Quillen cohomology of **Π**-algebras

Martin Frankland

Department of Mathematics Massachusetts Institute of Technology franklan@math.mit.edu

Penn State Altoona Homotopy Theory Mini Conference October 23, 2009

Overview and background

- 2 Algebraic approach: computing HQ*
- 3 Computations in the 2-truncated case

4 Conclusion

A Π -algebra is a graded group with additional structure which looks like the homotopy groups of a pointed space.

П-algebras

A Π-algebra is a graded group with additional structure which looks like the homotopy groups of a pointed space.

Definition

Let Π be the full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_i}$, $n_i \ge 1$. A Π -algebra is a product-preserving functor $\Pi^{\text{op}} \rightarrow \textbf{Set}_*$.

Example: $\pi_* X = [-, X]_*$ for a pointed space *X*.

П-algebras

A Π-algebra is a graded group with additional structure which looks like the homotopy groups of a pointed space.

Definition

Let Π be the full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_i}$, $n_i \ge 1$. A Π -algebra is a product-preserving functor $\Pi^{\text{op}} \rightarrow \textbf{Set}_*$.

Example: $\pi_* X = [-, X]_*$ for a pointed space *X*.

Realization problem: Given a Π -algebra *A*, is there a space *X* such that $\pi_*X \simeq A$ as Π -algebras? If so, can we classify them?

Obstruction theory

Blanc-Dwyer-Goerss (2004) provided an obstruction theory to realizing a Π -algebra A, where the obstructions live in Quillen cohomology of A. They build the moduli space of all realizations as a holim of moduli spaces of "potential *n*-stages".

Obstruction theory

Blanc-Dwyer-Goerss (2004) provided an obstruction theory to realizing a Π -algebra A, where the obstructions live in Quillen cohomology of A. They build the moduli space of all realizations as a holim of moduli spaces of "potential *n*-stages".

- Moduli space of potential 0-stages $\simeq BAut(A)$.
- For a potential (n-1)-stage Y, there is an obstruction $o_Y \in HQ^{n+2}(A; \Omega^n A) / Aut(A, \Omega^n A)$ to lifting Y to a potential *n*-stage.
- If o_Y vanishes, the lifts of Y are "classified" by HQⁿ⁺¹(A; ΩⁿA), i.e. it acts transitively on the set of lifts.

Obstruction theory

Blanc-Dwyer-Goerss (2004) provided an obstruction theory to realizing a Π -algebra A, where the obstructions live in Quillen cohomology of A. They build the moduli space of all realizations as a holim of moduli spaces of "potential *n*-stages".

- Moduli space of potential 0-stages \simeq BAut(A).
- For a potential (n-1)-stage Y, there is an obstruction $o_Y \in HQ^{n+2}(A; \Omega^n A) / Aut(A, \Omega^n A)$ to lifting Y to a potential *n*-stage.
- If o_Y vanishes, the lifts of Y are "classified" by HQⁿ⁺¹(A; ΩⁿA), i.e. it acts transitively on the set of lifts.

Goal: Run this obstruction theory in simple cases.

- 2 Algebraic approach: computing HQ*
 - 3 Computations in the 2-truncated case

4 Conclusion

Truncation

Want to understand the obstruction groups better. What does Quillen cohomology of Π -algebras look like?

Problem: Π-algebras are complicated because they support operations by all homotopy groups of spheres.

Truncation

Want to understand the obstruction groups better. What does Quillen cohomology of Π -algebras look like?

Problem: Π-algebras are complicated because they support operations by all homotopy groups of spheres.

Avoiding the problem: Look at truncated Π -algebras only.

Let Π **Alg**^{*n*}₁ denote the category of *n*-truncated Π -algebras. We have the adjunction

$$\Pi \mathbf{Alg} \xrightarrow[\ell_n]{P_n} \Pi \mathbf{Alg}_1^n$$

where P_n is the *n*th Postnikov truncation functor and ι_n is the inclusion.

Truncation

Proposition (F.)

If a module M over a Π -algebra A is n-truncated, then there is a natural isomorphism

$$\mathrm{HQ}^*_{\mathrm{\Pi Alg}^n}(P_nA;M) \xrightarrow{\cong} \mathrm{HQ}^*_{\mathrm{\Pi Alg}}(A;M).$$

Proof sketch: The left Quillen functor $P_n : s \sqcap Alg \rightarrow s \sqcap Alg_1^n$ preserves <u>all</u> weak equivalences, not just between cofibrant objects.

Application to 2-types

Take $A = \begin{pmatrix} A_2 \\ A_1 \end{pmatrix}$. We know A is realizable.

Application to 2-types

Take
$$A = \begin{pmatrix} A_2 \\ A_1 \end{pmatrix}$$
. We know A is realizable.

Proposition

Weak homotopy types of realizations of A are in bijection with $H^{3}(A_{1}; A_{2})/Aut(A)$.

Proof sketch: Potential 0-stage is unique up to homotopy; obstruction to lifting vanishes. Lifts to 1-stages are classified by

$$\mathrm{HQ}^{2}(A; \Omega A) \cong \mathrm{HQ}^{2}_{\mathbf{Gp}}(A_{1}; A_{2}) \cong \mathrm{H}^{3}(A_{1}; A_{2}).$$

The indeterminacy is the action of $\pi_1 BAut(A) = Aut(A)$. Since $\Omega^2 A = 0$, all further obstructions vanish.

Application to 2-types

Realization tree for A

Application to 2-types

We recover a classic result of MacLane-Whitehead on homotopy 2-types. Our argument generalizes to the following case, for any $n \ge 2$.

Theorem

Let A be a Π -algebra with A_1 , A_n and zero elsewhere. Then A is realizable and (weak) homotopy types of realizations are in bijection with $H^{n+1}(A_1; A_n)/\operatorname{Aut}(A)$.

Application to 2-types

Realization tree for A

The uniqueness obstructions can be identified with k-invariants of the realizations, using work of H.J. Baues and D. Blanc comparing different obstruction theories.

Overview and background

2 Algebraic approach: computing HQ*

3 Computations in the 2-truncated case

Conclusion

Abelian approximation

For 3-types, the primary obstructions live in HQ^{*} of a 2-truncated Π -algebra. How to compute that?

Abelian approximation

For 3-types, the primary obstructions live in HQ^* of a 2-truncated Π -algebra. How to compute that? Use the universal coefficient spectral sequence

$$E_2^{s,t} = \mathsf{Ext}^s(\mathsf{HQ}_t(X), M) \Rightarrow \mathsf{HQ}^{s+t}(X; M).$$

Abelian approximation

For 3-types, the primary obstructions live in HQ^{*} of a 2-truncated Π -algebra. How to compute that? Use the universal coefficient spectral sequence

$$E_2^{s,t} = \operatorname{Ext}^s(\operatorname{HQ}_t(X), M) \Rightarrow \operatorname{HQ}^{s+t}(X; M).$$

The edge morphism

$$\operatorname{HH}^{s}(X;M) \mathrel{\mathop:}= \operatorname{Ext}^{s}(Ab_{X}X,M) \to \operatorname{HQ}^{s}(X;M)$$

gives a comparison with **Hochschild cohomology**, an abelian approximation of Quillen cohomology.

Abelian approximation

For 3-types, the primary obstructions live in HQ * of a 2-truncated Π -algebra. How to compute that? Use the universal coefficient spectral sequence

$$E_2^{s,t} = \operatorname{Ext}^s(\operatorname{HQ}_t(X), M) \Rightarrow \operatorname{HQ}^{s+t}(X; M).$$

The edge morphism

$$\mathsf{HH}^{s}(X;M) \mathrel{\mathop:}= \mathsf{Ext}^{s}(Ab_{X}X,M) \to \mathsf{HQ}^{s}(X;M)$$

gives a comparison with **Hochschild cohomology**, an abelian approximation of Quillen cohomology.

First goal: Compute HH* for 2-truncated Π -algebras.

Extended group cohomology

A module $\binom{M_2}{M_1}$ over $\binom{A_2}{A_1}$ is the data of A_1 -modules M_1 and M_2 and an action map $A_2 \otimes M_1 \to M_2$ which is A_1 -equivariant.

Extended group cohomology

A module $\binom{M_2}{M_1}$ over $\binom{A_2}{A_1}$ is the data of A_1 -modules M_1 and M_2 and an action map $A_2 \otimes M_1 \to M_2$ which is A_1 -equivariant.

For group cohomology, the short exact sequence of G-modules

$$0
ightarrow I_G
ightarrow \mathbb{Z} G
ightarrow \mathbb{Z}
ightarrow 0$$

yields $\operatorname{HH}^{i}(G; M) \cong \operatorname{H}^{i+1}(G; M) = \operatorname{Ext}^{i+1}(\mathbb{Z}, M)$ for $i \geq 1$.

Extended group cohomology

A module $\binom{M_2}{M_1}$ over $\binom{A_2}{A_1}$ is the data of A_1 -modules M_1 and M_2 and an action map $A_2 \otimes M_1 \to M_2$ which is A_1 -equivariant.

For group cohomology, the short exact sequence of G-modules

$$0 \to \textit{I}_G \to \mathbb{Z} G \to \mathbb{Z} \to 0$$

yields $\operatorname{HH}^{i}(G; M) \cong \operatorname{H}^{i+1}(G; M) = \operatorname{Ext}^{i+1}(\mathbb{Z}, M)$ for $i \geq 1$.

Similarly in the 2-truncated case, there is a "constant module" $\begin{pmatrix} 0 \\ \mathbb{Z} \end{pmatrix}$ and for $i \ge 1$ an isomorphism

$$\mathsf{HH}^{i}\left(\begin{pmatrix}\mathsf{A}_{2}\\\mathsf{A}_{1}\end{pmatrix};\begin{pmatrix}\mathsf{M}_{2}\\\mathsf{M}_{1}\end{pmatrix}\right)\cong\mathsf{H}^{i+1}\left(\begin{pmatrix}\mathsf{A}_{2}\\\mathsf{A}_{1}\end{pmatrix};\begin{pmatrix}\mathsf{M}_{2}\\\mathsf{M}_{1}\end{pmatrix}\right)$$

Extended group cohomology

$$\mathsf{H}^*\left(\begin{pmatrix}\mathsf{A}_2\\\mathsf{A}_1\end{pmatrix};\begin{pmatrix}\mathsf{M}_2\\\mathsf{M}_1\end{pmatrix}\right):=\mathsf{Ext}^*\left(\begin{pmatrix}\mathsf{0}\\\mathbb{Z}\end{pmatrix},\begin{pmatrix}\mathsf{M}_2\\\mathsf{M}_1\end{pmatrix}\right)$$

is the extended group cohomology.

Extended group cohomology

$$\mathsf{H}^*\left(\begin{pmatrix}\mathsf{A}_2\\\mathsf{A}_1\end{pmatrix};\begin{pmatrix}\mathsf{M}_2\\\mathsf{M}_1\end{pmatrix}\right):=\mathsf{Ext}^*\left(\begin{pmatrix}\mathsf{0}\\\mathbb{Z}\end{pmatrix},\begin{pmatrix}\mathsf{M}_2\\\mathsf{M}_1\end{pmatrix}\right)$$

is the extended group cohomology.

We can use a bar resolution of $\begin{pmatrix} 0\\ \mathbb{Z} \end{pmatrix}$ to relate the computations to familiar homological algebra.

2 Algebraic approach: computing HQ*

3 Computations in the 2-truncated case

Martin Frankland Quillen cohomology of ⊓-algebras

• The obstruction theory of Blanc-Dwyer-Goerss provides a fresh perspective on a classic problem, and a useful theoretical tool.

- The obstruction theory of Blanc-Dwyer-Goerss provides a fresh perspective on a classic problem, and a useful theoretical tool.
- Brute force computations for Quillen cohomology of Π-algebras can be unwieldy.

Work in progress

- Compute extended group cohomology and HQ^{*} of 2-truncated Π-algebras.
- Study the case of an arbitrary 2-stage II-algebra.
- Relate the Quillen cohomology groups involved to cohomology of Eilenberg-MacLane spaces.
- Study some 3-stage examples.

Further questions

- Existence obstructions
- Algebraic models
- Rational case
- Stable analogue
- Operations in Quillen cohomology

Thank you!

franklan@math.mit.edu