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Coefficients for cohomology

Cohomology theories for algebraic structures:

@ Group cohomology

o Lie algebra cohomology

Hochschild cohomology of associative algebras
o Barr—Beck triple cohomology
@ André—Quillen cohomology of commutative rings

@ etc.
Need a good notion of coefficient module M over X:

H*(X; M).
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Beck modules

Definition (Beck 1967). For an object X in a category C, a Beck
module over X is an abelian group object in the slice category
C/X.

Denote the category of Beck modules over X

Mod(X) == (C/X)ap.
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Pullback and pushforward

Definition. The pullback functor f*: C/Y — C/X induces a
functor

f*: Mod(Y) — Mod(X)
also called the pullback.

Its left adjoint
fi: Mod(X) — Mod(Y)
is called the pushforward along f.

pullback = “restriction of scalars”

pushforward = “extension of scalars”
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Fibered category

The assignment
Mod(—): C°® — AbCat

sending an object X to its category of Beck modules Mod(X) and
amap f: X — Y to the pullback functor f*: Mod(Y) — Mod(X)
is a pseudo-functor: (gf)* = f*g*.

Definition. The Grothendieck construction of the pseudo-functor
Mod(—) yields a fibered category

m:TC — C

called the tangent category of C.

An object of TC is (X, M), where M is a module over X.
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Rings

C = Algy, the category of (unital) k-algebras.

For a k-algebra A:
Mod(A) = 4Bimod 4.

A Beck module over A is a split extension of A with square zero
kernel:

P
0O— M —AM_—A——0.
S
The two actions on M are given by
(a,m)(a’,m) = (ad’;a-m' +m-d)

and they coincide for scalars in k.
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Rings, cont’d

For a map of k-algebras f: A — B, the pullback functor
f*: Mod(B) — Mod(A)
is the usual restriction of scalars:
a-m-a = f(a)-m- f(a).
The pushforward functor is

fi: Mod(A) — Mod(B)
j}(ﬁf) =B®sM®usB.
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Commutative rings

C = Comy, the category of commutative k-algebras.
For a commutative k-algebra A:

Mod(A) = Mod, in the usual sense.

Same correspondence as for algebras, except that A ® M must be
commutative. This forces the two actions to coincide:

a-m=1m-a.

For a map of commutative k-algebras f: A — B, the pushforward
functor is extension of scalars:

fi: Mod(A) — Mod(B)
fl(M) =B®y M.
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Groups
C = Gp, the category of groups.
For a group G:

Mod(G) = G-modules in the usual sense
= ZG-Mod.

A Beck module over G is a split extension of G with abelian kernel:

p
1—K—GxK—G——1.

The G-action on K is given by e(g)k = (g, 9 - k). In other words:

(9, k)¢, k') = (99", k+g-K).
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Groups, cont’d

For a map of groups f: G — H, the pushforward functor is

fi: Mod(G) — Mod(H)
j%(]b[) =7ZH ®yc M.
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Abelian groups

C = Ab, the category of abelian groups.
For an abelian group A:
Mod(A) = Ab.

Same correspondence as for groups, except that A x K must be
abelian. This forces the A-action on K to be trivial:

a-k=k.
More generally:

Example (Beck 1967). In an additive category A with finite
limits, Beck modules over any object X are:
Mod(X) =2 A
(p: E — X) — ker(p).
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Lie algebras

k = a field of characteristic not 2.
C = Lieg, the category of Lie algebras over k.
For a Lie algebra L:

Mod(L) = L-modules in the usual sense
=~ U/(L)-Mod

where U(L) is the universal enveloping algebra of L.

A Beck module over L is a split extension of L with abelian kernel:
D
0O— M —LpM__—_—=L——0
S
with [m, m/] = 0 for all m,m’ € M.

13 /34



Lie algebras (cont’d)

The action of L on M is given by
[(& 0)7 (07 m)] = (07 e m)7
which satisfies

0,0 -m=20-(0'-m)—10-(-m).
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Commutative monoids

C = CMon, the category of commutative monoids.

A Beck module M over a commutative monoid A consists of a
family of abelian groups {M,}.c4 and for each a,b € A, a map of
abelian groups

b- (—): My — My,

subject to 1 -m =m and (ab) -m =a- (b-m).

Equivalently, a graded module M over the A-graded monoid ring
ZA.

Equivalenty, a functor M : H(A) — Ab from the Leech category of
A (a.k.a. action category), whose objects are a € A and morphisms
are pairs (b, a):

b,a
agba.
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Representing ringoids
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Ringoids

Reference: Mitchell, Rings with several objects, 1972.

Definition. 1. A ringoid is a small pre-additive category, i.e., a
small category enriched in abelian groups.

2. A morphism of ringoids is an Ab-enriched functor
F: R — S, ak.a. an additive functor.

3. For a ringoid R, a left R-module is a covariant additive
functor from R to abelian groups

M: R — Ab.

4. A right R-module is a contravariant additive functor from R
to abelian groups
M: R°® — Ab.

Example. A one-object ringoid is a ring. The notions of modules
recover the usual ones.
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Modules over ringoids

Modules over a ringoid R form an abelian category. Which abelian
categories are of that form?

Theorem (Freyd 1964). 1. An abelian category A is equivalent
to a category of modules over a ring if and only if A is
cocomplete and has a small projective generator P.

In that case A = Mod-End(P).

2. A is equivalent to a category of modules over a ringoid if and
only if A is cocomplete and has a set S of small projective
generators.

Given such a set S, take as ringoid the full subcategory on S.
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The case of Beck modules

Proposition. Let C be an algebraic category (a.k.a. “equational
class”). For every object X in C, the category of Beck modules
Mod(X) is equivalent to modules over some ringoid.
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Representing ringoid

Some examples of representing ringoids:

For a ring A, the enveloping ring A ® A°P.
For a commutative ring R, the ring R itself.
For a group G, the group ring ZG.

For an abelian group A, the ring Z.

For a Lie algebra L, the universal enveloping algebra U(L).

S otk W=

For a commutative monoid A, the Z-linearization of the Leech
category H(A).
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Tensor product of Beck modules
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Common tensor products

We know how to tensor modules over a commutative ring R:
M ®gr N.
We also know how to tensor bimodules over a ring A:

M ®4 N.

Goal
Find a broad enough framework where Beck modules have a
natural tensor product, recovering many known examples.

Idea: Look for comultiplicative structure in the representing
ringoids.
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Bialgebras

Example. The comultiplication of the group ring ZG
A:7ZG = Z2G @z 2G
Alg) =gy
induces a G-action on the tensor product of G-modules M ®z N:
g-(men)=(g-m)®(g-n)

Example. Likewise for the universal enveloping algebra of a Lie
algebra L:

A:U(L) = U(L)@x U(L)
Alz)=z1+1®x
induces an action of L on the tensor product of L-modules M ®j N:
C-(men)=-m)@n+m® (£-n).
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Bialgebras (cont’d)

More generally, the comultiplication on a bialgebra B induces a
B-module structure on the tensor product of B-modules M ®jy IV:

A®id =]
B@kM@kN&)B®k3®kM®kN4>B®kM®kB®kN

\ l/\]ﬁ@)\]\]
AMQN M ® N.
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Pointwise tensor product

For a group G:
G-Mod = Fun(BG, Ab)

where BG denotes G viewed as a one-object groupoid.

The tensor product of G-modules agrees with the pointwise tensor
product in Fun(BG, Ab).

Definition. A category C has representable Beck modules
(over Z) if for all object X in C:

Mod(X) = Fun(Jx, Ab)
for some small category Jx, pseudo-functorial in X.

Mod(—)

C AbCat

N
N
J N
COIIEN Fun(—,Ab)

Cat
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Pointwise tensor product (cont’d)

Example. The following categories have representable Beck
modules.

Sets: Jx = X viewed as a discrete category.
Groups: Jg = BG, the one-object groupoid.
Abelian groups: J4 = %, the trivial category.
Commutative monoids: J4 = H(A), the Leech category of A.

ARl

Monoids: Jy; = twisted arrow category of M.

Example. The following categories do not have representable Beck
modules.

1. Rings.

2. Commutative rings.

3. Lie algebras over k.

26 /34



Z-linearization

Definition. Given a small category C, the Z-linearization of C is
the Z-linear (i.e. Ab-enriched) category ZC obtained by applying
the free abelian group functor to the hom-sets in C:

(ZC)(X,Y) = Z (C(X,Y)).

Composition in ZC is defined as the bilinear extension of
composition in C.

Lemma. 1. Z-linearization is a (strict) 2-functor Cat — Z-Cat.
2. Universal property:

Funz(ZC, A) = Fun(C, A).
3. Z-linearization sends the Cartesian product of categories to the
tensor product of ringoids:

Z(C x D) = ZC ® ZD.
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Comultiplicative structure

For any small category C, the diagonal functor and the constant
functor

A:C—=CxC

€:C — %

make C into a comonoid in Cat.
Applying the Z-linearization produces ringoid maps

A:Z(C) - Z(CxC)=2ZC®ZC
€:Z(C) > Z(x) =2 Z

making ZC into a comonoid in ringoids.
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Bialgebras with many objects
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Comonoids in ringoids

Not all Beck modules are represented by a bialgebra. Look for a
“many objects” generalization, but in which direction?

bialgebra = monoid in coalgebras = comonoid in algebras

Generalizing rings to ringoids yields one notion of “bialgebra with
many objects”: comonoids in ringoids.

The Z-linearization ZC is an example.

This notion was studied in the literature (Day, Street 1997).
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Commutative bialgebroids
In stable homotopy theory, we often stumble upon:

commutative Hopf algebroid = internal cogroupoid in commutative
algebras.

Dropping the antipode yields:

commutative bialgebroid = internal cocategory in commutative
algebras.
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Bialgebroids

Introduced by Takeuchi (1977). Comprehensive reference: B6hm
(2009).

A bialgebroid consists of:

o algebras A and H

o algebra maps A — H and A°® — H
o a bimodule map H - H®4 H

@ a character H — A

@ + more structure and properties.

Salient feature: Both modules and comodules over a bialgebroid
have a tensor product.
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Example: enveloping ring

Example. Given a k-algebra A, its enveloping algebra A @ A°P
admits a canonical bialgebroid structure.

The induced tensor product of A ®j A°P-modules recovers the usual
tensor product of A-bimodules.

Question. Are there many instances where Beck modules are
represented by a bialgebroid?
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Thank you!
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