The algebra of tertiary cohomology operations

Hans-Joachim Baues and Martin Frankland*

Max-Planck-Institut fir Mathematik Bonn

Ruhr-Universitat Bochum
24" NRW Topology Meeting
November 13, 2015

Baues, Frankland (MPIM) Tertiary operations NRW 2015 1/32



0 Background
e d> via secondary resolutions
e dr and higher null-homotopies

e In dimension 2
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Classical Adams spectral sequence

X, Y finite spectra, H*X := H*(X;Fp). The classical Adams spectral
sequence is

E3'=Exty' (H'Y.H X) = [Z"°X, V)]

where U = HF, HFp is the mod p Steenrod algebra. In particular,
X =Y = S%yields

,t Jt S
Es' = Exty! (Fp. Fp) = 77 (S%)p.
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Adams resolution

Adams resolution of Y:

=Y o Yi i Yo iz Y3
N AN A NA
Ko Ki Kz

where:
@ Ks = [1;X""HF, degreewise finite, bounded below.

Y

. i P
@ Fiber sequences Ys 1 — Ys — K.
«v Injective resolution of Y:

dy a4 di

0 y 2. K

Y Kq Y2K,
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Differentials as higher conomology operations

Take [x] € E5' represented by a cycle x € E>' = [Z175X, K;]. Recall
that db[x] € E2S+2 1 is obtained as:

Is41 Ist2

Ysi3

\/A/QA/@
o

Zt,SX dZ(X)

da(x) is a certain element of the Toda bracket (X ds, dj, x).
This is a secondary cohomology operation.
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Differentials as higher conomology operations (cont'd)

d, is given by r'" order cohomology operations [Maunder 1964].

Idea: The resolution encodes coherent withesses of the equations
didy = 0.

Different approaches:

@ Triangulated: Witnesses are lifts to fibers or extensions to
cofibers. [Christensen—F. 2015]

@ Topologically enriched: Witnesses are null-homotopies, i.e., paths

(and cubes) to zero in mapping spaces. [Baues—Jibladze 2006,
2010, Baues—Blanc 2015]
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Goals
Ultimate goal
Compute ds.

Actual goals

@ Describe the algebraic structure involved in computing ds.
Ref: 2-track algebras and the Adams spectral sequence. To
appeatr.

@ Reuvisit and streamline the work of Baues on secondary
operations.
Ref: The DG-algebra of secondary cohomology operations. In
preparation.

@ Use a similar strategy to tackle tertiary operations.
Ref: Work in progress...
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Notation

@ Top. := pointed topological spaces. Basepoints are denoted
0 € X. Enrichment means in (Top,, A).

@ Spec := topologically enriched category of spectra.
@ )X := fundamental groupoid of a space X.

@ A pointed groupoid G is equipped with a base object, denoted
0e Go.

@ Composition in a groupoid is denoted o, with identity id} : x — x
and inverse of f: x — y denoted f®: y — x.

Baues, Frankland (MPIM) Tertiary operations NRW 2015 10/32



Secondary chain complexes

Let G be a category enriched in pointed groupoids. A secondary
pre-chain complex (A,d,y) inG is:

s Angp e A T AT Ay

! NS

(A, d,y) is a secondary chain complex if moreover for each n € Z:

An-1Yn = Yn-10n41: Ap_1dpdpi1 = 0.
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Secondary chain complexes (cont'd)

In other words:

(Yn-1dn1) O (dn—ﬂ’n)EI = idg :0=0

in the groupoid G(An.2, An—1). Note that this track is in the Toda bracket

<dn+1 , dn, dn—1> cmg (An+29 An-1 ) .

These Toda brackets vanish coherently.
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d> via secondary resolutions

Adams spectral sequence abutting to [X, Y], with
Ey' = Exty! (HY,H*X).

Free resolution of H*Y as 2A-module:
Fs Fi Fo H*Y.

Realize topologically as the cohnomology of a diagram in the stable
homotopy category nySpec:

di b

with As =~ [1; X""HF,, (for s > 0) and H*As = Fs.
Since we prefer chain complexes to cochain complexes, work in the
opposite category roSpec*®:

Ag—=A =Y.
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d> via secondary resolutions (cont’d)

@ Lift this resolution A, — Y in npSpec to a secondary resolution
(A,d.y)in N Spec™.

@ Start with a class x € ESt ExtS t(H* Y, H*X) represented by a
cocycle x": Fg — ):fH*X

@ Realize x’ as the cohomology of a map x”: As — L!X in Spec*®.

@ The equation x’ds = 0 means that x”’ds is null-homotopic.
Choose a null-homotopy y: x”ds = 0.

0 0

m
m ds+1 d

Asps—2 Agip =L Agy —Z pg X six

0 0
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d> via secondary resolutions (cont’d)

Theorem (Baues—Jibladze 2006)
The obstruction

y0si10 (X"ys)" € 11Spec®(As 2, TIX) = noSpec® (As2, X1 X)

is a (co)cycle and does not depend on the choices, up to
(co)boundaries, and thus defines an element:

doy(x) € ExtS2H (H Y, H* X).

This is the Adams differential d>.
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Generalizing to d;

How to generalize this constuction to higher differentials d,? \

Use higher dimensional null-homotopies, i.e., cubes to zero. Describe
how the cubes paste together.
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Cubes in a space

Let X be a pointed space.
@ Ann-cubein X isamap a: I" — X.
@ An n-track in X is the homotopy class {a} rel 41".

@ A left n-cube in X is an n-cube a satisfying a(t;,...,t;) =0
whenever a coordinate ty = 1.

@ A left n-track is the homotopy class rel 1" of a left n-cube.

Aleft 1-cube: X ‘ 0
0

A left 2-cube:
a 0
b
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Left cubical sets

@ The singular cubical set S” (X) of X has S° (X), = Map(/", X)
and restriction maps along the 2n faces (and degeneracies).

@ The left cubical set nul(X) of X has nul(X), = {left n-cubes in X}
and restriction maps along the n “left” faces (no degeneracies
anymore).

@ The left n-cubical set Nul,(X) of X has

left k-cubes in X ifk <n
left n-tracks in X ifk =n

Nuln(X), = {
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Product of cubes

Let C be Top,-enriched, with composition

C(B,C) AC(A,B) 5 C(A, C).

Given cubes b: I — C(B, C) and a: I" — C(A, B) the -composition
of b and ais the (m + n)-cube

bea: ™" = I"x " % c(B,C) x C(A.B) %5 C(A, B).
The ®-composition of left cubes is a left cube. Take the left n-cubical
set of each mapping space
(Nul, C)(A, B) := Nul, (C(A, C)).

This makes Nul C into an n-graded category.
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Cubical balls

A left n-cubical ball in a pointed space X consists of left n-tracks in X
that paste together into a disk D" whose boundary sphere dD" consists
of the “right” sides, all mapped to the basepoint of X. This defines a
homotopy class of map (D",dD") — (X, 0), i.e., an element of 7, X.

An algebra of left n-cubical balls is roughly the algebraic structure
found in Nul, C, where C is Top,-enriched.

The important piece of data is an obstruction operator, which gives the
value in 7, X of left n-cubical balls.

v
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Cubical balls (cont’d)

Some left cubical balls of dimension 2:
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Obtaining d,

Back to our finite spectra X and Y. Take the Top,-enriched category of
GEM spectra, along with mapping spaces from X or Y into GEM
spectra. Let C be the opposite category.

Theorem (Baues—Blanc 2015)

The algebra of left n-cubical balls Nul, C determines the Adams
differential dp 1.

Idea: Lift the 2-module resolution of H*Y to a higher order resolution
in Nul, C. Proceed as before.
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Combinatorial difficulty

Problem

The combinatorics of cubical balls becomes messy in higher
dimensions. Cubical balls of dimension n correspond to triangulations
of the sphere 9D" = S"1.

Good news
No complication when n = 2.
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Fundamental 2-track groupoid

Specialize [Baues—Blanc] to n = 2.
Definition

Let X be a pointed space. Consider the groupoid 2 (X) with objects
the left 1-cubes in X, and morphisms the left 2-tracks in X:

The fundamental 2-track groupoid of X is the pair of pointed
groupoids
|_|(1,2)(X) = (n(1)(X), I'I(g)(X))

+ a bit of extra structure.
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2-track groupoids

A 2-track groupoid is a pair of pointed groupoids
G =(G). Gz)

with:
Q Gp) is equipped with isomorphisms y,: Aut(a) > Aut(0) for each
object a, which commute with change of basepoint isomorphisms.

@ A bijection between components of Gy and morphisms to 0 in
G1)-
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Weak equivalences

The homotopy groups of a 2-track groupoid G are
oG = Comp G(1)
mG= AUtGm(O)
G = AUtG(Z)(O).

A morphism F: G — G’ of 2-track groupoids is a weak equivalence if
it induces isomorphisms on homotopy groups.

.

Note: 7'(,'|_|(172)(X) =miX.
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Homotopy 2-types

The fundamental 2-track groupoid M4 2)(X) remembers much less
than the homotopy 2-type of X.

Proposition

Connected 2-track groupoids G and G’ are weakly equivalent if and
only if they have isomorphic homotopy groups m1 and r».
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2-track algebras

“Definition”

A 2-track algebra is roughly the algebraic structure found in I 2)C for
a Top.-enriched category C.

Can define tertiary (pre-)chain complexes in a 2-track algebra.
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Obtaining ds

Take C as before.
Theorem (Baues—F. 2015)

@ The 2-track algebra N4 »)C determines the Adams differential ds.

© This construction of d3 depends only on the weak equivalence
class of the 2-track algebra.

Idea: The obstruction operator in I(4 2)C is given by concatenating left
2-tracks.
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Thank you!
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