Quillen cohomology of П-algebras

Martin Frankland

Department of Mathematics
Massachusetts Institute of Technology
franklan@math.mit.edu

Penn State Altoona Homotopy Theory Mini Conference
October 23, 2009

(1) Overview and background

(2) Algebraic approach: computing HQ^{*}

(3) Computations in the 2-truncated case

П-algebras

A Π-algebra is a graded group with additional structure which looks like the homotopy groups of a pointed space.

П-algebras

A Π-algebra is a graded group with additional structure which looks like the homotopy groups of a pointed space.

Definition

Let Π be the full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_{i}}, n_{i} \geq 1$. A Π-algebra is a product-preserving functor $\Pi^{\mathrm{op}} \rightarrow$ Set $_{*}$.

Example: $\pi_{*} X=[-, X]_{*}$ for a pointed space X.

П-algebras

A П-algebra is a graded group with additional structure which looks like the homotopy groups of a pointed space.

Definition

Let Π be the full subcategory of the homotopy category of pointed spaces consisting of finite wedges of spheres $\bigvee S^{n_{i}}, n_{i} \geq 1$. A Π-algebra is a product-preserving functor $\Pi^{\mathrm{op}} \rightarrow$ Set $_{*}$.

Example: $\pi_{*} X=[-, X]_{*}$ for a pointed space X.
Realization problem: Given a Π-algebra A, is there a space X such that $\pi_{*} X \simeq A$ as Π-algebras? If so, can we classify them?

Obstruction theory

Blanc-Dwyer-Goerss (2004) provided an obstruction theory to realizing a Π-algebra A, where the obstructions live in Quillen cohomology of A. They build the moduli space of all realizations as a holim of moduli spaces of "potential n-stages".

Obstruction theory

Blanc-Dwyer-Goerss (2004) provided an obstruction theory to realizing a Π-algebra A, where the obstructions live in Quillen cohomology of A. They build the moduli space of all realizations as a holim of moduli spaces of "potential n-stages".

- Moduli space of potential 0-stages $\simeq \operatorname{BAut}(A)$.
- For a potential $(n-1)$-stage Y, there is an obstruction $o_{Y} \in \mathrm{HQ}^{n+2}\left(A ; \Omega^{n} A\right) / \operatorname{Aut}\left(A, \Omega^{n} A\right)$ to lifting Y to a potential n-stage.
- If o_{Y} vanishes, the lifts of Y are "classified" by $\operatorname{HQ}^{n+1}\left(A ; \Omega^{n} A\right)$, i.e. it acts transitively on the set of lifts.

Obstruction theory

Blanc-Dwyer-Goerss (2004) provided an obstruction theory to realizing a Π-algebra A, where the obstructions live in Quillen cohomology of A. They build the moduli space of all realizations as a holim of moduli spaces of "potential n-stages".

- Moduli space of potential 0-stages $\simeq \operatorname{BAut}(A)$.
- For a potential $(n-1)$-stage Y, there is an obstruction $o_{Y} \in \mathrm{HQ}^{n+2}\left(A ; \Omega^{n} A\right) / \operatorname{Aut}\left(A, \Omega^{n} A\right)$ to lifting Y to a potential n-stage.
- If O_{Y} vanishes, the lifts of Y are "classified" by $\mathrm{HQ}^{n+1}\left(A ; \Omega^{n} A\right)$, i.e. it acts transitively on the set of lifts.

Goal: Run this obstruction theory in simple cases.

(1) Overview and background

(2) Algebraic approach: computing HQ*

(3) Computations in the 2-truncated case

Truncation

Want to understand the obstruction groups better. What does Quillen cohomology of Π-algebras look like?

Problem: П-algebras are complicated because they support operations by all homotopy groups of spheres.

Truncation

Want to understand the obstruction groups better. What does Quillen cohomology of Π-algebras look like?

Problem: П-algebras are complicated because they support operations by all homotopy groups of spheres.

Avoiding the problem: Look at truncated Π-algebras only.
Let $\Pi \mathbf{A l} \mathbf{g}_{1}^{n}$ denote the category of n-truncated Π-algebras. We have the adjunction

$$
\Pi \mathbf{A l g} \underset{\iota_{n}}{\stackrel{P_{n}}{\rightleftarrows}} \Pi \mathbf{A l g}_{1}^{n}
$$

where P_{n} is the $n^{\text {th }}$ Postnikov truncation functor and ι_{n} is the inclusion.

Truncation

Proposition (F.)

If a module M over a Π-algebra A is n-truncated, then there is a natural isomorphism

$$
H Q_{\Pi \operatorname{Alg}_{1}^{n}}^{*}\left(P_{n} A ; M\right) \xlongequal{\leftrightharpoons} \mathrm{HQ}_{\Pi \mathrm{Alg}}^{*}(A ; M) .
$$

Proof sketch: The left Quillen functor $P_{n}: s \sqcap \mathbf{A l g} \rightarrow s \sqcap \mathbf{A l g}_{1}^{n}$ preserves all weak equivalences, not just between cofibrant objects.

Application to 2-types

Take $A=\binom{A_{2}}{A_{1}}$. We know A is realizable.

Application to 2-types

Take $A=\binom{A_{2}}{A_{1}}$. We know A is realizable.

Proposition

Weak homotopy types of realizations of A are in bijection with $\mathrm{H}^{3}\left(A_{1} ; A_{2}\right) / \operatorname{Aut}(A)$.

Proof sketch: Potential 0-stage is unique up to homotopy; obstruction to lifting vanishes. Lifts to 1 -stages are classified by

$$
\operatorname{HQ}^{2}(A ; \Omega A) \cong \mathrm{HQ}_{\mathrm{Gp}}^{2}\left(A_{1} ; A_{2}\right) \cong \mathrm{H}^{3}\left(A_{1} ; A_{2}\right)
$$

The indeterminacy is the action of $\pi_{1} \operatorname{BAut}(\mathrm{~A})=\operatorname{Aut}(A)$. Since $\Omega^{2} A=0$, all further obstructions vanish.

Application to 2-types

Realization tree for A

Application to 2-types

We recover a classic result of MacLane-Whitehead on homotopy 2 -types. Our argument generalizes to the following case, for any $n \geq 2$.

Theorem

Let A be a Π-algebra with A_{1}, A_{n} and zero elsewhere. Then A is realizable and (weak) homotopy types of realizations are in bijection with $\mathrm{H}^{n+1}\left(A_{1} ; A_{n}\right) / \operatorname{Aut}(A)$.

Application to 2-types

Realization tree for A

Application to 2-types

The uniqueness obstructions can be identified with k-invariants of the realizations, using work of H.J. Baues and D. Blanc comparing different obstruction theories.

(1) Overview and background

(2) Algebraic approach: computing HQ

(3) Computations in the 2 -truncated case

Abelian approximation

For 3-types, the primary obstructions live in HQ^{*} of a 2-truncated Π-algebra. How to compute that?

Abelian approximation

For 3-types, the primary obstructions live in HQ^{*} of a 2-truncated Π-algebra. How to compute that? Use the universal coefficient spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}^{s}\left(\mathrm{HQ}_{t}(X), M\right) \Rightarrow \mathrm{HQ}^{s+t}(X ; M)
$$

Abelian approximation

For 3-types, the primary obstructions live in HQ* of a 2-truncated Π-algebra. How to compute that? Use the universal coefficient spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}^{s}\left(\mathrm{HQ}_{t}(X), M\right) \Rightarrow \mathrm{HQ}^{s+t}(X ; M)
$$

The edge morphism

$$
\mathrm{HH}^{s}(X ; M):=\operatorname{Ext}^{s}\left(A b_{X} X, M\right) \rightarrow \mathrm{HQ}^{s}(X ; M)
$$

gives a comparison with Hochschild cohomology, an abelian approximation of Quillen cohomology.

Abelian approximation

For 3-types, the primary obstructions live in HQ* of a 2-truncated Π-algebra. How to compute that? Use the universal coefficient spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}^{s}\left(\mathrm{HQ}_{t}(X), M\right) \Rightarrow \mathrm{HQ}^{s+t}(X ; M)
$$

The edge morphism

$$
\mathrm{HH}^{s}(X ; M):=\operatorname{Ext}^{s}\left(A b_{X} X, M\right) \rightarrow \mathrm{HQ}^{s}(X ; M)
$$

gives a comparison with Hochschild cohomology, an abelian approximation of Quillen cohomology.

First goal: Compute HH^{*} for 2-truncated Π-algebras.

Extended group cohomology

A module $\binom{M_{2}}{M_{1}}$ over $\binom{A_{2}}{A_{1}}$ is the data of A_{1}-modules M_{1} and M_{2} and an action map $A_{2} \otimes M_{1} \rightarrow M_{2}$ which is A_{1}-equivariant.

Extended group cohomology

A module $\binom{M_{2}}{M_{1}}$ over $\binom{A_{2}}{A_{1}}$ is the data of A_{1}-modules M_{1} and M_{2} and an action map $A_{2} \otimes M_{1} \rightarrow M_{2}$ which is A_{1}-equivariant.

For group cohomology, the short exact sequence of G-modules

$$
0 \rightarrow I_{G} \rightarrow \mathbb{Z} G \rightarrow \mathbb{Z} \rightarrow 0
$$

yields $\mathrm{HH}^{i}(G ; M) \cong \mathrm{H}^{i+1}(G ; M)=\mathrm{Ext}^{i+1}(\mathbb{Z}, M)$ for $i \geq 1$.

Extended group cohomology

A module $\binom{M_{2}}{M_{1}}$ over $\binom{A_{2}}{A_{1}}$ is the data of A_{1}-modules M_{1} and M_{2} and an action map $A_{2} \otimes M_{1} \rightarrow M_{2}$ which is A_{1}-equivariant.

For group cohomology, the short exact sequence of G-modules

$$
0 \rightarrow I_{G} \rightarrow \mathbb{Z} G \rightarrow \mathbb{Z} \rightarrow 0
$$

yields $\mathrm{HH}^{i}(G ; M) \cong \mathrm{H}^{i+1}(G ; M)=\mathrm{Ext}^{i+1}(\mathbb{Z}, M)$ for $i \geq 1$.
Similarly in the 2-truncated case, there is a "constant module" $\binom{0}{\mathbb{Z}}$ and for $i \geq 1$ an isomorphism

$$
\mathrm{HH}^{i}\left(\binom{A_{2}}{A_{1}} ;\binom{M_{2}}{M_{1}}\right) \cong \mathrm{H}^{i+1}\left(\binom{A_{2}}{A_{1}} ;\binom{M_{2}}{M_{1}}\right)
$$

Extended group cohomology

$$
\mathrm{H}^{*}\left(\binom{A_{2}}{A_{1}} ;\binom{M_{2}}{M_{1}}\right):=\operatorname{Ext}^{*}\left(\binom{0}{\mathbb{Z}},\binom{M_{2}}{M_{1}}\right)
$$

is the extended group cohomology.

Extended group cohomology

$$
\mathrm{H}^{*}\left(\binom{A_{2}}{A_{1}} ;\binom{M_{2}}{M_{1}}\right):=\operatorname{Ext}^{*}\left(\binom{0}{\mathbb{Z}},\binom{M_{2}}{M_{1}}\right)
$$

is the extended group cohomology.
We can use a bar resolution of $\binom{0}{\mathbb{Z}}$ to relate the computations to familiar homological algebra.

(1) Overview and background

(2) Algebraic approach: computing HQ^{*}

(3) Computations in the 2-truncated case

4 Conclusion

Moral

- The obstruction theory of Blanc-Dwyer-Goerss provides a fresh perspective on a classic problem, and a useful theoretical tool.

Moral

- The obstruction theory of Blanc-Dwyer-Goerss provides a fresh perspective on a classic problem, and a useful theoretical tool.
- Brute force computations for Quillen cohomology of П-algebras can be unwieldy.

Work in progress

- Compute extended group cohomology and HQ* of 2-truncated Π-algebras.
- Study the case of an arbitrary 2-stage П-algebra.
- Relate the Quillen cohomology groups involved to cohomology of Eilenberg-MacLane spaces.
- Study some 3-stage examples.

Further questions

- Existence obstructions
- Algebraic models
- Rational case
- Stable analogue
- Operations in Quillen cohomology

Thank you!

franklan@math.mit.edu

