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Literature

Literature: Some overlap with the PhD thesis of Demitri Plessas
(U Montana, 2011). Hat tip to Laura Scull.

Some pieces scattered in various papers.
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Graphs

Definition. A graph G = (V,E) consists of a set of vertices V
and a set of edges E connecting certain vertices.

Wait... What do you mean?

Are the edges directed? ⇝ directed

Are parallel edges allowed? ⇝ multigraph

Are loops allowed?
⇝ loopless: loops not allowed
⇝ reflexive: distinguished loop at each vertex
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Categories of graphs
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Directed multigraphs as presheaves

Directed multigraphs are diagrams of sets of shape

E
s //

t
// V.

That is, presheaves on

[0]
d1 //

d0
// [1] also known as ∆inj,≤1

where (d1)∗ = d1 = s and (d0)∗ = d0 = t.

DiMulti ∼= Fun(∆op
inj,≤1, Set)

= 1-truncated semisimplicial sets.
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Allow parallel edges?

Having no parallel edges means satisfying the implication

(s(e1) = s(e2)) ∧ (t(e1) = t(e2)) =⇒ e1 = e2

for all edges e1, e2 ∈ E.

Definition. The flattening of a directed multigraph G = (V,E) is
the directed graph Fl(G) with the same vertex set V and set of arcs

E(Fl(G)) = im(E
(s,t)−−→ V × V ).

Concretely, Fl(G) has an arc from x to y if there was some arc e
from x to y in G.

Fl
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Allow parallel edges? (cont’d)

Proposition. 1. The flattening functor Fl : DiMulti → DiGraph
is left adjoint to the inclusion functor ι : DiGraph → DiMulti.

2. The inclusion functor ι : DiGraph → DiMulti admits no right
adjoint.

Undirected analogue:

Proposition. 1. The flattening functor Fl : Multi → Graph is
left adjoint to the inclusion functor ι : Graph → Multi.

2. The inclusion functor ι : Graph → Multi admits no right
adjoint.

DiMulti

DiGraph

ιF l

×
Multi

Graph

ιF l

×
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Graphs as symmetric directed graphs

Definition. A directed graph G = (V,E) is symmetric if its
adjacency relation E ⊆ V × V is symmetric, that is:

(x, y) ∈ E =⇒ (y, x) ∈ E.

Proposition. The category of graphs is isomorphic to the
category of symmetric directed graphs:

Graph ∼= SymDiGraph.

Idea. Replace each undirected edge with a pair of arcs in both
directions. Loops don’t need to be duplicated.
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Reversing edges

Definition. For a directed multigraph G = (V,E) a reversal
function is a function r : E → E that “reverses edges”, i.e.:

r(r(e)) = e

s(r(e)) = t(e)

t(r(e)) = s(e).
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Multigraphs as certain directed multigraphs

Proposition. The category of multigraphs is equivalent to the
category of directed multigraphs with reversal and self-reverse
loops, i.e., satisfying r(ℓ) = ℓ for every loop ℓ ∈ E:

Multi ∼= DiMultiRevself .

Idea. Replace each undirected edge with a pair of arcs in both
directions, keeping track of the pairing with the reversal
r : E → E.
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Reflexive graphs

Reflexive directed multigraphs are diagrams of sets of shape

E

s
&&

t

88 V.roo

That is, presheaves on

[0]

d1
''

d0

77 [1]s0oo also known as ∆≤1

where (d1)∗ = d1 = s, (d0)∗ = d0 = t, and (s0)∗ = s0 = r.

RefDiMulti ∼= Fun(∆op
≤1, Set)

= 1-truncated simplicial sets.
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Edge contraction

Definition. Given a graph G = (V,E), the edge contraction of
e ∈ E sends the endpoints of e to a single vertex and deletes e.

x y

e1

e2

contract e1

x = y

e2

Proposition. The category of reflexive graphs is equivalent to the
category of graphs with edge contractions allowed as morphisms.

Idea. Use the distinguished loops as dumpsters.
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Quasi-algebraic categories

The categories RefDiMulti and DiMulti are presheaf categories, in
particular algebraic.

Remark. Presheaf categories are the algebraic categories that can
be described using only unary operations.

Proposition. Multi, DiGraph, and Graph are quasi-algebraic
categories.

Proof. We saw that they are implicational classes.

Proposition. Multi, DiGraph and Graph are not algebraic
categories. Equivalently, they are not exact in the sense of Barr.
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Loopless graphs

Proposition. The four categories of loopless graphs (LplDiMulti,
LplDiGraph, LplMulti and LplGraph) have no terminal object.

Corollary. The inclusion functor

ι : LplDiMulti ↪→ DiMulti

(and the other three) admits neither left adjoint nor right adjoint.

Proposition. The four categories LplDiMulti, LplDiGraph,
LplMulti and LplGraph have all non-empty limits.

Idea. Check that they have non-empty products and equalizers.
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Directed versus undirected

Definition. The directization functor D : Multi → DiMulti is the
composite

Multi
∼= // DiMultiRevself

forget reversal// DiMulti.

D

Proposition. 1. The directization functor D : Multi → DiMulti
is right adjoint to the forgetful functor Ud : DiMulti → Multi
that forgets the direction of the arcs.

2. The forgetful functor Ud : DiMulti → Multi admits no left
adjoint.

3. The directization functor D : Multi → DiMulti admits no right
adjoint.
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Directed versus undirected, not multi

The situation without parallel edges is slightly different.

Definition. Given a directed graph G = (V,E), the symmetric
part of G is the subgraph SG with the same vertices V and
keeping only the bidirected arcs of G:

(x, y) ∈ E(SG) ⇐⇒ (x, y) ∈ E and (y, x) ∈ E.

Via the isomorphism SymDiGraph ∼= Graph, we obtain the
symmetric part functor

S : DiGraph → Graph.

∼=↔
S
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Directed versus undirected, not multi (cont’d)

Proposition. 1. The directization functor D : Graph → DiGraph
is right adjoint to the forgetful functor Ud : DiGraph → Graph
that forgets the direction of the arcs.

2. The forgetful functor Ud : DiGraph → Graph admits no left
adjoint.

3. (Different!) The symmetric part functor S : DiGraph → Graph
is right adjoint to the directization functor
D : Graph → DiGraph.
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Reflexive or not

The forgetful functor

Ur : RefDiMulti → DiMulti

that forgets the distinguished loops is the restriction along the
inclusion

i : ∆inj,≤1 ↪→ ∆≤1.

=⇒ Ur has both adjoints, given by Kan extensions.

The left adjoint L : DiMulti → RefDiMulti adds a distinguished
loop at each vertex.

Exercise. Compute the right adjoint R : DiMulti → RefDiMulti.
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Induced adjunctions

Recall: Any adjunction

C
F // D
G
oo

induces adjunctions on slice categories

C/c
F // D/Fc

η∗c◦G
oo and C/Gd

(ϵd)!◦F // D/d
G
oo

η∗cE

��

//

⌟
E

��
c

ηc // GFc

E

�� ""
FGd

ϵd // d.

Goal: Convince graph theorists to care about slice categories (and
of course adjoint functors).

24 / 27



Graph colorings

Example. A graph homomorphism G → Kn is the same as an
n-coloring of G, where

Kn = complete (loopless) graph on n vertices.

LplGraph/Kn = {graphs equipped with an n-coloring}.

Chromatic number of G:

χ(G) = min{n | G admits an n-coloring}.
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Cycles in graphs

A graph homomorphism Cn → G is an n-cycle in G, where

Cn = cycle graph with n vertices.

Cn/LplGraph = {graphs equipped with an n-cycle}.

Girth of G = length of a shortest cycle in G.
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Thank you!
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