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Persistence modules

2/35



Topological data analysis pipeline

filtered space / simplicial complex
éHT(_;k)

filtered k-vector space

Example. Let X be a finite metric space — “data set”. The
Vietoris—Rips complex V R(X), is the simplicial complex on the
vertex set X with

{zg,...,zn} is an n-simplex <= d(z;,z;) < € for all 4, j.
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Filtered simplicial complex

Image source: Robert Ghrist, Barcodes: The persistent topology of data.

As € varies, VR(X), forms a filtered simplicial complex with one
parameter € > 0, i.e., a functor

VR(X): Ry — SimpCpx.

If instead we let € increase by a fixed small step, we obtain one
discrete parameter N — SimpCpx.
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Filtered space

Example. Let X be a smooth manifold and f: X — R a Morse
function. Filtration by sublevel sets:

X;={zeX | f(z) <s}=f"((~o0,]).

As s varies, X forms a filtered space with one parameter s € R,
i.e., a functor
Xeo: R — Top.

Given another Morse function g: X — R, consider the joint
sublevel sets:

Xoo={r € X | fla) <5, g(a) <1}.

Get a filtered space with two parameters s,t € R, i.e., a functor
Xeo: R? — Top.
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Multiple parameters

In applications, often need multiple parameters.

Good survey: M.B. Botnan and M. Lesnick, An introduction to
multiparameter persistence (2023).

In this project, we focus on discrete parameters.
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Persistence modules

Fix a ground field k.
Definition. For m > 1, an m-parameter persistence module

is a diagram
N™ — Vecty.

= graded module over the graded polynomial algebra
R = k[tl, NN ,tm},
which is N™-graded with multigrading

tl=&=(0,....,71 ,...,0).

—

Write M (d) for the k-vector space in multidegree d € N™.
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Goal / Dream

Work with finitely generated R-modules:

R-mod := R-Mod™ & = R_Mod.

Goal
Classify the indecomposable objects in R-mod.
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One-parameter case

For m = 1, finitely generated k[t]-modules decompose into interval

modules
[a, ) == t°Kk|[t] /t°K]t]

— coker (tak[t] LN t“k[t]) .

Example.
M = t'k[t] ® t?Kk[t] /t k(]
=[4,00) @ [2,7).

~» Barcode: multiset of intervals. List of intervals appearing in
the decomposition (with multiplicity).
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Multiparameter case

Not available for m > 2, because k[t1, t2] has wild representation
type.

How to deal with that?

One approach: Extract invariants that are both computable and
significant. Rank invariant and various refinements. Many
authors...

Another approach: Focus on certain families of modules admitting
a nice decomposition, such as rectangle-decomposable modules.
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Approach: localize

Our approach: We localize R-mod until the resulting category

admits a classification of indecomposables, or at least a partial
classification.

Related work: [Harrington, Otter, Schenck, Tillmann| and [Bauer,
Botnan, Oppermann, Steen].
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Localized persistence modules
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Inverting some variables

Fact. The homogeneous prime ideals of R are those of the form
(tiu T ?tik)'

The various localizations of a module M fit together.

Example. For M a module over R = k[t1, t2]:

k[tl, tg:] ®Xpr M fovert & k[tit, tg:] ®r M
invert to Tinvert to
M invert t1 k[tli, tQ] ®R M.
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Inverting some variables (cont’d)

Notation. 1. [m]:={1,2,...,m}

2. For a subset o C [m], denote the localization of rings
R, = R[t;'|ic o],
which is o~ !N™-graded.
3. ; = the localization map “invert t;”.
Example. With this notation, the previous square becomes:

Ry @ M —"— Ry 5y ® M

@2T Tm

M L R{l} KRR M.
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K-localized persistence modules

Idea: Forget the module M but keep some of its localizations.

If we keep a localization R, ®r M, we should keep all further
localizations R, ® g M for o C 7.

Definition. Let K be a simplicial complex on the vertex set [m)].
A K-localized persistence module M consists of:

1. For each missing face o ¢ K, a finitely generated R,-module
M,.
2. For each ¢ C 7 with 0 ¢ K (and hence 7 ¢ K), a map of

R,-modules ¢, : My — M, such that the induced map of
R--modules

R, ®r, My = M,
is an isomorphism.
Let L(K) denote the category of K-localized persistence modules.
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The role of K

Small K ~» Localize a little.
Big K ~~ Localize a lot.
Example. Extreme cases:
1. K ={} =sk_o A™ ! s Don’t localize:
L(K) = R-mod.

2. K =0A™ ! =gk, o A™ 1 «s Invert all the t;:
L(K) = Rjy)-mod = vecty.

3. Even more extreme! K = A™~! ~s Localize everything into
oblivion:

L(K) =0.
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Example: m = 2

Take m =2 and K = {0} = sk_; AL

A K-localized persistence module M consists of modules

My —> M 2

T@Q

My

where ¢; inverts ¢;.
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Example: m =3

Take m = 3 and K = skg A% = {0, {1}, {2}, {3}}.

A K-localized persistence module M consists of modules

1
My,

Mg

Mg, 3

where o; :=[m]\ {i} ~ “all but ¢; have been inverted”

i = Plm)\{i},[m] * M[m]\{z} — M[m] ~ “invert t;”.
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A Serre quotient

Consider the canonical functor
Lk : R-mod — L(K)

that keeps the relevant localizations of M:
LK(M)U =R, ®r M.

Lemma. Ly is exact.
Proposition. Ly is a Serre quotient functor:

I r(K).

R-mod
7

-
q -5

-

R-mod/ ker(Lg)
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Classification of indecomposables
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A hopeless dream?

Denote K, := sky,_3 A" ~» Allow at most one non-inverted ¢;.

Proposition. For any smaller simplicial complex K C K,,, L(K)
has wild representation type.

Proof. L(K) contains a copy of ks, t]-mod as a retract. O

In this section, focus on L(Kp,).
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Some indecomposables

a

[a,b)1 [a,b)2 @, <)

Some indecomposable objects in L£(K3).

Theorem (F.-Stanley). Every object in £L(K3) decomposes (in a
unique way) as a direct sum of:

4

e ‘“vertical strips” [a,b)1
e “horizontal strips” [a,b)s

e “quadrants” [d@, c0).
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In higher dimension m > 3

The analogue in higher dimension is false.

Proposition. For any m > 3, there exists a torsion-free object in
L(Kp,) that is of rank 2 and indecomposable.

How complicated can the torsion-free objects in L(K,,) get?

Answer: Pretty complicated!
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Classification in higher dimension

Steffen Oppermann kindly provided the following argument.

Theorem (F.-Oppermann—Stanley). The category £(K3) has wild
representation type.

Proof idea. Reduce to the known fact that this quiver has wild
representation type:

O —>0—>0 —>0<—0<—0<—0
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Outline

Which subcategories are we quotienting out?
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Tensor ideals

Recall: Serre quotient

L(K) = R-mod/ker(Lg).

The subcategory ker(Lg) C R-mod is a “tensor ideal”: a Serre
subcategory closed under tensoring with a Z"-graded R-module as
long as the result is still N™-graded.

~ Allow shifting the degrees down, but not below 0.
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Classification of tensor ideals

Proposition. [F.—Stanley] There is a bijection

///////———___“\\\\\\A

“tensor ideals” of R-mod simplicial complexes on [m].

Via the bijection: ker(Lg) e~ K.
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Simple objects

What about ker(Lg,,)?

Proposition. £(K,,) is obtained from R-mod by quotienting out
the Serre subcategory generated by the simple objects m — 1 times
successively.

Corollary. L(K>3) is the category of 2-parameter persistence
modules up to finite diagrams:

L(K2) = Kk[t1,t2]-mod/{finite modules}.

~ Large-scale behavior of the persistence module.
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Rank invariant
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Rank invariant

Definition. Let M be an R-module. The rank invariant of M is
the function assigning to each pair of multidegrees a@,b € N with
a < b the integer

rkys(@,b) = rank <M(6) LN M(“)) .

Introduced by Carlsson and Zomorodian (2009). Widely studied
invariant of multiparameter persistence modules.
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Rank invariant is not enough

The rank invariant of an R-module does not determine Ly (M).

Example. In the case m = 2:

M = (t1,t2) @ t1t2R
N=tiR®t2R

have the same rank invariant.

However, they have different Ks-localizations in £(K3):

LKz(M) = [(an)a OO) ® [(13 1)700)
Lg,(N)=][(1,0),00) & [(0,1), 00).
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Same rank invariant

M N
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Rank invariant is sometimes enough
Proposition. For K = K,,,, the rank invariant of an R-module M
determines the Ry,-modules M,, and the k-vector space M.

Proposition. If M lies in the image of the right adjoint
(delocalization functor)

PKs: E(KQ) — k[t1,t2]—m0d,
then the rank invariant of M determines the localization Ly, (M).

Proposition. The following refinement of the rank invariant of M
determines the localization L, (M ). For all three bidegrees

a, b ¢ € N? satisfying @ < ¢ and b < ¢, take the dimension of the
intersection of images

dimy (im <M(a) AN M(a) M im (M(*) ki M(E))) .
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Towards applications

Question. Given an R-module M, find efficient algorithms to
compute the decomposition of Ly, (M) in L(K3).

Question. Are there applications of persistent homology where
the large-scale behavior is useful?
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Thank you!
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