serre quotient

Consider the canonical functor

LK : R-mod → D(K)

that keeps the relevant localizations of M :

LK(M)σ = Rσ ⊗R M.

Lemma. LK is exact.

Proposition. LK is a Serre quotient functor:

R-mod

q

��

LK // D(K).

R-mod/ ker(LK)

∼=

77
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A hopeless dream?

Denote Km := skm−3∆
m−1 ⇝ Allow at most one non-inverted ti.

Proposition. For any smaller simplicial complex K ⊂ Km, D(K)
has wild representation type.

Proof. D(K) contains a copy of k[s, t]-mod as a retract.

In this section, focus on D(Km).
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Some indecomposables

a b

[a, b)1

a

b

[a, b)2

a1

a2

[⃗a,∞)

Some indecomposable objects in D(K2).

Theorem (F.–Stanley). Every object in D(K2) decomposes (in a
unique way) as a direct sum of:

“vertical strips” [a, b)1
“horizontal strips” [a, b)2
“quadrants” [⃗a,∞).
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A torsion pair

Consider two full subcategories of D(Km):

T = {M | Mσi is a torsion Rσi-module for all i ∈ [m]}
= {M | M[m] = 0}

F = {M | Mσi is a torsion-free Rσi-module for all i ∈ [m]}.

Proposition. 1. (T ,F) is a torsion pair for D(Km).

2. For all M in D(Km), the natural short exact sequence

0 → T (M) → M → F (M) → 0

splits.

=⇒ M ∼= T (M)⊕ F (M)
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Torsion objects

For a < b < ∞, consider the “interval [a, b) in the ith direction”:

[a, b)i = LKm

(
taiR/tbiR

)
.

Lemma. [a, b)i is indecomposable in D(Km).

Proposition. Each torsion object M ∈ T decomposes as a direct
sum of objects of the form [a, b)i.
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Dimension count arguments

After inverting all variables, we are left with a vector space:

R[m]-mod
∼=−→ vectk

M 7→ M (⃗0).

Remark. The grading is crucial here. An ungraded k[t±]-module
corresponds to a k-vector space V equipped with an automorphism

µt : V
∼=−→ V .

Definition. 1. For σ ⊆ [m] and an Rσ-module M , the rank of
M is

rankM := dimk
(
R[m] ⊗Rσ M

)
.

2. The rank of an object M in D(K) is

rankM := rankM[m]

= rankMσ for any missing face σ /∈ K.
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Torsion-free objects

Notation. For a multidegree a⃗ ∈ Nm, consider the object of
D(Km)

[⃗a,∞) = LKm(t
a⃗R),

where ta⃗ := ta11 · · · tamm .

“quadrant module starting at a⃗”

Lemma. 1. [⃗a,∞) is torsion-free, of rank 1, and indecomposable.

2. Any torsion-free object of rank 1 is of the form [⃗a,∞).

Proposition. Every torsion-free object M in D(K2) decomposes
as a direct sum of modules of the form [⃗a,∞).

Proof sketch...
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Scanning process

d1
M = M (0)

d2

M (1)

d1

d2

M (2)

Scan for an element x of lowest degree d⃗ ∈ N2 in lexicographic
order.

The quotient M/ ⟨x⟩ is still torsion-free.
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Battleship game

d11

d12 ×

M = M0
d21

d22 ×

M1

a1

a2

M2 ∼= [⃗a,∞)

Scan, mod out, repeat r − 1 times, where r = rankM .

The composite epimorphism M ↠ [⃗a,∞) admits a section, splitting
off a rank 1 summand from M .
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In higher dimension m ≥ 3

Warning: [⃗a,∞) is not projective in D(K2).

Example. Consider the map in D(K2)

[(1, 0),∞)⊕ [(0, 1),∞)
f=[ inc inc ]// [(0, 0),∞).

̸∃ s

hh

The map f is an epimorphism but does not admit a section.

Proposition. For any m ≥ 3, there exists a torsion-free object in
D(Km) that is of rank 2 and indecomposable.

How complicated can the torsion-free objects in D(Km) get?

Answer: Pretty complicated!
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Classification in higher dimension

Steffen Oppermann kindly provided the following argument.

Theorem (F.–Oppermann–Stanley). The category D(K3) has wild
representation type.

Proof idea. Reduce to the known fact that this quiver has wild
representation type:

•

��
•

��
•

��
• // • // • // • •oo •oo •oo
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Tensor ideals

Recall: Serre quotient

D(K) ∼= R-mod/ ker(LK).

The subcategory ker(LK) ⊆ R-mod is a “tensor ideal”: a Serre
subcategory closed under tensoring with a Zm-graded R-module as
long as the result is still Nm-graded.

⇝ Allow shifting the degrees down, but not below 0.
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Classification of tensor ideals

Recall: The support of an R-module M is the set of homogeneous
prime ideals P ⊂ R for which the localization MP ̸= 0.

For P = (ti1 , · · · , tik), we will record the complement
[m] \ {i1, . . . , ik}, the variables that may be inverted.

Proposition. [F.–(Don)Stanley] There is a bijection

“tensor ideals” of R-mod

complemented support

))
simplicial complexes on [m].

(Richard)Stanley–Reisner

ii

Morever ker(Lk) = the “tensor ideal” generated by k[K].
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Stanley–Reisner ring

Definition. The Stanley–Reisner ring or face ring of a
simplicial complex K is the polynomial ring modulo the monomials
corresponding to missing faces:

k[K] := R/(tσ : σ /∈ K).

Example. K = sk−1∆
m−1 = {∅}

=⇒ k[K] = R/(t1, . . . , tm) = k
=⇒ Suppk[K] = {(t1, . . . , tm)}
=⇒ complemented Supp k[K] = {∅} = K.
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Simple objects

What about ker(LKm)?

Proposition. D(Km) is obtained from R-mod by quotienting out
the Serre subcategory generated by the simple objects m− 1 times
successively.

Corollary. D(K2) is the category of 2-parameter persistence
modules up to finite diagrams:

D(K2) ∼= k[t1, t2]-mod/{finite modules}.

⇝ Large-scale behavior of the persistence module.
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A link with toric geometry

Coherent sheaves on the projective line P1
k:

Coh(P1) ∼= Z-graded k[s, t]-mod/{finite modules}.

The Z2-graded variant of our category D(K2) is the bigraded
analogue of the right-hand side:

D(K2)Z2
∼= Z2-graded k[s, t]-mod/{finite modules}.

Colin Ingalls pointed out that this category is equivalent to
torus-equivariant coherent sheaves on P1.
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Rank invariant

Definition. Let M be an R-module. The rank invariant of M is
the function assigning to each pair of multidegrees a⃗, b⃗ ∈ Nm with
a⃗ ≤ b⃗ the integer

rkM (⃗a, b⃗) = rank

(
M (⃗a)

tb⃗−a⃗

−−−→ M (⃗b)

)
.

Introduced by Carlsson and Zomorodian (2009). Widely studied
invariant of multiparameter persistence modules.
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Rank invariant is not enough

The rank invariant of an R-module does not determine LK(M).

Example. In the case m = 2:

M = (t1, t2)⊕ t1t2R

N = t1R⊕ t2R

have the same rank invariant.

However, they have different K2-localizations in D(K2):

LK2(M) ∼= [(0, 0),∞)⊕ [(1, 1),∞)

LK2(N) ∼= [(1, 0),∞)⊕ [(0, 1),∞).
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Same rank invariant

M N
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Rank invariant is sometimes enough

Proposition. For K = Km, the rank invariant of an R-module M
determines the Rσi-modules Mσi and the k-vector space M[m].

Proposition. If M lies in the image of the right adjoint
(delocalization functor)

ρK2 : D(K2) → k[t1, t2]-mod,

then the rank invariant of M determines the localization LK2(M).

Question. Which refinement of the rank invariant determines the
torsion-free part of LK2(M) in D(K2)?
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Thank you!
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