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Coefficients for cohomology

Cohomology theories for algebraic structures:

Group cohomology

Lie algebra cohomology

Hochschild cohomology of associative algebras

Barr–Beck triple cohomology

André–Quillen cohomology of commutative rings

etc.

Need a good notion of coefficient module M over X:

H∗(X;M).
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Beck modules

Definition (Beck 1967). For an object X in a category C, a Beck
module over X is an abelian group object in the slice category
C/X.

Denote the category of Beck modules over X

Mod(X) := (C/X)ab.
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Pullback and pushforward

Definition. The pullback functor f∗ : C/Y → C/X induces a
functor

f∗ : Mod(Y ) → Mod(X)

also called the pullback.

Its left adjoint
f! : Mod(X) → Mod(Y )

is called the pushforward along f .

pullback = “restriction of scalars”

pushforward = “extension of scalars”
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Fibered category

The assignment
Mod(−) : Cop → AbCat

sending an object X to its category of Beck modules Mod(X) and
a map f : X → Y to the pullback functor f∗ : Mod(Y ) → Mod(X)
is a pseudo-functor: (gf)∗ ∼= f∗g∗.

Definition. The Grothendieck construction of the pseudo-functor
Mod(−) yields a fibered category

π : TC → C

called the tangent category of C.

An object of TC is (X,M), where M is a module over X.
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Rings

C = Algk, the category of (unital) k-algebras.

For a k-algebra A:
Mod(A) ∼= ABimodA.

A Beck module over A is a split extension of A with square zero
kernel:

0 //M // A⊕M
p //

A
s

oo // 0.

The two actions on M are given by

(a,m)(a′,m′) = (aa′, a ·m′ +m · a′)

and they coincide for scalars in k.
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Rings, cont’d

For a map of k-algebras f : A → B, the pullback functor

f∗ : Mod(B) → Mod(A)

is the usual restriction of scalars:

a ·m · a′ := f(a) ·m · f(a′).

The pushforward functor is

f! : Mod(A) → Mod(B)

f!(M) = B ⊗A M ⊗A B.
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Commutative rings

C = Comk, the category of commutative k-algebras.

For a commutative k-algebra A:

Mod(A) ∼= ModA in the usual sense.

Same correspondence as for algebras, except that A⊕M must be
commutative. This forces the two actions to coincide:

a ·m = m · a.

For a map of commutative k-algebras f : A → B, the pushforward
functor is extension of scalars:

f! : Mod(A) → Mod(B)

f!(M) = B ⊗A M.
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Groups

C = Gp, the category of groups.

For a group G:

Mod(G) ∼= G-modules in the usual sense
∼= ZG-Mod.

A Beck module over G is a split extension of G with abelian kernel:

1 // K // G⋉K
p //

G
e

oo // 1.

The G-action on K is given by e(g)k = (g, g · k). In other words:

(g, k)(g′, k′) = (gg′, k + g · k′).
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Groups, cont’d

For a map of groups f : G → H, the pushforward functor is

f! : Mod(G) → Mod(H)

f!(M) = ZH ⊗ZG M.
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Abelian groups

C = Ab, the category of abelian groups.

For an abelian group A:

Mod(A) ∼= Ab.

Same correspondence as for groups, except that A⋉K must be
abelian. This forces the A-action on K to be trivial:

a · k = k.

More generally:

Example (Beck 1967). In an additive category A with finite
limits, Beck modules over any object X are:

Mod(X) ∼= A
(p : E ↠ X) 7→ ker(p).
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Lie algebras

k = a field of characteristic not 2.

C = Liek, the category of Lie algebras over k.

For a Lie algebra L:

Mod(L) ∼= L-modules in the usual sense
∼= U(L)-Mod

where U(L) is the universal enveloping algebra of L.

A Beck module over L is a split extension of L with abelian kernel:

0 //M // L⊕M
p //

L
s

oo // 0

with [m,m′] = 0 for all m,m′ ∈ M .
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Lie algebras (cont’d)

The action of L on M is given by

[(ℓ, 0), (0,m)] = (0, ℓ ·m),

which satisfies

[ℓ, ℓ′] ·m = ℓ · (ℓ′ ·m)− ℓ′ · (ℓ ·m).
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Commutative monoids

C = CMon, the category of commutative monoids.

A Beck module M over a commutative monoid A consists of a
family of abelian groups {Ma}a∈A and for each a, b ∈ A, a map of
abelian groups

b · (−) : Ma → Mba

subject to 1 ·m = m and (ab) ·m = a · (b ·m).

Equivalently, a graded module M over the A-graded monoid ring
ZA.

Equivalenty, a functor M : H(A) → Ab from the Leech category of
A (a.k.a. action category), whose objects are a ∈ A and morphisms
are pairs (b, a):

a
(b,a) // ba.
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Ringoids

Reference: Mitchell, Rings with several objects, 1972.

Definition. 1. A ringoid is a small pre-additive category, i.e., a
small category enriched in abelian groups.

2. A morphism of ringoids is an Ab-enriched functor
F : R → S, a.k.a. an additive functor.

3. For a ringoid R, a left R-module is a covariant additive
functor from R to abelian groups

M : R → Ab.

4. A right R-module is a contravariant additive functor from R
to abelian groups

M : Rop → Ab.

Example. A one-object ringoid is a ring. The notions of modules
recover the usual ones.
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Modules over ringoids

Modules over a ringoid R form an abelian category. Which abelian
categories are of that form?

Theorem (Freyd 1964). 1. An abelian category A is equivalent
to a category of modules over a ring if and only if A is
cocomplete and has a small projective generator P .
In that case A ∼= Mod-End(P ).

2. A is equivalent to a category of modules over a ringoid if and
only if A is cocomplete and has a set S of small projective
generators.
Given such a set S, take as ringoid the full subcategory on S.
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The case of Beck modules

Proposition. Let C be an algebraic category (a.k.a. “equational
class”). For every object X in C, the category of Beck modules
Mod(X) is equivalent to modules over some ringoid.
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Representing ringoid

Some examples of representing ringoids:

1. For a ring A, the enveloping ring A⊗Aop.

2. For a commutative ring R, the ring R itself.

3. For a group G, the group ring ZG.

4. For an abelian group A, the ring Z.
5. For a Lie algebra L, the universal enveloping algebra U(L).

6. For a commutative monoid A, the Z-linearization of the Leech
category H(A).
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Common tensor products

We know how to tensor modules over a commutative ring R:

M ⊗R N.

We also know how to tensor bimodules over a ring A:

M ⊗A N.

Goal
Find a broad enough framework where Beck modules have a
natural tensor product, recovering many known examples.

Idea: Look for comultiplicative structure in the representing
ringoids.
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Bialgebras

Example. The comultiplication of the group ring ZG

∆: ZG → ZG⊗Z ZG
∆(g) = g ⊗ g

induces a G-action on the tensor product of G-modules M ⊗Z N :

g · (m⊗ n) = (g ·m)⊗ (g · n).

Example. Likewise for the universal enveloping algebra of a Lie
algebra L:

∆: U(L) → U(L)⊗k U(L)

∆(x) = x⊗ 1 + 1⊗ x

induces an action of L on the tensor product of L-modules M ⊗k N :

ℓ · (m⊗ n) = (ℓ ·m)⊗ n+m⊗ (ℓ · n).
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Bialgebras (cont’d)

More generally, the comultiplication on a bialgebra B induces a
B-module structure on the tensor product of B-modules M ⊗k N :

B ⊗k M ⊗k N

λM⊗N
//

∆⊗id // B ⊗k B ⊗k M ⊗k N
∼= // B ⊗k M ⊗k B ⊗k N

λM⊗λN

��
M ⊗k N.
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Pointwise tensor product

For a group G:
G-Mod ∼= Fun(BG,Ab)

where BG denotes G viewed as a one-object groupoid.

The tensor product of G-modules agrees with the pointwise tensor
product in Fun(BG,Ab).

Definition. A category C has representable Beck modules
(over Z) if for all object X in C:

Mod(X) ∼= Fun(JX ,Ab)

for some small category JX , pseudo-functorial in X.

C

J(−) !!

Mod(−) // AbCat

Cat
Fun(−,Ab)

::
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Pointwise tensor product (cont’d)

Example. The following categories have representable Beck
modules.

1. Sets: JX = X viewed as a discrete category.

2. Groups: JG = BG, the one-object groupoid.

3. Abelian groups: JA = ∗, the trivial category.

4. Commutative monoids: JA = H(A), the Leech category of A.

5. Monoids: JM = twisted arrow category of M .

Example. The following categories do not have representable Beck
modules.

1. Rings.

2. Commutative rings.

3. Lie algebras over k.
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Z-linearization

Definition. Given a small category C, the Z-linearization of C is
the Z-linear (i.e. Ab-enriched) category ZC obtained by applying
the free abelian group functor to the hom-sets in C:

(ZC)(X,Y ) := Z (C(X,Y )) .

Composition in ZC is defined as the bilinear extension of
composition in C.

Lemma. 1. Z-linearization is a (strict) 2-functor Cat → Z-Cat.
2. Universal property:

FunZ(ZC,A) ∼= Fun(C,A).

3. Z-linearization sends the Cartesian product of categories to the
tensor product of ringoids:

Z(C × D) ∼= ZC ⊗ ZD.
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Comultiplicative structure

For any small category C, the diagonal functor and the constant
functor

∆: C → C × C
ϵ : C → ∗

make C into a comonoid in Cat.

Applying the Z-linearization produces ringoid maps

∆: Z(C) → Z(C × C) ∼= ZC ⊗ ZC
ϵ : Z(C) → Z(∗) ∼= Z

making ZC into a comonoid in ringoids.
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Comonoids in ringoids

Not all Beck modules are represented by a bialgebra. Look for a
“many objects” generalization, but in which direction?

bialgebra = monoid in coalgebras = comonoid in algebras

Generalizing rings to ringoids yields one notion of “bialgebra with
many objects”: comonoids in ringoids.

The Z-linearization ZC is an example.

This notion was studied in the literature (Day, Street 1997).
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Commutative bialgebroids

In stable homotopy theory, we often stumble upon:

commutative Hopf algebroid = internal cogroupoid in commutative
algebras.

Dropping the antipode yields:

commutative bialgebroid = internal cocategory in commutative
algebras.

31 / 34



Bialgebroids

Introduced by Takeuchi (1977). Comprehensive reference: Böhm
(2009).

A bialgebroid consists of:

algebras A and H

algebra maps A → H and Aop → H

a bimodule map H → H ⊗A H

a character H → A

+ more structure and properties.

Salient feature: Both modules and comodules over a bialgebroid
have a tensor product.
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Example: enveloping ring

Example. Given a k-algebra A, its enveloping algebra A⊗k A
op

admits a canonical bialgebroid structure.

The induced tensor product of A⊗k A
op-modules recovers the usual

tensor product of A-bimodules.

Question. Are there many instances where Beck modules are
represented by a bialgebroid?
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Thank you!
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