The algebra of tertiary cohomology operations

Hans-Joachim Baues and Martin Frankland*

Max-Planck-Institut für Mathematik Bonn
Ruhr-Universität Bochum
$24^{\text {th }}$ NRW Topology Meeting
November 13, 2015

Outline

(9) Background
(2) d_{2} via secondary resolutions
(3) d_{r} and higher null-homotopies
(4) In dimension 2

Classical Adams spectral sequence

X, Y finite spectra, $H^{*} X:=H^{*}\left(X ; \mathbb{F}_{p}\right)$. The classical Adams spectral sequence is

$$
E_{2}^{s, t}=\mathrm{Ext}_{2 t}^{s, t}\left(H^{*} Y, H^{*} X\right) \Rightarrow\left[\Sigma^{t-s} X, Y_{p}^{\wedge}\right]
$$

where $\mathfrak{A}=H \mathbb{F}_{p}^{*} H \mathbb{F}_{p}$ is the $\bmod p$ Steenrod algebra. In particular, $X=Y=S^{0}$ yields

$$
E_{2}^{s, t}=\operatorname{Exx}_{\mathfrak{2}}^{s, t}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Rightarrow \pi_{t-s}^{S}\left(S^{0}\right)_{p}^{\wedge}
$$

Adams resolution

Adams resolution of Y :

where:

- $K_{s}=\prod_{i} \Sigma^{n_{i}} H \mathbb{F}_{p}$ degreewise finite, bounded below.
- $H^{*} i_{s}=0$.
- Fiber sequences $Y_{s+1} \xrightarrow{i_{s}} Y_{s} \xrightarrow{p_{s}} K_{s}$.
\leadsto Injective resolution of Y :

$$
0 \longrightarrow Y \xrightarrow{p_{0}} K_{0} \xrightarrow{d_{1}} \Sigma K_{1} \xrightarrow{d_{1}} \Sigma^{2} K_{2} \xrightarrow{d_{1}} \cdots
$$

Differentials as higher cohomology operations

Take $[x] \in E_{2}^{s, t}$ represented by a cycle $x \in E_{1}^{s, t}=\left[\Sigma^{t-s} X, K_{s}\right]$. Recall that $d_{2}[x] \in E_{2}^{s+2, t+1}$ is obtained as:

$d_{2}(x)$ is a certain element of the Toda bracket $\left\langle\Sigma d_{1}, d_{1}, x\right\rangle$. This is a secondary cohomology operation.

Differentials as higher cohomology operations (cont'd)

d_{r} is given by $r^{\text {th }}$ order cohomology operations [Maunder 1964].
Idea: The resolution encodes coherent witnesses of the equations $d_{1} d_{1}=0$.

Different approaches:

- Triangulated: Witnesses are lifts to fibers or extensions to cofibers. [Christensen-F. 2015]
- Topologically enriched: Witnesses are null-homotopies, i.e., paths (and cubes) to zero in mapping spaces. [Baues-Jibladze 2006, 2010, Baues-Blanc 2015]

Goals

Ultimate goal

Compute d_{3}.

Actual goals

- Describe the algebraic structure involved in computing d_{3}. Ref: 2-track algebras and the Adams spectral sequence. To appear.
- Revisit and streamline the work of Baues on secondary operations.
Ref: The DG-algebra of secondary cohomology operations. In preparation.
- Use a similar strategy to tackle tertiary operations. Ref: Work in progress...

Notation

Notation

- Top ${ }_{*}:=$ pointed topological spaces. Basepoints are denoted $0 \in X$. Enrichment means in (Top,\wedge).
- Spec $:=$ topologically enriched category of spectra.
- $\Pi_{(1)} X:=$ fundamental groupoid of a space X.
- A pointed groupoid G is equipped with a base object, denoted $0 \in G_{0}$.
- Composition in a groupoid is denoted \square, with identity $\mathrm{id}_{x}^{\square}: x \rightarrow x$ and inverse of $f: x \rightarrow y$ denoted $f^{\boxminus}: y \rightarrow x$.

Secondary chain complexes

Definition

Let \mathcal{G} be a category enriched in pointed groupoids. A secondary pre-chain complex (A, d, γ) in \mathcal{G} is:

(A, d, γ) is a secondary chain complex if moreover for each $n \in \mathbb{Z}$:

$$
d_{n-1} \gamma_{n}=\gamma_{n-1} d_{n+1}: d_{n-1} d_{n} d_{n+1} \Rightarrow 0
$$

Secondary chain complexes (cont'd)

In other words:

$$
\left(\gamma_{n-1} d_{n+1}\right) \square\left(d_{n-1} \gamma_{n}\right)^{घ}=\mathrm{id}_{0}^{\square}: 0 \Rightarrow 0
$$

in the groupoid $\mathcal{G}\left(A_{n+2}, A_{n-1}\right)$. Note that this track is in the Toda bracket

$$
\left\langle d_{n+1}, d_{n}, d_{n-1}\right\rangle \subseteq \pi_{1} \mathcal{G}\left(A_{n+2}, A_{n-1}\right) .
$$

These Toda brackets vanish coherently.

d_{2} via secondary resolutions

Adams spectral sequence abutting to $[X, Y]$, with

$$
E_{2}^{s, t}=E_{2 x}^{s, t}\left(H^{*} Y, H^{*} X\right) .
$$

Free resolution of $H^{*} Y$ as $\mathfrak{\Omega}$-module:

$$
\cdots \longrightarrow F_{2} \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow H^{*} Y .
$$

Realize topologically as the cohomology of a diagram in the stable homotopy category π_{0} Spec:

$$
\cdots \longleftarrow A_{2} \stackrel{d_{1}}{\leftrightarrows} A_{1} \stackrel{d_{0}}{\leftrightarrows} A_{0} \stackrel{\epsilon}{\leftarrow} A_{-1}=Y
$$

with $A_{s} \simeq \prod_{i} \sum^{n_{i}} H \mathbb{F}_{p}$ (for $s \geq 0$) and $H^{*} A_{s} \cong F_{s}$.
Since we prefer chain complexes to cochain complexes, work in the opposite category π_{0} Spec $^{\mathrm{op}}$:

$$
\cdots \longrightarrow A_{2} \xrightarrow{d_{1}} A_{1} \xrightarrow{d_{0}} A_{0} \xrightarrow{\epsilon} A_{-1}=Y .
$$

d_{2} via secondary resolutions (cont'd)

- Lift this resolution $A_{0} \rightarrow Y$ in π_{0} Spec $^{\text {op }}$ to a secondary resolution (A, d, γ) in $\Pi_{(1)}$ Spec $^{\text {op }}$.
- Start with a class $x \in E_{2}^{s, t}=E x t_{21}^{s, t}\left(H^{*} Y, H^{*} X\right)$ represented by a cocycle $x^{\prime}: F_{s} \rightarrow \Sigma^{t} H^{*} X$.
- Realize x^{\prime} as the cohomology of a map $x^{\prime \prime}: A_{s} \rightarrow \Sigma^{t} X$ in Spec ${ }^{\text {op }}$.
- The equation $x^{\prime} d_{s}=0$ means that $x^{\prime \prime} d_{s}$ is null-homotopic. Choose a null-homotopy $\gamma: x^{\prime \prime} d_{s} \Rightarrow 0$.

d_{2} via secondary resolutions (cont'd)

Theorem (Baues-Jibladze 2006)

The obstruction

$$
\gamma d_{s+1} \square\left(x^{\prime \prime} \gamma_{s}\right)^{घ} \in \pi_{1} \mathbf{S p e c}^{\mathrm{op}}\left(A_{s+2}, \Sigma^{t} X\right)=\pi_{0} \mathbf{S p e c}^{\mathrm{op}}\left(A_{s+2}, \Sigma^{t+1} X\right)
$$

is a (co)cycle and does not depend on the choices, up to (co)boundaries, and thus defines an element:

$$
d_{(2)}(x) \in \operatorname{Ext}_{21}^{s+2, t+1}\left(H^{*} Y, H^{*} X\right) .
$$

This is the Adams differential d_{2}.

Generalizing to d_{r}

Question

How to generalize this constuction to higher differentials d_{r} ?

An answer

Use higher dimensional null-homotopies, i.e., cubes to zero. Describe how the cubes paste together.

Cubes in a space

Definition

Let X be a pointed space.

- An n-cube in X is a map a: $I^{n} \rightarrow X$.
- An n-track in X is the homotopy class $\{a\}$ rel ∂I^{n}.
- A left n-cube in X is an n-cube a satisfying $a\left(t_{1}, \ldots, t_{n}\right)=0$ whenever a coordinate $t_{k}=1$.
- A left n-track is the homotopy class rel ∂I^{n} of a left n-cube.

A left 1-cube:

A left 2-cube:

Left cubical sets

Definition

- The singular cubical set $S^{\square}(X)$ of X has $S^{\square}(X)_{n}=\operatorname{Map}\left(I^{n}, X\right)$ and restriction maps along the $2 n$ faces (and degeneracies).
- The left cubical set $\operatorname{nul}(X)$ of X has $\operatorname{nul}(X)_{n}=\{$ left n-cubes in $X\}$ and restriction maps along the n "left" faces (no degeneracies anymore).
- The left n-cubical set $\operatorname{Nul}_{n}(X)$ of X has

$$
\operatorname{NuI}_{n}(X)_{k}= \begin{cases}\text { left } k \text {-cubes in } X & \text { if } k<n \\ \text { left } n \text {-tracks in } X & \text { if } k=n\end{cases}
$$

Product of cubes

Let C be Top $_{*}$-enriched, with composition

$$
C(B, C) \wedge C(A, B) \xrightarrow{\mu} C(A, C)
$$

Given cubes $b: I^{m} \rightarrow C(B, C)$ and $a: I^{n} \rightarrow C(A, B)$ the \otimes-composition of b and a is the $(m+n)$-cube

$$
b \otimes a: I^{m+n}=I^{m} \times I^{n} \xrightarrow{b \times a} C(B, C) \times C(A, B) \xrightarrow{\mu} C(A, B) .
$$

The \otimes-composition of left cubes is a left cube. Take the left n-cubical set of each mapping space

$$
\left(\operatorname{Nul}_{n} C\right)(A, B):=\operatorname{Nul}_{n}(C(A, C))
$$

This makes Nul C into an n-graded category.

Cubical balls

"Definition"

A left n-cubical ball in a pointed space X consists of left n-tracks in X that paste together into a disk D^{n} whose boundary sphere ∂D^{n} consists of the "right" sides, all mapped to the basepoint of X. This defines a homotopy class of map $\left(D^{n}, \partial D^{n}\right) \rightarrow(X, 0)$, i.e., an element of $\pi_{n} X$.

"Definition"

An algebra of left n-cubical balls is roughly the algebraic structure found in $\mathrm{NuI}_{n} C$, where C is Top_{*}-enriched.
The important piece of data is an obstruction operator, which gives the value in $\pi_{n} X$ of left n-cubical balls.

Cubical balls (cont'd)

Some left cubical balls of dimension 2:

Obtaining d_{r}

Back to our finite spectra X and Y. Take the Top $_{*}$-enriched category of GEM spectra, along with mapping spaces from X or Y into GEM spectra. Let C be the opposite category.

Theorem (Baues-Blanc 2015)

The algebra of left n-cubical balls $\operatorname{Nul}_{n} C$ determines the Adams differential d_{n+1}.

Idea: Lift the \mathfrak{A}-module resolution of $H^{*} Y$ to a higher order resolution in $\mathrm{Nul}_{n} C$. Proceed as before.

Combinatorial difficulty

Problem

The combinatorics of cubical balls becomes messy in higher dimensions. Cubical balls of dimension n correspond to triangulations of the sphere $\partial D^{n}=S^{n-1}$.

Good news

No complication when $n=2$.

Fundamental 2-track groupoid

Specialize [Baues-Blanc] to $n=2$.

Definition

Let X be a pointed space. Consider the groupoid $\Pi_{(2)}(X)$ with objects the left 1-cubes in X, and morphisms the left 2-tracks in X :

The fundamental 2-track groupoid of X is the pair of pointed groupoids

$$
\Pi_{(1,2)}(X):=\left(\Pi_{(1)}(X), \Pi_{(2)}(X)\right)
$$

+ a bit of extra structure.

2-track groupoids

Definition

A 2-track groupoid is a pair of pointed groupoids

$$
G=\left(G_{(1)}, G_{(2)}\right)
$$

with:
(1) $G_{(2)}$ is equipped with isomorphisms $\psi_{a}: \operatorname{Aut}(a) \xrightarrow{\simeq} \operatorname{Aut}(0)$ for each object a, which commute with change of basepoint isomorphisms.
(2) A bijection between components of $G_{(2)}$ and morphisms to 0 in $G_{(1)}$.

Weak equivalences

Definition

The homotopy groups of a 2-track groupoid G are

$$
\begin{aligned}
& \pi_{0} G=\operatorname{Comp} G_{(1)} \\
& \pi_{1} G=\operatorname{Aut}_{G_{(1)}}(0) \\
& \pi_{2} G=\operatorname{Aut}_{G_{(2)}}(0) .
\end{aligned}
$$

A morphism F: $G \rightarrow G^{\prime}$ of 2-track groupoids is a weak equivalence if it induces isomorphisms on homotopy groups.

Note: $\pi_{i} \Pi_{(1,2)}(X)=\pi_{i} X$.

Homotopy 2-types

The fundamental 2-track groupoid $\Pi_{(1,2)}(X)$ remembers much less than the homotopy 2-type of X.

Proposition

Connected 2-track groupoids G and G^{\prime} are weakly equivalent if and only if they have isomorphic homotopy groups π_{1} and π_{2}.

2-track algebras

"Definition"

A 2-track algebra is roughly the algebraic structure found in $\Pi_{(1,2)} \mathcal{C}$ for a Top ${ }_{*}$-enriched category C.

Can define tertiary (pre-)chain complexes in a 2-track algebra.

Obtaining d_{3}

Take C as before.

Theorem (Baues-F. 2015)

(1) The 2-track algebra $\Pi_{(1,2)} C$ determines the Adams differential d_{3}.
(2) This construction of d_{3} depends only on the weak equivalence class of the 2-track algebra.

Idea: The obstruction operator in $\Pi_{(1,2)} C$ is given by concatenating left 2-tracks.

Thank you!

