Moduli spaces of 2-stage Postnikov systems

Martin Frankland

University of Illinois at Urbana-Champaign franklan@illinois.edu

Session on Homotopy and Categories 2011 CMS Summer Meeting University of Alberta, Edmonton

- Background
 - Π-algebras and Realizations
 - Classification
 - Obstruction Theory

- Background
 - Π-algebras and Realizations
 - Classification
 - Obstruction Theory
- Truncated П-algebras
 - Truncation Isomorphism
 - Classification Result

- Background
 - Π-algebras and Realizations
 - Classification
 - Obstruction Theory
- Truncated П-algebras
 - Truncation Isomorphism
 - Classification Result
- Stable 2-types
 - Connected Cover Isomorphism
 - Classification Result

- Background
 - Π-algebras and Realizations
 - Classification
 - Obstruction Theory
- Truncated П-algebras
 - Truncation Isomorphism
 - Classification Result
- Stable 2-types
 - Connected Cover Isomorphism
 - Classification Result

Π-algebras

 Π -algebra \approx graded group with additional structure which looks like the homotopy groups of a space.

П-algebras

 Π -algebra \approx graded group with additional structure which looks like the homotopy groups of a space.

Definition

- $\Pi :=$ full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_i}$, $n_i \ge 1$.
- Π-algebra := product-preserving functor A: Π^{op} → Set_{*}.

П-algebras

 Π -algebra \approx graded group with additional structure which looks like the homotopy groups of a space.

Definition

- $\Pi :=$ full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_i}$, $n_i \ge 1$.
- Π-algebra := product-preserving functor A: Π^{op} → Set_{*}.

Example

 $\pi_*X = [-, X]_*$ for a pointed space X.

П-algebras

 $\Pi\text{-algebra}\approx\text{graded}$ group with additional structure which looks like the homotopy groups of a space.

Definition

- $\Pi :=$ full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_i}$, $n_i \ge 1$.
- Π-algebra := product-preserving functor A: Π^{op} → Set_{*}.

Example

 $\pi_*X = [-, X]_*$ for a pointed space X.

Notation: Write $A_n := A(S^n)$.

Realizations

Realization Problem

Given a Π-algebra A, is there a space X satisfying $\pi_*X \simeq A$ as Π-algebras?

Realizations

Realization Problem

Given a Π -algebra A, is there a space X satisfying $\pi_*X \simeq A$ as Π -algebras?

Classification Problem

If A is realizable, can we **classify** all realizations?

Naive: List of realizations.

- Naive: List of realizations = $\pi_0 \mathcal{T} \mathcal{M}(A)$.
- Better: **Moduli space** $\mathcal{TM}(A)$ of realizations.

- Naive: List of realizations = $\pi_0 \mathcal{T} \mathcal{M}(A)$.
- Better: **Moduli space** $\mathcal{TM}(A)$ of realizations.

Remark

Relative moduli space $\mathcal{TM}'(A)$: Realizations X with identification $\pi_*X \simeq A$.

- Naive: List of realizations = $\pi_0 \mathcal{T} \mathcal{M}(A)$.
- Better: **Moduli space** $\mathcal{TM}(A)$ of realizations.

Remark

Relative moduli space $\mathcal{TM}'(A)$: Realizations X with identification $\pi_*X \simeq A$. Have fiber sequence:

$$\mathcal{TM}'(A) \xrightarrow{\text{forget}} \mathcal{TM}(A) \to B\operatorname{Aut}(A)$$

and $\mathcal{TM}(A) \simeq \mathcal{TM}'(A)_{h \operatorname{Aut}(A)}$.

Moduli Space

 $\mathcal{TM}(A)$ = nerve of the category with

- Objects: Realizations X
- Morphisms: Weak equivalences $X \to X'$

Moduli Space

 $\mathcal{TM}(A)$ = nerve of the category with

- Objects: Realizations X
- Morphisms: Weak equivalences $X \to X'$

$$\mathcal{TM}(A) \simeq \coprod_{\langle X \rangle} B \operatorname{Aut}^h(X).$$

Building $\mathcal{TM}(A)$

• Blanc, Dwyer, Goerss (2004): Obstruction theory for building $\mathcal{TM}(A)$.

Building $\mathcal{TM}(A)$

- Blanc, Dwyer, Goerss (2004): Obstruction theory for building $\mathcal{TM}(A)$.
- Successive approximations $\mathcal{TM}_n(A)$, $0 \le n \le \infty$.

Building $\overline{\mathcal{T}\mathcal{M}(A)}$

- Blanc, Dwyer, Goerss (2004): Obstruction theory for building $\mathcal{TM}(A)$.
- Successive approximations $\mathcal{TM}_n(A)$, $0 \le n \le \infty$.

Building $\mathcal{TM}(A)$

•
$$\mathcal{TM}_0(A) \simeq B \operatorname{Aut}(A)$$

Building $\mathcal{TM}(A)$

- $\mathcal{T}\mathcal{M}_0(A) \simeq B\operatorname{Aut}(A)$
- $\mathcal{TM}_n(A) \to \mathcal{TM}_{n-1}(A)$ related by a fiber square

Building TM(A)

- $\mathcal{TM}_0(A) \simeq B \operatorname{Aut}(A)$
- $\mathcal{TM}_n(A) \to \mathcal{TM}_{n-1}(A)$ related by a fiber square
- For Y in \mathcal{TM}_{n-1} and $\mathcal{M}(Y) \subseteq \mathcal{TM}_{n-1}$ its component, have:

$$\mathcal{H}^{n+1}(A;\Omega^nA) \to \mathcal{TM}_n(A)_Y \to \mathcal{M}(Y)$$

where fiber = Quillen cohomology "space".

Building $\mathcal{TM}(A)$

- $\mathcal{T}\mathcal{M}_0(A) \simeq B\operatorname{Aut}(A)$
- $\mathcal{TM}_n(A) \to \mathcal{TM}_{n-1}(A)$ related by a fiber square
- For Y in \mathcal{TM}_{n-1} and $\mathcal{M}(Y) \subseteq \mathcal{TM}_{n-1}$ its component, have:

$$\mathcal{H}^{n+1}(A;\Omega^nA) \to \mathcal{TM}_n(A)_Y \to \mathcal{M}(Y)$$

where fiber = Quillen cohomology "space".

- Obstruction to lifting $\in HQ^{n+2}(A; \Omega^n A)$
- Lifts classified by $\pi_0(\text{fiber}) = HQ^{n+1}(A; \Omega^n A)$.

Goal

Goal

Describe $\mathcal{TM}(A)$ in simple cases.

Problem

Can we compute the obstruction groups?

- Background
 - Π-algebras and Realizations
 - Classification
 - Obstruction Theory
- Truncated П-algebras
 - Truncation Isomorphism
 - Classification Result
- Stable 2-types
 - Connected Cover Isomorphism
 - Classification Result

Truncated Π-algebras

Definition

A Π-algebra *A* is **n-truncated** if it satisfies $A(S^i) = *$ for all i > n.

Postnikov truncation P_n: ΠAlg → ΠAlgⁿ₁

Truncated Π-algebras

Definition

A Π-algebra *A* is **n-truncated** if it satisfies $A(S^i) = *$ for all i > n.

- Postnikov truncation P_n: ΠAlg → ΠAlgⁿ₁
- P_n is left adjoint to inclusion $\iota : \Pi \mathbf{Alg}_1^n \to \Pi \mathbf{Alg}$
- Unit map $\eta_A : A \to P_n A$

Truncation Isomorphism

Theorem (F.)

Let A be a Π -algebra and N a module over A which is n-truncated. Then the natural comparison map

$$\mathsf{HQ}^*_{\mathsf{\Pi Alg}_1^n}(P_nA;N) \xrightarrow{\cong} \mathsf{HQ}^*_{\mathsf{\Pi Alg}}(A;N).$$

induced by the Postnikov truncation functor P_n is an iso.

Truncation Isomorphism

Theorem (F.)

Let A be a Π -algebra and N a module over A which is n-truncated. Then the natural comparison map

$$\mathsf{HQ}^*_{\mathsf{\Pi Alg}_1^n}(P_nA;N) \stackrel{\cong}{\to} \mathsf{HQ}^*_{\mathsf{\Pi Alg}}(A;N).$$

induced by the Postnikov truncation functor P_n is an iso.

Proof.

The (simplicially prolonged) left Quillen functor P_n : $s\Pi Alg \rightarrow s\Pi Alg_1^n$ preserves *all* weak equivalences, and thus cofibrant replacements.

2-stage Example

• Take $A_i = 0$ for $i \neq 1, n$.

2-stage Example

- Take $A_i = 0$ for $i \neq 1, n$.
- A is realizable, e.g. Borel construction

$$BA_1(A_n, n) := EA_1 \times_{A_1} K(A_n, n) \rightarrow BA_1$$

2-stage Example

- Take $A_i = 0$ for $i \neq 1, n$.
- A is realizable, e.g. Borel construction

$$BA_1(A_n, n) := EA_1 \times_{A_1} K(A_n, n) \rightarrow BA_1$$

Theorem

$$\mathcal{TM}(A) \simeq \mathsf{Map}_{BA_1}(BA_1, BA_1(A_n, n+1))_{h \, \mathsf{Aut}(A)}$$

Upshot

Classification by a *k*-invariant is promoted to a **moduli** statement: The **moduli space** of realizations is the **mapping space** where the *k*-invariant lives.

Corollary

• $\pi_0 \mathcal{T} \mathcal{M}(A) \simeq H^{n+1}(A_1; A_n) / \operatorname{Aut}(A)$

Corollary

- $\pi_0 \mathcal{T} \mathcal{M}(A) \simeq H^{n+1}(A_1; A_n) / \operatorname{Aut}(A)$
- For any choice of basepoint in TM(A), we have:

$$\pi_{i}\mathcal{T}\mathcal{M}(A) \simeq \begin{cases} 0, \ i > n \\ \mathsf{Der}(A_{1}, A_{n}), \ i = n \\ \mathsf{H}^{n+1-i}(A_{1}; A_{n}), \ 2 \leq i < n \end{cases}$$

Corollary

- $\pi_0 \mathcal{T} \mathcal{M}(A) \simeq H^{n+1}(A_1; A_n) / \operatorname{Aut}(A)$
- For any choice of basepoint in TM(A), we have:

$$\pi_{i}\mathcal{T}\mathcal{M}(A) \simeq \begin{cases} 0, \ i > n \\ \operatorname{Der}(A_{1}, A_{n}), \ i = n \\ \operatorname{H}^{n+1-i}(A_{1}; A_{n}), \ 2 \leq i < n \end{cases}$$

and $\pi_1 \mathcal{T} \mathcal{M}(A)$ is an extension by $H^n(A_1; A_n)$ of a subgroup of $\operatorname{Aut}(A)$ corresponding to realizable automorphisms.

Outline

- Background
 - Π-algebras and Realizations
 - Classification
 - Obstruction Theory
- Truncated П-algebras
 - Truncation Isomorphism
 - Classification Result
- Stable 2-types
 - Connected Cover Isomorphism
 - Classification Result

Highly connected Π-algebras

Definition

A Π-algebra *A* is **n-connected** if it satisfies $A(S^i) = *$ for all $i \le n$.

• *n*-connected cover C_n : $\Pi Alg \to \Pi Alg_{n+1}^{\infty}$

Highly connected Π-algebras

Definition

A Π-algebra A is **n-connected** if it satisfies $A(S^i) = *$ for all $i \le n$.

- *n*-connected cover C_n : $\Pi Alg \to \Pi Alg_{n+1}^{\infty}$
- C_n is **right** adjoint to inclusion $\iota : \Pi \mathbf{Alg}_{n+1}^{\infty} \to \Pi \mathbf{Alg}$
- Counit map $\epsilon_A : C_nA \to A$

Connected Cover Isomorphism

Theorem (F.)

Let B be an n-connected Π -algebra and M a module over ιB . Then the natural comparison map

$$\mathsf{HQ}^*_{\mathsf{\Pi Alg}}(\iota B; M) \stackrel{\cong}{\to} \mathsf{HQ}^*_{\mathsf{\Pi Alg}^{\infty}_{n+1}}(B; C_n M)$$

induced by connected cover functor C_n is an iso.

Connected Cover Isomorphism

Theorem (F.)

Let B be an n-connected Π -algebra and M a module over ιB . Then the natural comparison map

$$\mathsf{HQ}^*_{\mathsf{\Pi Alg}}(\iota B; M) \stackrel{\cong}{\to} \mathsf{HQ}^*_{\mathsf{\Pi Alg}^{\infty}_{n+1}}(B; C_n M)$$

induced by connected cover functor C_n is an iso.

Proof.

The left Quillen functor $\iota \colon s \Pi \mathbf{Alg}_{n+1}^{\infty} \to s \Pi \mathbf{Alg}$ preserves *all* weak equivalences.

• Take $A_i = 0$ for $i \neq n, n + 1$, for some $n \geq 2$.

- Take $A_i = 0$ for $i \neq n, n+1$, for some $n \geq 2$.
- A is realizable.

- Take $A_i = 0$ for $i \neq n, n+1$, for some $n \geq 2$.
- A is realizable.

Theorem

 $\mathcal{TM}'(A)$ is connected and its homotopy groups are:

$$\pi_{i}\mathcal{T}\mathcal{M}'(A) \simeq \begin{cases} 0, & i \geq 3 \\ \operatorname{Hom}_{\mathbb{Z}}(A_{n}, A_{n+1}), & i = 2 \\ \operatorname{Ext}_{\mathbb{Z}}(A_{n}, A_{n+1}), & i = 1. \end{cases}$$

Corollary

 $\mathcal{TM}(A) \simeq \mathcal{TM}'(A)_{h \text{ Aut}(A)}$ is connected; its homotopy groups are:

$$\pi_i \mathcal{T} \mathcal{M}(A) \simeq \begin{cases} 0, & i \geq 3 \\ \mathsf{Hom}_{\mathbb{Z}}(A_n, A_{n+1}) & i = 2 \end{cases}$$

and $\pi_1 \mathcal{T} \mathcal{M}(A)$ is an extension of $\operatorname{Aut}(A)$ by $\operatorname{Ext}_{\mathbb{Z}}(A_n, A_{n+1})$. In particular, all automorphisms of A are realizable.

Corollary

 $\mathcal{TM}(A) \simeq \mathcal{TM}'(A)_{h \text{ Aut}(A)}$ is connected; its homotopy groups are:

$$\pi_i \mathcal{T} \mathcal{M}(A) \simeq \begin{cases} 0, & i \geq 3 \\ \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(A_n, A_{n+1}) & i = 2 \end{cases}$$

and $\pi_1 \mathcal{T} \mathcal{M}(A)$ is an extension of $\operatorname{Aut}(A)$ by $\operatorname{Ext}_{\mathbb{Z}}(A_n, A_{n+1})$. In particular, all automorphisms of A are realizable.

Remark

Few higher automorphisms.

Further Questions

- Extend to other cases.
- Other realization problems.
- Tools to compute Quillen cohomology.
- Use of algebraic models.

Thank you!

franklan@illinois.edu

Reference

Frankland, M. Moduli spaces of 2-stage Postnikov systems. *Topology and its Applications* 158 (2011), no. 11, 1296-1306.