The algebra of tertiary cohomology operations

Hans-Joachim Baues and Martin Frankland*

Max-Planck-Institut für Mathematik Bonn

Ruhr-Universität Bochum 24th NRW Topology Meeting November 13, 2015

- 2 d_2 via secondary resolutions
- \bigcirc *d_r* and higher null-homotopies
 - In dimension 2

X, *Y* finite spectra, $H^*X := H^*(X; \mathbb{F}_p)$. The classical Adams spectral sequence is

$$E_2^{s,t} = \mathsf{Ext}_{\mathfrak{A}}^{s,t} \left(H^*Y, H^*X \right) \Rightarrow [\Sigma^{t-s}X, Y_{\rho}^{\wedge}]$$

where $\mathfrak{A} = H\mathbb{F}_p^* H\mathbb{F}_p$ is the mod *p* Steenrod algebra. In particular, $X = Y = S^0$ yields

$$\mathsf{E}^{s,t}_2 = \mathsf{Ext}^{s,t}_{\mathfrak{A}} \big(\mathbb{F}_{\rho}, \mathbb{F}_{\rho} \big) \Rightarrow \pi^S_{t-s}(S^0)^{\wedge}_{\rho}.$$

Adams resolution

Adams resolution of Y:

where:

- *K_s* = ∏_i Σ^{n_i} *H*ℙ_p degreewise finite, bounded below.
 H^{*}*i*_s = 0.
- Fiber sequences $Y_{s+1} \xrightarrow{i_s} Y_s \xrightarrow{p_s} K_s$.

 \leftrightarrow Injective resolution of *Y*:

$$0 \longrightarrow Y \xrightarrow{p_0} K_0 \xrightarrow{d_1} \Sigma K_1 \xrightarrow{d_1} \Sigma^2 K_2 \xrightarrow{d_1} \cdots$$

Differentials as higher cohomology operations

Take $[x] \in E_2^{s,t}$ represented by a cycle $x \in E_1^{s,t} = [\Sigma^{t-s}X, K_s]$. Recall that $d_2[x] \in E_2^{s+2,t+1}$ is obtained as:

 $d_2(x)$ is a certain element of the Toda bracket $\langle \Sigma d_1, d_1, x \rangle$. This is a *secondary* cohomology operation. d_r is given by r^{th} order cohomology operations [Maunder 1964].

Idea: The resolution encodes *coherent* witnesses of the equations $d_1 d_1 = 0$.

Different approaches:

- *Triangulated*: Witnesses are lifts to fibers or extensions to cofibers. [Christensen–F. 2015]
- *Topologically enriched*: Witnesses are null-homotopies, i.e., paths (and cubes) to zero in mapping spaces. [Baues–Jibladze 2006, 2010, Baues–Blanc 2015]

Ultimate goal

Compute d_3 .

Actual goals

- Describe the algebraic structure involved in computing d₃.
 Ref: 2-track algebras and the Adams spectral sequence. To appear.
- Revisit and streamline the work of Baues on secondary operations.
 Ref: The DG-algebra of secondary cohomology operations. *In preparation*.
- Use a similar strategy to tackle tertiary operations. Ref: Work in progress...

Notation

- Top_{*} := pointed topological spaces. Basepoints are denoted 0 ∈ X. Enrichment means in (Top_{*}, ∧).
- **Spec** := topologically enriched category of spectra.
- $\Pi_{(1)}X :=$ fundamental groupoid of a space X.
- A *pointed* groupoid G is equipped with a base object, denoted 0 ∈ G₀.
- Composition in a groupoid is denoted □, with identity id_x[□]: x → x and inverse of f: x → y denoted f[□]: y → x.

Definition

Let G be a category enriched in pointed groupoids. A **secondary pre-chain complex** (A, d, γ) in G is:

 (A, d, γ) is a secondary chain complex if moreover for each $n \in \mathbb{Z}$:

$$d_{n-1}\gamma_n = \gamma_{n-1}d_{n+1} \colon d_{n-1}d_nd_{n+1} \Rightarrow 0.$$

Baues, Frankland (MPIM)

Tertiary operations

In other words:

$$(\gamma_{n-1}d_{n+1})\Box (d_{n-1}\gamma_n)^{\exists} = \mathrm{id}_0^{\Box}: 0 \Rightarrow 0$$

in the groupoid $\mathcal{G}(A_{n+2}, A_{n-1})$. Note that this track is in the Toda bracket

$$\langle d_{n+1}, d_n, d_{n-1} \rangle \subseteq \pi_1 \mathcal{G} \left(A_{n+2}, A_{n-1} \right).$$

These Toda brackets vanish *coherently*.

d_2 via secondary resolutions

Adams spectral sequence abutting to [X, Y], with $E_2^{s,t} = \operatorname{Ext}_{\mathfrak{A}}^{s,t}(H^*Y, H^*X).$

Free resolution of H^*Y as \mathfrak{A} -module:

$$\cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow H^* Y_1$$

Realize topologically as the cohomology of a diagram in the stable homotopy category π_0 **Spec**:

$$\cdots \leftarrow A_2 \leftarrow A_1 \leftarrow A_1 \leftarrow A_0 \leftarrow A_{-1} = Y$$

with $A_s \simeq \prod_i \Sigma^{n_i} H \mathbb{F}_p$ (for $s \ge 0$) and $H^* A_s \simeq F_s$. Since we prefer chain complexes to cochain complexes, work in the opposite category $\pi_0 \operatorname{Spec}^{\operatorname{op}}$:

$$\cdots \longrightarrow A_2 \xrightarrow{d_1} A_1 \xrightarrow{d_0} A_0 \xrightarrow{\epsilon} A_{-1} = Y.$$

d_2 via secondary resolutions (cont'd)

- Lift this resolution $A_{\bullet} \to Y$ in $\pi_0 \operatorname{Spec}^{\operatorname{op}}$ to a secondary resolution (A, d, γ) in $\Pi_{(1)} \operatorname{Spec}^{\operatorname{op}}$.
- Start with a class x ∈ E^{s,t}₂ = Ext^{s,t}_𝔄(H^{*}Y, H^{*}X) represented by a cocycle x' : F_s → Σ^tH^{*}X.
- Realize x' as the cohomology of a map $x'' : A_s \to \Sigma^t X$ in **Spec**^{op}.
- The equation $x'd_s = 0$ means that $x''d_s$ is null-homotopic. Choose a null-homotopy $\gamma : x''d_s \Rightarrow 0$.

Theorem (Baues–Jibladze 2006)

The obstruction

$$\gamma d_{s+1} \square \ (X'' \gamma_s)^{\exists} \in \pi_1 \mathbf{Spec}^{\mathrm{op}}(A_{s+2}, \Sigma^t X) = \pi_0 \mathbf{Spec}^{\mathrm{op}}(A_{s+2}, \Sigma^{t+1} X)$$

is a (co)cycle and does not depend on the choices, up to (co)boundaries, and thus defines an element:

$$d_{(2)}(x) \in \mathsf{Ext}^{s+2,t+1}_{\mathfrak{A}}(H^*Y,H^*X).$$

This is the Adams differential d_2 .

Question

How to generalize this constuction to higher differentials d_r ?

An answer

Use higher dimensional null-homotopies, i.e., cubes to zero. Describe how the cubes paste together.

Cubes in a space

Definition

Let X be a pointed space.

- An n-cube in X is a map $a: I^n \to X$.
- An n-track in X is the homotopy class $\{a\}$ rel ∂I^n .
- A left n-cube in X is an n-cube a satisfying a(t₁,..., t_n) = 0 whenever a coordinate t_k = 1.
- A left n-track is the homotopy class rel ∂lⁿ of a left n-cube.

NRW 2015

18/32

Definition

- The **singular cubical set** S[□](X) of X has S[□](X)_n = Map(Iⁿ, X) and restriction maps along the 2n faces (and degeneracies).
- The left cubical set nul(X) of X has nul(X)_n = {left n-cubes in X} and restriction maps along the n "left" faces (no degeneracies anymore).
- The left n-cubical set Nul_n(X) of X has

$$\operatorname{Nul}_{n}(X)_{k} = \begin{cases} \operatorname{left} k \operatorname{-cubes} \operatorname{in} X & \operatorname{if} k < n \\ \operatorname{left} n \operatorname{-tracks} \operatorname{in} X & \operatorname{if} k = n \end{cases}$$

Let *C* be **Top**_{*}-enriched, with composition

$$C(B, C) \wedge C(A, B) \xrightarrow{\mu} C(A, C).$$

Given cubes $b: I^m \to C(B, C)$ and $a: I^n \to C(A, B)$ the \otimes -composition of *b* and *a* is the (m + n)-cube

$$b \otimes a \colon I^{m+n} = I^m \times I^n \xrightarrow{b \times a} C(B, C) \times C(A, B) \xrightarrow{\mu} C(A, B).$$

The \otimes -composition of left cubes is a left cube. Take the left *n*-cubical set of each mapping space

$$(\operatorname{Nul}_n C)(A, B) := \operatorname{Nul}_n(C(A, C)).$$

This makes Nul *C* into an *n*-graded category.

"Definition"

A **left** *n***-cubical ball** in a pointed space *X* consists of left *n*-tracks in *X* that paste together into a disk D^n whose boundary sphere ∂D^n consists of the "right" sides, all mapped to the basepoint of *X*. This defines a homotopy class of map $(D^n, \partial D^n) \rightarrow (X, 0)$, i.e., an element of $\pi_n X$.

"Definition"

An **algebra of left** *n*-cubical balls is roughly the algebraic structure found in Nul_{*n*}*C*, where *C* is **Top**_{*}-enriched. The important piece of data is an *obstruction operator*, which gives the value in $\pi_n X$ of left *n*-cubical balls. Some left cubical balls of dimension 2:

Back to our finite spectra X and Y. Take the **Top**_{*}-enriched category of GEM spectra, along with mapping spaces from X or Y into GEM spectra. Let C be the opposite category.

Theorem (Baues–Blanc 2015)

The algebra of left n-cubical balls $Nul_n C$ determines the Adams differential d_{n+1} .

Idea: Lift the \mathfrak{A} -module resolution of H^*Y to a higher order resolution in Nul_nC. Proceed as before.

Problem

The combinatorics of cubical balls becomes messy in higher dimensions. Cubical balls of dimension *n* correspond to triangulations of the sphere $\partial D^n = S^{n-1}$.

Good news

No complication when n = 2.

Specialize [Baues–Blanc] to n = 2.

Definition

Let X be a pointed space. Consider the groupoid $\Pi_{(2)}(X)$ with objects the left 1-cubes in X, and morphisms the left 2-tracks in X:

$$a \Big| \underbrace{\underbrace{0}}_{b} \Big| 0$$

The **fundamental** 2-**track groupoid** of *X* is the pair of pointed groupoids

$$\exists_{(1,2)}(X) := (\exists_{(1)}(X), \exists_{(2)}(X))$$

+ a bit of extra structure.

Definition

A 2-track groupoid is a pair of pointed groupoids

$$G = \left(G_{(1)}, G_{(2)}\right)$$

with:

- $G_{(2)}$ is equipped with isomorphisms ψ_a : $Aut(a) \xrightarrow{\simeq} Aut(0)$ for each object *a*, which commute with change of basepoint isomorphisms.
- **2** A bijection between components of $G_{(2)}$ and morphisms to 0 in $G_{(1)}$.

Definition

The homotopy groups of a 2-track groupoid G are

$$\pi_0 G = \text{Comp } G_{(1)}$$

 $\pi_1 G = \text{Aut}_{G_{(1)}}(0)$
 $\pi_2 G = \text{Aut}_{G_{(2)}}(0).$

A morphism $F: G \rightarrow G'$ of 2-track groupoids is a **weak equivalence** if it induces isomorphisms on homotopy groups.

Note: $\pi_i \Pi_{(1,2)}(X) = \pi_i X$.

The fundamental 2-track groupoid $\Pi_{(1,2)}(X)$ remembers much less than the homotopy 2-type of *X*.

Proposition

Connected 2-track groupoids G and G' are weakly equivalent if and only if they have isomorphic homotopy groups π_1 and π_2 .

"Definition"

A 2-track algebra is roughly the algebraic structure found in $\Pi_{(1,2)}C$ for a **Top**_{*}-enriched category *C*.

Can define tertiary (pre-)chain complexes in a 2-track algebra.

Take C as before.

Theorem (Baues–F. 2015)

- The 2-track algebra $\Pi_{(1,2)}C$ determines the Adams differential d_3 .
- This construction of d₃ depends only on the weak equivalence class of the 2-track algebra.

Idea: The obstruction operator in $\Pi_{(1,2)}C$ is given by concatenating left 2-tracks.

Thank you!