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Beck modules provide a convenient notion of coefficient module to be used in
cohomology theories. The notion makes sense in a broad context, and recovers the
usual notions of module in familiar settings, such as groups, rings, commutative
rings, Lie algebras, etc. Instead of considering the category of modules over an
object, one can fit them together into a category of modules over all objects. In
these notes, we study that construction and its properties. The notes are meant
as an informal document, which includes many questions and comments while
omitting many proofs. Their main purpose is to present some ideas and promote
discussion.

First, some personal motivation. I’ve been working with Π-algebras, which are
graded groups with additional structure similar to that of the homotopy groups of a
space. I’m particularly interested in truncated Π-algebras, those whose groups are
zero above some dimension n. For example, the data of a 2-truncated Π-algebra
is precisely a group π1 and a module π2 over it. Morphisms are pairs of maps ( f1 :
π1 → π′1, f2 : π2 → π′2) such that f2 is f1-equivariant, i.e. f2(g · a) = f1(g) · f2(a).
The same data also describes a Π-algebra concentrated in dimensions 1 and n, for
any n > 1. Thus that category, whose objects consist of a group and a module over
it, appears in the study of certain homotopy types. Baues denotes it Mod∧Z [2, def
I.1.7]; we denote it ModGp, the category of modules over groups. I wanted to
generalize that construction to ModC, the category of modules over objects of C,
and study its properties.

∗Notes for a talk at the Graduate Student Topology and Geometry Conference 2010, University
of Michigan, Ann Arbor.
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Section 1 gives background material on Beck modules and some related con-
structions. Section 2 gives examples in familiar categories. Section 3 presents
the main construction – the fibered category of Beck modules – and some of its
properties. Section 4 investigates limits in that fibered category. Section 5 is a
digression about a representability property for Beck modules. Section 6 explains
how the construction looks vaguely like the tangent bundle of a manifold. Section
7 reformulates a familiar construction of Quillen’s in terms of our construction.

1 Beck modules
A good reference about Beck modules and what we can do with them is [1, chap
6], especially section 6.1 therein.

We work in a category C with finite limits.

Definition 1.1. A Beck module over an object X of C is an abelian group object
in the slice category C/X.

Notation. When it’s clear which category C we’re working in, the category of
Beck modules over X will sometimes be denoted ModX instead of Ab(C/X).

1.1 Functoriality
Proposition 1.2. If F : C → D is a pullback-preserving functor , then for any
object X in C, it induces a functor on modules

FX : Ab(C/X)→ Ab(D/F(X)).

Moreover, FX is additive.

Proof. F induces a functor C/X → D/F(X), which automatically preserves the
terminal object (namely, the identity). This functor preserves finite products iff F
preserves pullbacks over X, hence it suffices to prove the “absolute” version, i.e.
if F : C → D preserves finite products (including the terminal object), then it
induces an additive functor

F : Ab(C)→ Ab(D).

If A is an abelian group object in C, then F applied to the structure maps of A
yields structure maps for F(A), and F applied to the structure (condition) diagrams
of A yields structure diagrams for F(A).
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Addition in HomAb(D)(FM, FN) is given by (µFN)∗ = (F(µN))∗, hence F is
additive. In other words, for f , g ∈ HomAb(C)(M,N), we have

F( f + g) = F(µN( f × g)∆N)
= F(µN)F( f × g)F(∆N)
= µFN(F f × Fg)∆FN

= F f + Fg.

�

Remark 1.3. By abuse of notation, we called the induced functor F also. The
notation Ab(F) or F∗ might have been more appropriate, although more cumber-
some.

In fact, the condition of preserving pullbacks (including finite products and
the terminal object) is too strong. Recall that equalizers are a special case of
pullbacks. If f , g : X → Y are two maps, their equalizer is the pullback

Eq( f , g)

��

// X
(id,g)
��

X (id, f )
// X × Y

which can be thought of as the “intersection of the graphs of f and g”. Thus
preserving pullbacks is the same as preserving finite limits (assuming there is a
terminal object). In particular, the induced functor is then left exact.

In order for F to induce a functor F : Ab(C/X) → Ab(D/FX) on Beck mod-
ules, it suffices that F preserve kernel pairs of split epimorphisms. By kernel pair
of a map, we mean the pullback of the map along itself.

Non-example 1.4. Consider the functor F : Gp → Gp that associates to a group
the free group on its underlying set, i.e. the comonad of the Free/Forget adjunc-
tion. Then F does NOT induce a functor on Beck modules.

To see this, use the fact (2.4) that a Beck module over a group G is a split
extension p : E → G (plus the data of the splitting) with abelian kernel, which
can be viewed as the semi-direct product G n M → G. Take the trivial group 1
and the module A → 1 over it, where A is any abelian group. Apply F to it. The
resulting split extension

F(A)→ F(1)
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does NOT have an abelian kernel. Indeed, F(A) is the group of words on elements
of A and their formal inverses, and the kernel of the map is the subgroup of words
whose exponents add to zero, e.g. a2b−3c. That subgroup is highly non-abelian
(as long as A is non-trivial), e.g. the elements ab−1 and a−1b do not commute.

1.2 Changing the ground object
We want to compare modules over different objects, using maps between them.

Proposition 1.5. If C has all pullbacks, then any map f : X → Y in C induces a
pullback functor on Beck modules

f ∗ : Ab(C/Y)→ Ab(C/X).

Moreover, f ∗ is additive.

Proof. First note that f induces a pullback functor on the slice categories

f ∗ : C/Y → C/X

which is right adjoint to the so-called direct image functor

f! : C/X → C/Y

given by postcomposition. Indeed, consider the following commutative diagram:

W
ϕ //

g
&&MMMMMMMMMMMMM f ∗Z = X ×Y Z

π1

��

π2 // Z
p
��

X f
// Y

We have the following correspondence:

HomC/X
(
W

g
→ X, f ∗(Z

p
→ Y)

)
= HomC/X(W

g
→ X, f ∗Z

π1
→ X)

= {ϕ : W → f ∗Z | g = π1ϕ}

= {ϕ1 = π1ϕ : W → X, ϕ2 = π2ϕ : W → Z | fϕ1 = pϕ2, ϕ1 = g}
= {ϕ2 : W → Z | f g = pϕ2}

= HomC/Y(W
f g
→ Y,Z

p
→ Y)

= HomC/Y

(
f!(W

g
→ X),Z

p
→ Y

)
.
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As we’ve seen in the proof of 1.2, any limit-preserving functor induces an additive
functor on the categories of abelian group objects, hence the conclusion. �

Definition 1.6. If f ∗ has a left adjoint, we call it the pushforward

f∗ : Ab(C/X)→ Ab(C/Y).

In most interesting cases, C has all pushforwards. It’s something we want to
assume in our setup.

1.3 Abelianization
Definition 1.7. We call abelianization functor AbX the left adjoint of the forgetful
functor UX : Ab(C/X)→ C/X, if it exists.

In our setup, we assume C has all abelianizations, i.e. AbX exists for all object
X. Assume moreover that Ab(C/X) is an abelian category for all object X. That
holds for example when C is exact [1, chap 2, thm 2.4].

Proposition 1.8. Let f : X → Y be a morphism in C and assume f has a push-
forward f∗. Then we have:

AbY(X
f
→ Y) = f∗AbX(X

id
→ X).

More generally, the following diagram commutes.

C/X

AbX
��

f! // C/Y

AbY
��

Ab(C/X)
f∗
// Ab(C/Y).

Proof. All the functors in this diagram are left adjoints of the following functors:

C/X C/Y
f ∗

oo

Ab(C/X)

UX

OO

Ab(C/Y)
f ∗oo

UY

OO

This diagram commutes on the nose, by construction. Since adjoint pairs com-
pose, and adjoints are unique up to unique iso, we conclude that the diagram of
left adjoints also commutes. (Minor quibble: It only commutes up to natural iso,
but the abelianization and pushforward functors can be chosen so that it commutes
on the nose). �
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2 Examples
In this section, we describe Beck modules, abelianization functors, and pushfor-
wards in various categories. Again, [1, chap 6] is a good reference.

2.1 Sets
As a toy example, let’s look at the category Set of sets.

Proposition 2.1. A Beck module over a set X is a “bundle of abelian groups over
X”, i.e. a map of sets E → X where each fiber Ex has a structure of abelian group.

Proof. We have a map of sets p : E → X, with its structure maps. The unit map
is a section e : X → E of p. The fiber product:

E ×X E

��

// E
p
��

E p
// X

is just the set of pairs of points E lying in the same fiber, i.e.

E ×X E = {(e, e′) | p(e) = p(e′)} .

Hence the structure maps describe precisely the structure of an abelian group on
each fiber Ex of p, the unit e being the zero section. �

In other words, a Beck module over the set X is an X-indexed family of abelian
groups Ex, or a functor from the discrete category X into Ab.

Proposition 2.2. The abelianization functor AbX : Set/X → Ab(Set/X) is the
fiberwise free abelian group functor, i.e. for Z → X, the abelian group (AbXZ)x

over a point x ∈ X is the free abelian group on the fiber Zx.

Proof. Let Z → X be in Set/X and E → X a module over X, then the following
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holds:

HomAb(Set/X)(FibFreeAb(Z → X), E → X)

=
∏
x∈X

HomAb(FibFreeAb(Z → X)x, Ex)

=
∏
x∈X

HomAb(FreeAb(Zx), Ex)

=
∏
x∈X

HomSet(Zx,U(Ex))

= HomSet/X(Z → X,UX(E → X)).

�

Proposition 2.3. For a map of sets f : X → Y, the pushforward functor f∗ is as
follows. If E → X is a module over X, then the module f∗E over Y is given by:

( f∗E)y =
⊕

x∈ f −1(y)

Ex

Proof. Let M → Y be a module over Y , let E′ denote the module defined by the
above formula.

HomAb(Set/Y)(E′,M) =
∏
y∈Y

HomAb(E′y,My)

=
∏
y∈Y

∏
x∈ f −1(y)

HomAb(Ex,My)

=
∏
x∈X

HomAb(Ex,M f (x))

= HomAb(Set/X)(E, f ∗M).

�

2.2 Groups
There is a major difference between the example of sets and groups. In groups
(and any structure having underlying groups), the addition structure map of a Beck
module is determined by the underlying groups, and hence provides no additional
data.
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Proposition 2.4. A Beck module over a group G is a split extension of G (with the
data of a splitting) with abelian kernel:

1 // K // E
p // G
e

oo // 1.

This category is equivalent to the standard category of (say, left) modules over
G. To a split extension, one associates the kernel K with induced action from G,
given by g · k = e(g)k. To a usual module K, one associates the semidirect product
G n K → G. Note that this is the same as a module over the group ring ZG. It’s
also the same as (covariant) functors from the one-object category G to Ab.

Proposition 2.5. For a map of groups f : H → G, the pushforward functor f∗
associates to an H-module M the G-module:

ZG ⊗ZH M.

Proposition 2.6. 1. The module AbXX of a group G is the augmentation ideal
IG = ker(ZG

ε
→ Z).

2. The abelianization functor AbG : Gp/G → Ab(Gp/G) associates to H → G
the G-module:

ZG ⊗ZH IH

Let us make the correspondence more precise. For groups, “global sections”
correspond to crossed homomorphisms:

Γ(G,M) = HomGp/G(G
id
→ G,G n M → G)

� {ϕ : G → M | ϕ(gg′) = ϕ(g) + g · ϕ(g′)} .

Such a crossed homomorphism corresponds, via the adjunction, to the G-module
map α : IG → M defined by:

α(1 − g) = ϕ(g).

2.3 Abelian groups
Something interesting happens in the case of abelian groups because they form an
abelian category. We’ll come back to that in section 6.
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Proposition 2.7. A Beck module over an abelian group A is a split extension of A
in abelian groups:

0 // K // E � A ⊕ K
p // A
e

oo // 0.

The proof is basically the same as for groups, except the “total space” has to
be abelian, which forces the extension to be trivial.

This category is equivalent to Ab. To a split extension, one associates the
kernel K. To an abelian group K, one associates the projection A ⊕ K → A. It’s
also the same as functors from the trivial category ∗ to Ab.

Proposition 2.8. For a map of abelian groups f : A→ B, the pushforward functor
f∗ is the identify functor on Ab, i.e. sends A ⊕ K to B ⊕ K.

Proof. The pullback functor f ∗ is the identity on Ab, under the above identifica-
tion. �

Proposition 2.9. The abelianization functor AbA : Ab/A → Ab(Ab/A) � Ab is
the “source” functor, which sends B→ A to B.

Proof. Under the above identification, the forgetful functor UA : Ab → Ab/A
sends an abelian group K to A ⊕ K

π1
→ A. Thus we have:

HomAb/A(B→ A,UA(K)) = HomAb/A(B→ A, A ⊕ K → A)
= HomAb(B,K).

�

2.4 Associative algebras
By ring, we will mean by default an associative, unital ring. Fix a ground ring
R which is commutative, and consider the usual notion of associative R-algebra,
i.e. a ring A which is also an R-module in a compatible way. Equivalently, it is a
ring A with a ring map R→ A which lands in the center of A.

Notation. Let AlgR denote the category of R-algebras.
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Proposition 2.10. A Beck module over an associative R-algebra A is a split ex-
tension of A (with the data of a splitting) with square zero kernel:

0 // M // E � A ⊕ M
p // A
s

oo // 0.

Equivalently, it is the data of an A-bimodule M over R, i.e. the two actions coin-
cide for scalars (elements of R).

Notation. For an R-algebra A, denote by m : A⊗R A→ A the multiplication map,
and let IA B ker(A ⊗R A

m
→ A) be its kernel.

Proposition 2.11. Abelianization in R-algebras is given by AbAA = IA.

Let us describe the correspondence more precisely. First, “global sections”

HomAlgR/A(A
id
→ A, A⊕M

p
→ A) are just R-linear derivations DerR(A,M). There is

a natural equivalence of R-modules

α : HomA−BimodR(IA,M) � DerR(A,M) : β
f 7→ ϕ(a) = f (1 ⊗ a − a ⊗ 1)

f
(∑

ai ⊗ bi

)
=

∑
aiϕ(bi)← [ ϕ

A more elegant way of saying this is that there is a universal R-derivation

d : A→ IA

a 7→ 1 ⊗ a − a ⊗ 1

such that the natural map

HomA−BimodR(IA,M)→ DerR(A,M)
f 7→ f ◦ d

is an iso, which we called α above.

Proposition 2.12. The pushforward functor f∗ : A − BimodR → B − BimodR is
given by

f∗(M) = B ⊗A M ⊗A B

equipped with B-multiplication on the left and right.

Corollary 2.13. The abelianization functor is AbB(A→ B) = B ⊗A IA ⊗A B.
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2.5 Commutative algebras
Notation. Let ComR denote the category of commutative R-algebras.

Proposition 2.14. A Beck module over a commutative R-algebra A is a split ex-
tension of A (with the data of a splitting) with square zero kernel:

0 // M // E � A ⊕ M
p // A
s

oo // 0.

Equivalently, it is the data of an A-module M in the usual sense (i.e. an abelian
group with an action of A).

The proof is the same as for associative algebras 2.10, except the total space
E must be commutative, which means the two actions agree:

a · m = s(a)m = ms(a) = m · a.

Proposition 2.15. In commutative R-algebraa, abelianization is given by:

AbAA = IA/I2
A.

Notation. The module AbAA = IA/I2
A representing R-derivations is called the

module of differentials and denoted ΩA/R.

As for associative R-algebras, the “global sections” of a Beck module A⊕M →
A over the commutative R-algebra A are precisely the R-derivations DerR(A,M).
Again, there is a universal R-derivation

d : A→ ΩA/R

a 7→ 1 ⊗ a − a ⊗ 1

such that the natural map

HomA−Mod(ΩA/R,M)→ DerR(A,M)
f 7→ f ◦ d

is an iso. Compare [5], the setup before proposition 4.27.

Proposition 2.16. The pushforward functor f∗ : A−Mod→ B−Mod is given by

f∗(M) = B ⊗A M

equipped with B-multiplication on the left.

Corollary 2.17. The abelianization functor is AbB(A→ B) = B ⊗A ΩA/R.
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3 Fibered category of Beck modules
Instead of looking only at Beck modules over a single object X of C, we want to
know what happens when we change the base object X. For this, we assemble all
the categories ModX together.

3.1 Construction
Definition 3.1. The (fibered) category of Beck modules over C, denoted ModC
is the category whose objects are pairs (X, E), where X is an object of C and
E → X is a Beck module over X. A morphism from (X, E) to (Y, E′) consists of
maps f : X → Y and ϕ : E → E′ in C making the obvious diagram commute:

E

��

ϕ // E′

��
X f

// Y

and such that the horizontal arrows respect the group structure maps of E → X
and E′ → Y .

Consider the forgetful functor U : ModC → C taking the pair (X, E) to the
base object X. Its fiber over an object X (i.e. subcategory of ModC of objects sent
to X and morphisms sent to idX) is exactly the category ModX of Beck modules
over X. Now let’s make sure that ModC is indeed fibered over C.

Proposition 3.2. A morphism from (X, E) to (Y, E′) as defined above is the same
data as a map f : X → Y in C and a map ϕ : E → f ∗E′ in ModX.

Proof. Consider the commutative diagram:

E

p

��

!!C
CC

CC
CC

C
ϕ // E′

p′

��

f ∗E′

<<zzzzzzzz

}}{{
{{

{{
{{

""D
DD

DD
DD

D

X f
// Y.
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Viewing it as a diagram in C, the map ϕ is in HomC/Y(E
f p
→ Y, E′

p′
→ Y) =

HomC/X(E
p
→ X, f ∗E′

f ∗p′
→ X). By construction of the pullback f ∗E′ and its struc-

ture maps, this adjoint map ϕ is actually in the subset HomAb(C/X)(E
p
→ X, f ∗E′

f ∗p′
→

X) iff the original ϕ respects the structure maps of E → X and E′ → Y . �

Corollary 3.3. Pullback squares

f ∗E′

��

ϕ // E′

��
X f

// Y

are Cartesian morphisms in ModC. The forgetful functor U : ModC → C makes
ModC into a fibered category over C in the sense of [8, section 3.1.1]. The system
of pullbacks makes it into a cleaved category.

3.2 Pseudofunctor point of view
Following [8, section 3.1.2], one can think of the fibered category ModC as a
(contravariant) pseudofunctor

Mod(−) : C → AbCat

associating to each object X of C its category of Beck modules ModX and to each
map f : X → Y the pullback functor f ∗ : ModY → ModX. Pseudofunctor means
that the pullbacks don’t necessarily compose on the nose (i.e. f ∗g∗ = (g f )∗), but
rather up to a coherent system of natural isos. The fibered category ModC is the
Grothendieck construction on this (pseudo)functor. Note that the Grothendieck
construction is useful in homotopy theory [4, lecture 3] and in the theory of stacks.

3.3 Relationship to the ground category
Proposition 3.4. The “zero section” functor Z : C → ModC which sends X to
(X, 0X) is a both a left and right adjoint of U. In particular, U preserves all limits
and colimits.
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Proof. It follows from the fact that 0X is a zero object in the additive category
ModX and the pullback of zero is again zero, i.e. f ∗0Y = 0X.

HomC(X,U(Y, E′)) = HomC(X,Y)
= HomModC((X, 0X), (Y, E′))
= HomModC(Z(X), (Y, E′)).

HomC(U(X, E),Y) = HomC(X,Y)
= HomModC((X, E), (Y, 0Y))
= HomModC((X, E),Z(Y)).

�

In fact, there is a more general relative version of this proposition, where we work
over fixed objects. The previous case is over the terminal object.

Proposition 3.5. Consider the forgetful functor U : ModC/(X, E)→ C/X.

1. The left adjoint of U is the “zero section” functor Z, which sends Y
f
→ X to

(Y, 0Y)→ (X, E).

2. The right adjoint of U is the “pullback” functor Pull, which sends Y
f
→ X

to (Y, f ∗E)→ (X, E).

Proof. 1. Similar to the absolute version:

HomModC/(X,E)

(
Z(Y

f
→ X), (X′, E′)

( f ′,ϕ′)
→ (X, E)

)
= HomModC/(X,E)

(
(Y, 0Y)

( f ,0)
→ (X, E), (X′, E′)

( f ′,ϕ′)
→ (X, E)

)
= {(g, ϕ) : (Y, 0Y)→ (X′, E′) | ( f ′, ϕ′) ◦ (g, ϕ) = ( f , 0)}
= {g : Y → X′ | f ′ ◦ g = f } since ϕ must be 0, and 0 works

= HomC/X
(
Y

f
→ X, X′

f ′
→ X

)
= HomC/X

(
Y

f
→ X,U

(
(X′, E′)

( f ′,ϕ′)
→ (X, E)

))
.
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2. We have the following:

HomModC/(X,E)

(
(X′, E′)

( f ′,ϕ′)
→ (X, E), Pull(Y

f
→ X)

)
= HomModC/(X,E)

(
(X′, E′)

( f ′,ϕ′)
→ (X, E), (Y, f ∗E)

f
→ (X, E)

)
= {(g, ϕ) : (X′, E′)→ (Y, f ∗E) | f ◦ (g, ϕ) = ( f ′, ϕ′)} .

This consists of the data of g : X′ → Y and a map E′ → g∗( f ∗E) � ( f g)∗E =

( f ′)∗E in ModX′ making the diagram commute. But since

f ∗E

��

// E

��
Y f

// X

is a pullback square, our map ϕ must “be” (under the usual identification) the
map ϕ′ : E′ → ( f ′)∗E in ModX′ . Hence it provides no additional data and no
constraint, and the above set of morphisms is:

{g : X′ → Y | f ◦ g = f ′}

= HomC/X
(
X′

f ′
→ X,Y

f
→ X

)
= HomC/X

(
U

(
(X′, E′)

( f ′,ϕ′)
→ (X, E)

)
,Y

f
→ X

)
.

�

We can use this proposition to study the abelianization in ModC. Let’s think of
the forgetful functor U : ModC → C sending (X, E) to X as taking the “ground
level” part of the data. With this in mind, we’ll show that the ground level part of
the abelianization is the abelianization of the ground level part.

Lemma 3.6. Assume L : C → D preserves finite products and has a right adjoint
R : D → C. Then the induced functors L : Ab(C) → Ab(D) and R : Ab(D) →
Ab(C) still form an adjoint pair.

Proof. HomAb(C)(̃c,Rd̃) is the subset of HomC(c,Rd) � HomD(Lc, d) consisting
of maps c → Rd which commute with the structure maps. So we need to show
that this holds iff the adjoint map Lc → d commutes with structure maps. This is
true by the naturality of the adjunction, and the fact that L̃c and Rd̃ have structure
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maps induced by those of c̃ and d̃, respectively. For example, the diagram of
multiplication maps:

c × c

��

µc // c

��
R(d × d) � Rd × Rd

Rµd

// Rd

commutes iff the adjoint diagram:

L(c × c) � Lc × Lc

��

Lµc // Lc

��
d × d µd

// d

commutes. �

Proposition 3.7. The following diagram commutes:

ModC/(X, E)

U
��

Ab(X,E) // Ab(ModC/(X, E))

U
��

C/X
AbX // Ab(C/X).

Proof. By 3.5 and 3.6, the diagram above consists of left adjoints. Let us write all
four adjunctions:

ModC/(X, E)

U
��

Ab(X,E) // Ab(ModC/(X, E))
U(X,E)

oo

U
��

C/X

Pull

OO

AbX // Ab(C/X).
UX

oo

Pull

OO

The diagram of right adjoints commutes on the nose:

U(X,E) ◦ Pull = Pull ◦ UX

by definition of induced functor on category of abelian group objects. Thus their
left adjoints are naturally isomorphic:

U ◦ Ab(X,E) � AbX ◦ U.

As in proposition 1.8, the abelianizations can be chosen so that this is an equality
on the nose. �
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Proposition 3.8. The “total space” functor S rc : ModC → Cwhich sends E
p
→ Y

to E (viewed as object in C) has a left adjoint, which sends an object X of C to
AbXX → X. The notation S rc stands for “source”.

Proof. A map in HomModC

(
AbXX → X, E

p
→ Y

)
consists of a map f : X → Y and

a map AbXX → f ∗E in ModX.

HomModX (AbXX → X, f ∗E → X) = HomC/X(X
id
→ X, f ∗E → X)

= HomC/Y( f!(X
id
→ X), E → Y)

= HomC/Y(X
f
→ Y, E → Y)

Therefore, a map in HomModC

(
AbXX → X, E

p
→ Y

)
consists of the data of f and

ϕ in such a diagram:

X

f ��?
??

??
??

ϕ // E

p
����

��
��

�

Y

which is the data of ϕ only, since f must be pϕ. Since there is no constraint on ϕ,
we conclude:

HomModC

(
AbXX → X, E

p
→ Y

)
= HomC(X, E).

�

4 Limits and completeness
In this section, we study limits in ModC and show that ModC is complete if C is.
Let’s proceed in steps.

4.1 Limits in Beck modules
Proposition 4.1. The forgetful functor U : Ab(C)→ C creates limits, in the sense
of [6, section 5.1].
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Proof. 1) Start with a diagram F̃ : I → Ab(C) whose underlying diagram F B
UF̃ in C has a limit. We will endow lim F with structure maps to produce a limit
of F̃. The structure maps of the objects in the diagram F̃ can be expressed as
natural transformations

F × F
µ
→ F

∗
e
→ F

F
ι
→ F,

where ∗ is the terminal diagram (i.e. constant on the terminal object), and F × F
is the composite

I
(F,F)
→ C × C

×
→ C.

In other words, we take the “objectwise” product, unit, and inverse structure maps.
Applying the functor lim yields maps

lim(F × F) � lim F × lim F
lim µ
→ lim F

lim ∗ � ∗
lim e
→ lim F

lim F
lim ι
→ lim F.

(Detail: We haven’t assumed that C is complete, so technically there is no functor
lim : CI → C. We could work around this by restricting to the full subcategory
of CI of diagrams admitting a limit, on which the functor lim is defined. More
explicitly, we can unwind the construction: A natural transformation h : F → G
always induces lim h : lim F → lim G whose associated cone on G is given by

lim F
πi
→ Fi

hi
→ Gi for any index i in I.)

These form structure maps of an abelian group object, since applying lim to
the condition diagrams of F yields condition diagrams for lim F. Let us denote
l̃im F ∈ Ab(C) the object lim F equipped with these structure maps. By construc-
tion, l̃im F comes with a cone on F̃ which is a U-lift of lim F and its limiting cone
on F.

2) Let us check that l̃im F is the limit of F̃ in Ab(C). Given a cone ψ̃ : ∆Z̃ → F̃,
look at the underlying cone ψ; it has a unique map ϕZ → lim F associated to it.
We need to check that ϕ is a map in Ab(C). But by construction it is, since all the
maps in the natural transformation ψ̃ are in Ab(C).
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For example, consider the diagram

Z × Z
µZ

��

(ϕ,ϕ) // lim F × lim F
µlim F

��

� // lim(F × F)

lim µF

��
Z ϕ

// lim F lim F.

It commutes iff the adjoint diagram commutes:

∆Z × ∆Z = ∆(Z × Z)

∆µZ

��

(ψ,ψ) // F × F
µF

��
∆Z

ψ
// F.

This diagram does commute, since ψ̃ was a natural transformation between I-
diagrams in Ab(C). Likewise for the unit and inverse structure maps. Hence we
have l̃im F = lim F̃ in Ab(C), as desired.

3) So far we’ve shown that U lifts limits, but there is more to creating limits.
We need to show that there is a unique cone lifting lim F and its limiting cone
π : ∆ lim F → F. Let L be such a lift, i.e. L is the underlying object lim F
equipped with (possibly exotic) structure maps, and we have a lift π̃ : ∆L→ F̃ of
the cone π. Saying that this cone π̃ is a lift in Ab(C) means that all the projection
maps πi : lim F → Fi respect the structure maps. For example, the following
diagram commutes:

lim F × lim F
πi×πi

��

µ // lim F
πi

��
Fi × Fi µi

// Fi.

Hence the ith component of µ is µi(πi × πi). But a map to a limit is uniquely
determined by its components, hence µ is unique, and by the same argument, so
are the unit and inverse structure maps. These structure maps are precisely the
ones we used in part (1), i.e. L is l̃im F. Since U is faithful, the lift of the cone π
is unique, and as we’ve seen in part (2), it is a limiting cone for F̃. �

Corollary 4.2. If C is complete, then so is Ab(C), and U : Ab(C) → C preserves
limits.
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Proof. Let F̃ : I → ModC be a diagram indexed by some (small) category I.
Since C is complete, the underlying diagram F B UF̃ has a limit, with limiting
cone π : ∆ lim F → F. Since U creates limits, there is a unique U-lift (L, π̃)
of (lim F, π), and it’s a limit in ModC. Thus U preserves limits, since they are
essentially unique. �

Remark 4.3. Note that creating limits and preserving limits are distinct notions,
neither one implying the other. The previous argument only shows that a limit-
creating functor U must preserve limits of diagrams whose underlying diagram
has a limit.

Example 4.4. (Preserving limits; Creating limits) Consider the projection func-
tor C × D → C. Clearly it preserves limits, but (for general D) it does not create
them, or even lift them uniquely.

Example 4.5. (Creating limits ; Preserving limits) Let N = {0, 1, 2, · · · } be the
category of natural numbers viewed as a totally ordered set, i.e. with a unique mor-
phism from i to j iff i ≤ j. Let [n] be its full subcategory with objects {0, 1, · · · , n}.
Limits in N are as follows: the minimum number appearing in the diagram if the
diagram is non-empty, and non-existent if the diagram is empty, i.e. there is no ter-
minal object. Limits in [n] are the same except there is a terminal object, namely
n. Therefore, the inclusion functor [n]→ N does NOT preserve limits, but it does
create them.

Remark 4.6. In fact, I believe U always preserves limits, without assuming C is
complete.

Corollary 4.7. If C is complete, then so is each category of Beck modules ModX,
for X an object in C.

Proof. C being complete implies the slice category C/X is also complete [3, prop
2.16.3]. Hence ModX = Ab(C/X) is also complete. �

4.2 Changing the ground object
Proposition 4.8. For any map f : X → Y, the pullback functor f ∗ : ModY →

ModX preserves limits.
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Proof. We have the commutative diagram:

Ab(C/Y)

UY
��

f ∗ // Ab(C/X)

UX
��

C/Y
f ∗ // C/X.

As seen above, UY preserves limits, and so does f ∗ (downstairs) since it’s a right
adjoint. Hence, if we start with a limit and its cone in ModY we obtain:

UX f ∗(lim F) = f ∗UY(lim F)
= lim( f ∗UY F).

Since UX creates limits, f ∗(lim F) with its cone is the unique lift of lim( f ∗UY F)
with its cone, and it is itself a limit. In other words, we have f ∗(lim F) = lim f ∗F.

�

Proposition 4.9. If C is complete, then so is ModC.

Proof. 1) Let F̃ : I → ModC be a diagram and denote F B UF̃ the diagram of
underlying objects in C. Since C is complete, it admits a limit X B lim F. We’re
looking for a “limit module” over X; let’s just pull back all the modules in F̃ via
the cone π. Having a diagram F̃ in ModC means that for every index i ∈ I, we
have and object F̃i → Fi and for every map α : i→ j we have a map

F̃i

��

// F̃ j

��
Fi Fα

// F j

in ModC, which is the same as Fα and the associated map F̃i → F∗αF̃ j in ModFi .
Now, X has a limiting cone on F, i.e.

X
πi

����
��

��
�� π j

��?
??

??
??

Fi Fα
// F j
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Pulling back the modules over X via π, we obtain:

π∗i F̃i

  A
AA

AA
AA

A
// π∗i F∗αF̃ j � (Fαπi)∗F̃ j = π∗j F̃ j

vvllllllllllllllllll

X

which defines an I-diagram π∗F̃ in ModX. By 4.7, ModX is complete, so we can
take its limit M B lim π∗F̃.

2) Let us check that M → X and its cone π̃ over F̃ is a limit in ModC. Given
a cone ψ̃ : ∆(Z̃ → Z) → F̃, look at the cone ψ of underlying objects and take its
associated map ϕ : Z → X = lim F. We’re looking for a map

Z̃

��

ϕ̃ // M

��
Z ϕ

// X

that commutes with the cones, i.e. such that π̃ ◦ ϕ̃ is ψ̃. This is the same as a map
Z̃ → ϕ∗M in ModZ such that the cones π̃◦ϕ̃ and ψ̃ in ModZ over ψ∗F̃ agree. There
is a unique such map, because of the following:

ϕ∗M = ϕ∗ lim π∗F̃

= limϕ∗π∗F̃ by 4.8

� lim(πϕ)∗F̃

= limψ∗F̃.

�

Question. Does ModC inherit other nice properties from C? Here are some prop-
erties that would be of particular interest.

• Having all pushforwards;

• Having all abelianizations;

• Beck modules over any object form an abelian category;

• Cocompleteness;
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• Regularity;

• Exactness.

I suspect the answer is yes in all cases.

5 Representability
In the examples of section 2, we have seen that the category of Beck modules
over an object X is sometimes naturally equivalent to a category of functors into
Ab, i.e. presheaves of abelian groups. This raises the question: Is there a (co-
variant) pseudofunctor I(−) making the following diagram commute up to natural
isomorphism?

Cat
Fun(−,Ab)

$$I
IIIIIIII

C

I(−)
|

|
|

|

Mod(−)

// AbCat

Definition 5.1. The category C has representable Beck modules if there exists
such a pseudofunctor I(−), called an indexing functor, and the category IX, satis-
fying ModX � AbIX is called an indexing category for the object X of C.

Example 5.2. C = Set has representable Beck modules, taking the indexing cat-
egory IX of a set X to be the discrete small category X.

Example 5.3. C = Gp has representable Beck modules, taking the indexing cat-
egory IG of a group G to be the one-object groupoid G.

Example 5.4. C = Ab has representable Beck modules, taking the indexing cate-
gory IA of an abelian group A to be the trivial category {∗} with one object and its
identity map.

Example 5.5. C = Mon, the category of monoids, has representable Beck mod-
ules, taking the indexing category IM of a monoid M to be its factorization cate-
gory Fac(M).

Non-example 5.6. C = ComRing, the category of commutative (associative, uni-
tal) rings, does NOT have representable Beck modules. For a commutative ring
R, the category ModR of Beck modules over it is the usual category of R-modules.
Taking R = Fp the field with p elements, then ModR is the category of Fp-vector
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spaces, which itself is not of the form AbI for any category I. Indeed, fixing an
index (object) i of I, consider the (covariant) functor:

I
HomI (i,−) // Set Free // Ab

This is an object of AbI whose identify endomorphism has infinite additive order.
This can’t happen in Fp-vector spaces, where every map is p-torsion.

Question. When does C have representable Beck modules? This question can be
broken down into two.

1. When is an abelian categoryA equivalent to a functor category AbI?

2. Assuming C is such that for every object X, the category ModX is equivalent
to a functor category AbIX for some (small) category IX, when does C have
representable Beck modules? In other words, can we make the indexing
categories IX and equivalences ModX � AbIX natural in X?

Question. Does C have some nice features if it has representable Beck modules?
In other words, is it an interesting property?

It is more common to look for a ring R (or ringoid, a.k.a. preadditive cate-
gory) such that the abelian categoryA is the category of modules over R (additive
functors R→ Ab).

6 Analogy with the tangent bundle
Here’s a far-fetched idea: Does the fibered category ModC deserve to be thought
of as the “tangent bundle” of C? The tangent bundle of a smooth manifold M
gives over each point x the tangent space TxM, which can be thought of as the
best linear approximation of M around x. Heuristically, let’s think of C/X as a

neighborhood of X, in other words an object Y
f
→ X is a point “close” to X. Now

let’s think of abelian group objects as providing the “best approximation” by an
additive category. Then ModX is a “best linear approximation” of C around the
object X.

Here’s one way in which the analogy is not completely silly. Notice that if V
is a smooth manifold that happens to be a vector space (i.e. Euclidean space), then
for every point x ∈ V , we have TxV � V . The same holds for Beck modules.
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Lemma 6.1. Let I be any category and let A denote the abelian category AbI .
Then for every object F ofA, we have an equivalence of abelian categories:

ModF = Ab(A/M) � A.

The equivalence associates to a module E
p
→ F the object ker p, and to an object

K of A, the module F ⊕ K → F, with structure maps given by the “objectwise”
addition in K.

Proof. Let’s look at one node of the diagram at a time. For an index i in I, consider
the functor i∗ : AbI → Ab that extracts the abelian group at index i, i.e. evaluates
a functor in AbI at i. This is the restriction functor along the inclusion of the point
category i : {∗} → I that selects the object i. Since i∗ preserves limits, it induces a
functor on Beck modules. By our knowledge of Beck modules in Ab (proposition
2.7), we know that the Beck module E

p
→ F, which looks like

Ei

pi

��

Eα // E j

p j

��
Fi

Fα // F j

(where α : i→ j is a typical map in I) is actually of the form

Ki

��

Kα // K j

��
Fi ⊕ Ki

pi

��

Eα // F j ⊕ K j

p j

��
Fi

Fα // F j

where Ki is ker pi and Kα is the restriction of Eα to Ki. Moreover, since p :
F ⊕ K → F is a map in A, i.e. a natural transformation, and so is the zero
section e : F → F ⊕ K, we know that the map Eα is actually Fα ⊕ Kα, or in

matrix form
[
Fα 0
0 Kα

]
. The upper row comes from p, and the lower-left corner

comes from e. This determines completely the structure maps, which must be
the objectwise addition, zero, and negative in each abelian group Ki. The only
additional information is that these structure maps are maps in A/F. Writing
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down these conditions explicitly, they say that Kα must be a group map, which is
automatic. In other words, there is no constraint on K, any object ofA will do.

Now look at the correspondence described in the statement. The composite
A → ModF → A is the identify functor. The composite ModF → A → ModF

sends E
p
→ F to F ⊕ ker p → F, which is a natural iso in A/F since the Beck

module comes equipped with the data of the splitting (the unit map). By the
argument above, it is a natural iso in ModF , i.e. it recovers the Beck module
structure. Finally, note that both directions of the correspondence are additive
functors, so we obtain an equivalence of abelian categories ModF � A. �

Proposition 6.2. LetA be an abelian category. Then for every object M ofA, we
have an equivalence of abelian categories:

ModM = Ab(A/M) � A.

The equivalence associates to a module E
p
→ M the object ker p, and to an object

K ofA, the module M ⊕ K → M, with the following structure maps:

• Multiplication µ : M ⊕ K ⊕ K → M ⊕ K is given by
[
idM 0 0
0 idK idK

]
;

• Unit e : M → M ⊕ K is given by inclusion, that is
[
idM

0

]
;

• Inverse ι : M ⊕ K → M ⊕ K is given by
[
idM 0
0 −idK

]
.

Proof. Essentially follows from the splitting lemma, the Yoneda embedding and
the lemma above. Recall the Yoneda embedding:

Y : A → AbA
op

B 7→ HomA(−, B)

which is full, faithful, and left exact. Since it’s left exact, it preserves small limits
and hence induces a functor on Beck modules. Starting with a Beck module E

p
→

M inA, we get a Beck module Y(E)
Y(p)
→ Y(M) in AbA

op
. By the lemma above, its

structure maps must be the obvious ones on ker Y(p) (objectwise addition, zero,
and inverse). Since Y is faithful, this determines the structure maps for E

p
→ M.
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Moreover, we have ker Y(p) = Y(ker p), and by the splitting lemma, E
p
→ M

is canonically isomorphic to M ⊕ ker p → M in A. Put structure maps on the
latter by the formulas in the statement. Notice that Y sends all those maps to the
structure maps of Y(M) ⊕ ker Y(p) → Y(M) (we used the fact that Y is additive
for the inverse structure map ι). Hence those candidate structure maps ARE those
of E

p
→ M. (Incidentally, this shows that the formulas in the statement do define

a Beck module, although one can easily check it directly.)
We can conclude ModM � A exactly as in the lemma. �

Question. 1. Can we push the analogy further? More precisely, we’re looking
for a universal property satisfied by the tangent bundle of a manifold, and a
universal property satisfied by the fibered category of Beck modules.

2. Is Ab(C) → C terminal among additive categories equipped with a faithful,
limit-creating functor to C?

7 Modules over a simplicial object
In this section, we present another context in which ModC appears naturally.
Quillen’s notion of cohomology involves taking simplicial resolutions of objects,
which led him to study simplicial modules over a simplicial object, such as a
simplicial ring [7, II.6]. Let us first describe modules over a simplicial set.

Proposition 7.1. Let X be a simplicial set. Then a Beck module E
p
→ X over X is

the data of a Beck module pn : En → Xn (i.e. a bundle of abelian groups) in each
simplicial degree, such that the face and degeneracies of E cover those of X and
respect the abelian group object structure maps, i.e. are fiberwise maps of abelian
group.

Proof. The “nth degree” functor sSet → Set preserves limits, since it is the re-
striction along n ↪→ ∆op. Hence it induces a functor on Beck modules and we
get a Beck module pn : En → Xn in each simplicial degree. This determines the
constituent sets of E, the map p, and the abelian group structure maps of E. The
remaining conditions are that p : E → X is a map in sSet and the structure maps
are maps in sSet/X. Those are exactly the conditions mentioned in the claim. �

In fact, there’s nothing special about Set and ∆op. Instead of Set, take C a cate-
gory with finite limits, and instead of ∆op, take I any (small) category. Recall the
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notation U : ModC → C for the “base object” forgetful functor. Consider the
category CI = Fun(I,C) of I-diagrams in C.

Proposition 7.2. Given a diagram F : I → C, the category ModF = Ab(CI/F) of
Beck modules over F is the category of I-diagrams like this: the ith entry is a Beck
module over F(i) and maps respect the structures of Beck modules (i.e. are maps
in ModC).

In other words, ModF is the category of I-diagrams in ModC whose base di-
agram is F and where morphisms fix the base, i.e. the fiber over F of the forgetful
functor:

U I : ModCI → CI .

For I = ∆op and C = ComRing, we get simplicial modules over a simplicial
ring, as studied by Quillen.
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