The mod p motivic Steenrod algebra in characteristic p

Martin Frankland Universität Osnabrück

Joint with Markus Spitzweck

Operations in Highly Structured Homology Theories Banff International Research Station May 22-27, 2016

Outline

Note: Work in progress.

- 1. Setup
- 2. Hopkins–Morel isomorphism
- 3. Motivic dual Steenrod algebra
- 4. Reduction step
- 5. Sketch of ideas

Setup

Setup: motivic homotopy theory.

Work over a nice scheme S, called the *base scheme*. (Noetherian, separated, and of finite Krull dimension.)

 $Sm_S = category$ of smooth schemes of finite type over S.

Motivic spaces = localization of simplicial presheaves on Sm_S at \mathbb{A}^1 -equivalences and Nisnevich hypercovers.

Motivic spectra = stabilization of pointed motivic spaces with respect to $S^1 \wedge -$ and $\mathbb{G}_m \wedge -$.

Let SH(S) denote the motivic stable homotopy category over S. It is a compactly generated tensor triangulated category.

Bigraded spheres

Motivic spheres:

$$S^{p,q} = (S^1)^{\wedge (p-q)} \wedge_S (\mathbb{G}_m)^{\wedge q}$$

and corresponding suspension functors:

$$\Sigma^{p,q} X = S^{p,q} \wedge_S X = X(q)[p].$$

Unit for the smash product \wedge_S :

$$1_S = S^{0,0} = \Sigma^{\infty} S_+.$$

Example. •
$$\mathbb{G}_m = \mathbb{A}^1 - \{0\} = S^{1,1}$$
.

- $\mathbb{A}^n \{0\} \simeq S^{2n-1,n}$.
- $\mathbb{P}^1 \simeq \mathbb{A}^1/(\mathbb{A}^1 \{0\}) \simeq S^1 \wedge \mathbb{G}_m = S^{2,1}$.

Motivic Eilenberg-MacLane spectra

 $H\mathbb{Z}$ is a motivic spectrum representing motivic cohomology in SH(S). $H\mathbb{Z}$ is an E_{∞} ring spectrum, in an essentially unique way. Likewise for $H\mathbb{F}_p$.

This yields well-behaved categories of modules over $H\mathbb{Z}$ or $H\mathbb{F}_p$.

Notation: In case of ambiguity, write the dependency on the base scheme as $H\mathbb{F}_p^S$.

Remark. $H\mathbb{F}_l$ has complicated homotopy:

$$\begin{aligned} \pi_{p,q} H \mathbb{F}_l &= \mathrm{SH}(S) \left(S^{p,q}, H \mathbb{F}_l \right) \\ &= \mathrm{SH}(S) \left(S^{0,0}, \Sigma^{-p,-q} H \mathbb{F}_l \right) \\ &= H^{-p,-q}(S; \mathbb{F}_l), \end{aligned}$$

motivic cohomology of the base scheme S.

Hopkins-Morel isomorphism

Motivation: the Hopkins–Morel isomorphism.

In classical homotopy theory: complex cobordism MU, with

$$\pi_*MU \cong \mathbb{Z}[a_1, a_2, \ldots], |a_i| = 2i.$$

The orientation map $MU \to H\mathbb{Z}$ induces a map

$$MU/(a_1, a_2, \ldots) \xrightarrow{\simeq} H\mathbb{Z}$$

which is an equivalence.

Hopkins-Morel, II

In motivic homotopy theory: algebraic cobordism spectrum MGL, with $a_i \in \pi_{2i,i}$ MGL.

The orientation map $MGL \to H\mathbb{Z}$ induces a map

$$\Phi \colon \mathrm{MGL}/(a_1, a_2, \ldots) \to H\mathbb{Z}$$

Theorem (Hopkins–Morel 2004; Hoyois 2015). Let S be essentially smooth over a field k.

- 1. In the case char(\mathbb{k}) = 0, then Φ is an equivalence.
- 2. In the case char(\mathbb{k}) = p, then Φ becomes an equivalence after inverting p.

Remark. This theorem has interesting applications to the slice filtration.

Hopkins-Morel, III

Key step: For any prime number $l \neq p$,

$$H\mathbb{F}_l \wedge \Phi \colon H\mathbb{F}_l \wedge \mathrm{MGL}/(a_1, a_2, \ldots) \to H\mathbb{F}_l \wedge H\mathbb{Z}$$

is an equivalence.

Key ingredient: Motivic Steenrod algebra and its dual.

Motivic dual Steenrod algebra

There are certain classes in $\pi_{*,*}(H\mathbb{F}_l \wedge H\mathbb{F}_l)$

$$\tau_i$$
, with $|\tau_i| = (2l^i - 1, l^i - 1), i \ge 0$
 ξ_i , with $|\xi_i| = (2l^i - 2, l^i - 1), i \ge 1$.

Consider sequences $I = (\epsilon_0, r_1, \epsilon_1, r_2, \epsilon_2, ...)$ with $\epsilon_i \in \{0, 1\}, r_i \geq 0$, and only finitely many non-zero terms. Consider monomials of the form

$$\tau_0^{\epsilon_0} \xi_1^{r_1} \tau_1^{\epsilon_1} \xi_2^{r_2} \tau_2^{\epsilon_2} \cdots \in \pi_{*,*}(H\mathbb{F}_l \wedge H\mathbb{F}_l).$$

Consider the induced map of $H\mathbb{F}_l$ -modules

$$\bigoplus_{\text{such sequences }I} \Sigma^{p_I,q_I} H \mathbb{F}_l \xrightarrow{\psi^S} H \mathbb{F}_l \wedge H \mathbb{F}_l.$$

Note that the indexing set is the same for any base scheme S.

Motivic dual Steenrod algebra, II

Theorem (Voevodsky 2003; Hoyois–Kelly–Østvær 2013). Assume l is invertible on the base scheme S. Then the map ψ^S is an equivalence of $H\mathbb{F}_l$ -modules.

Goal. Show that ψ^S is an equivalence in the case $S = \operatorname{Spec}(\mathbb{k})$ where \mathbb{k} is a field of characteristic p, and l = p.

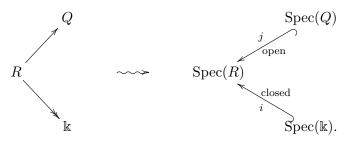
Strategy

Let k be a field of characteristic p.

Let R be a discrete valuation ring R having k as residue field, and a fraction field $Q = \operatorname{Frac}(R)$ of characteristic zero.

Example. $\mathbb{k} = \mathbb{F}_p$, $R = \mathbb{Z}_p$, the *p*-adic integers, and $Q = \mathbb{Q}_p$, the *p*-adic rationals.

Consider the ring maps and induced maps of affine schemes:



The ingredients

What happens on the generic point Spec(Q)?

Lemma. There is an equivalence

$$j^*H\mathbb{F}_p^R \simeq H\mathbb{F}_p^Q.$$

What happens on the closed point Spec(k)?

Proposition (Spitzweck 2013). 1. There is an equivalence

$$i^*H\mathbb{F}_p^R \simeq H\mathbb{F}_p^{\mathbb{k}}.$$

2. There is an equivalence of $H\mathbb{F}_p^{\mathbb{k}}$ -module spectra

$$i^! H \mathbb{F}_p^R \simeq \Sigma^{-2,-1} H \mathbb{F}_p^{\mathbb{k}}.$$

Proposition (F.–Spitzweck). There is an equivalence of $H\mathbb{F}_p^{\mathbb{k}}$ -module spectra

$$i^*j_*H\mathbb{F}_p^Q \simeq H\mathbb{F}_p^{\mathbb{k}} \oplus \Sigma^{-1,-1}H\mathbb{F}_p^{\mathbb{k}}.$$

Reduction step

Definition. An object of SH(S) is smooth if it lies in the full localizing triangulated subcategory of SH(S) generated by the strongly dualizable objects.

Remark. In the classical stable homotopy category, *every* object is smooth in this sense.

In fact, this is one of the axioms of a stable homotopy theory in the sense of Hovey–Palmieri–Strickland.

If k is a field of characteristic zero, then every object of SH(k) is smooth (Röndigs-Østvær 2008).

Reduction step, II

Proposition (F.–Spitzweck). If $H\mathbb{F}_p^R$ is smooth in SH(R), then the map of $H\mathbb{F}_p^k$ -module spectra

$$\bigoplus_{I} \Sigma^{p_{I},q_{I}} H\mathbb{F}_{p}^{\mathbb{k}} \xrightarrow{\psi^{\mathbb{k}}} H\mathbb{F}_{p}^{\mathbb{k}} \wedge H\mathbb{F}_{p}^{\mathbb{k}}$$

is an equivalence. In other words, the structure theorem for the dual Steenrod algebra holds for $S = \operatorname{Spec}(\mathbb{k})$.

Our goal would be achieved!

Proof idea: Use the previous ingredients and the six functor formalism.

Why smoothness?

Lemma. Let $f: S \to T$ be a map of schemes. For Y in SH(T) and X in SH(S), consider the natural map in SH(T)

$$\alpha \colon (f_*X) \wedge_T Y \to f_* (X \wedge_S f^*Y)$$
.

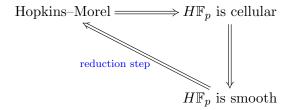
If Y is a smooth object of SH(T), then α is an isomorphism.

In other words, Y and f_* satisfy the projection formula

$$(f_*X) \wedge_T Y \cong f_* (X \wedge_S f^*Y).$$

More on smoothness

Remark. The Hopkins–Morel isomorphism implies that $H\mathbb{Z}$ and $H\mathbb{F}_p$ are *cellular*, a condition which implies smoothness.



Sketch of ideas

How to prove the new goal, i.e., that $H\mathbb{F}_p^R$ is smooth in SH(R)?

$$H\mathbb{Z} = \operatorname{hocolim}_n \Sigma^{-2n,-n} \Sigma^{\infty} K(\mathbb{Z}, 2n, n)$$

Note: The motivic Eilenberg-MacLane space $K(\mathbb{Z}, p, q)$ is also known as $K(\mathbb{Z}(q), p)$.

 \Rightarrow It suffices to show that $\Sigma^{\infty}K(\mathbb{Z},2n,n)$ is smooth for n large enough.

Motivic Dold-Thom

In classical homotopy theory, the Dold–Thom theorem yields:

$$\mathrm{Sym}^{\infty}(S^n) \simeq K(\mathbb{Z}, n).$$

In motivic homotopy theory, there is an analogue of the Dold–Thom theorem (Suslin–Voevodsky 1996).

In characteristic zero, we have:

$$\operatorname{Sym}^{\infty}\left((\mathbb{P}^1)^{\wedge n}\right) \simeq \operatorname{Sym}^{\infty}(S^{2n,n}) \simeq K(\mathbb{Z}, 2n, n).$$

In characteristic p > 0, there is an analogous (but more complicated) construction involving correspondences.

$$\operatorname{Sym}^{\infty}(X) = \operatorname{hocolim}_{k} \operatorname{Sym}^{k}(X)$$

 \Rightarrow It suffices to show that an appropriate analogue of $\Sigma^{\infty} \operatorname{Sym}^k ((\mathbb{P}^1)^{\wedge n})$ is smooth for n and k large enough.

Resolutions of symmetric powers

Plan of attack:

- Given X in Sm_S , encode k-fold iterated blow-ups in X via an algebraic space B_k .
- Blow up B_k several times, along a stratification similar to that of the fat diagonal in the product X^k . Obtain a nicer algebraic space \tilde{B}_k .
- Find a good approximation $\tilde{B}_k \to Z$ by a smooth scheme Z, which is projective if X is.
- Build an appropriate iterated homotopy pushout P_k of smooth projective schemes, which implies that $\Sigma^{\infty} P_k$ is smooth in SH(R).
- In the case $X = (\mathbb{P}^1)^{\wedge n}$, show that P_k is a good approximation of $\operatorname{Sym}^k(X)$.

Thank you!