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Below are some topics that could serve as basis for a directed reading project, over one or
two semesters. I find the mentioned results interesting, important, and beautiful. In each
case, the goals of the project are the following.

• Understand the notions in and around the statement.
• Go through the proof and learn some of the techniques involved.
• Look at examples and applications of the statement.

1. Serre’s finiteness theorem

Theorem 1.1 (Serre). The homotopy group πn+k(Sn) is finite for k > 0 except for an even-
dimensional sphere n = 2m and k = 2m − 1, in which case we have π4m−1(S

2m) = Z ⊕ Fm

for some finite group Fm.

Corollary 1.2. For every k > 0, the stable homotopy group πS
k is finite.

References: [Ser53a], [Hat04, Theorem 1.21], [tD08, §20.8], [Rav04, §1.1].

2. The first few stable homotopy groups of spheres

Theorem 2.1. The first few stable homotopy groups of spheres πS
k are as follows.

k 0 1 2 3 4 5 6 7

πS
k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240

We will follow Serre’s method of iteratively getting rid of the bottom homotopy group and
using the Serre spectral sequence.

References: [CS52], [Ser52], [Hat04, §1.Computing homotopy groups of spheres], [Rav04,
§1.2].

Remark 2.2. Secretly, this project is an invitation to the Adams spectral sequence. Serre’s
method becomes unwieldy as the stem increases.

3. The Steenrod algebra and its dual

Theorem 3.1 (Serre). The mod 2 Steenrod algebra is given as a graded F2-algebra by

A∗ = TF2(Sq1, Sq2, . . .)/Adem relations.

Here, Sqi denotes the ith Steenrod square, with degree |Sqi| = i.
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Theorem 3.2 (Cartan). For an odd prime p, the mod p Steenrod algebra is given as a graded
Fp-algebra by

A∗ = TFp(β, P 1, P 2, . . .)/Adem relations.

Here, P i denotes the ith Steenrod reduced pth power, with degree |P i| = 2i(p − 1), and β
denotes the mod p Bockstein operation, with degree |β| = 1.

Theorem 3.3 (Milnor). The mod 2 dual Steenrod algebra is a polynomial F2-algebra

A∗ = F2[ξ1, ξ2, . . .]

on generators ξi of degree |ξi| = 2i − 1.
For p an odd prime, the mod p dual Steenrod algebra is free as a graded-commutative

Fp-algebra, namely

A∗ = Fp[ξ1, ξ2, . . .]⊗Fp ΛFp [τ0, τ1, . . .]

on generators ξi of degree |ξi| = 2pi − 2 and τi of degree |τi| = 2pi − 1.

References: [Ser53b], [Car55], [Mil58], [Hat02, §4.L], [MT68, §6], [Ada74, III.12], [May99,
§22.5], [Mar83, §15].

4. The unoriented cobordism ring

Theorem 4.1 (Thom). The unoriented bordism ring is a polynomial F2-algebra

ΩO
∗
∼= π∗MO = F2[u2, u4, u5, u6, u8, u9, . . .]

on generators ui of degree |ui| = i for all positive i not of the form 2k − 1.

References: [Tho54], [May99, §25], [tD08, §21].

5. The complex cobordism ring

Theorem 5.1 (Milnor,Novikov). The complex bordism ring is a polynomial ring

ΩU
∗
∼= π∗MU = Z[x1, x2, . . .]

on generators xi of degree |xi| = 2i.

Let L denote the Lazard ring, which classifies formal group laws. That is, the data of a
formal group law on a commutative ring R is the same data as a ring homomorphism L→ R.

Theorem 5.2 (Lazard). The ring L is a polynomial ring

L ∼= Z[a1, a2, . . .].

For an appropriate choice of grading, the generators have degree |ai| = i. To match the
grading appearing in topology, we should double this grading to |ai| = 2i.

Theorem 5.3 (Quillen). The complex orientation of MU induces the universal formal group

law on π∗MU . In other words, the corresponding ring homomorphism L
∼=−→ π∗MU is an

isomorphism.

References: [Laz55], [Mil60], [Qui69], [Rav04, §1.2–1.3], [Ada74, §II.0-II.10], [KT06, §6].
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6. The Bott periodicity theorem

Theorem 6.1 (Bott). The stable unitary group U =
⋃

n U(n) satisfies Ω2U ' U . Its homo-
topy groups are given by π0U = 0, π1U = Z, and the 2-periodicity.

Theorem 6.2 (Bott). The stable orthogonal group O =
⋃

nO(n) satisfies Ω8O ' O. Its
homotopy groups are given by

k 0 1 2 3 4 5 6 7

πkO Z/2 Z/2 0 Z 0 0 0 Z

and the 8-periodicity.

References: [Bot59], [May99, §24.2], [Hat17, §2.2], [KT06, §4.2], [Ati67, §2.2], [Mil63, §23].

7. Simplicial sets as a model for spaces

Theorem 7.1 (Quillen). The geometric realization functor | · | and the singular set functor
Sing form a Quillen equivalence

|·| : sSet � Top : Sing

between simplicial sets (with the Kan–Quillen model structure) and topological spaces (with
the Serre model structure).

References: [Qui67, §II.3], [Qui68], [GJ09, §I.11], [Hov99, §3.6], [MP12, §17.5], [DS95,
§8,11], [Hir03, §7.10, 8.5].

8. The Dold–Kan correspondence

Theorem 8.1 (Dold,Kan). The normalized chain complex functor

N : sAb→ Ch≥0(Z)

from simplicial abelian groups to non-negatively graded chain complexes of abelian groups is
an equivalence of categories.

Under this correspondence:

• The homotopy groups of a simplicial abelian group A correspond to the homology
groups of its normalized chain complex: πnA ∼= Hn(NA).
• Simplicially homotopic maps f, g : A → B correspond to chain homotopic maps
Nf,Ng : NA→ NB.

References: [Dol58, §1–2], [DP61, §3], [Wei94, §8.4], [GJ09, §III.2].

9. The recognition principle for loop spaces

Theorem 9.1 (Stasheff, May, Boardman–Vogt). A topological space X is weakly equivalent
to a loop space ΩY if and only if it admits the structure of a group-like A∞ space.

References: [Sta70, §11], [May72, §3, 13], [BV73, §I.1–I.4, VI.1–VI.3], [MSS02, §I.1.6,
II.2.1–II.2.3].
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10. Universal algebra from a categorical viewpoint

Theorem 10.1 (Lawvere). The following properties of a category C are equivalent: C is
equivalent to...

(1) A (one-sorted) finitary variety of algebras.
(2) The category of finite product preserving functors T → Set for a (one-sorted) Lawvere

theory T .
(3) The category of algebras for a finitary monad on Set.
(4) A cocomplete category with a small projective generator and effective equivalence re-

lations.

References: [Law63], [AR94, §3.A], [ARV11, §1,6], [ML98, §V.6, VI.8], [Bor94, §3.1–3.9,
4.1–4.4].

11. Algebraic K-theory

Let R be a ring. The 0th algebraic K-group K0(R) is defined as the Grothendieck group
of finitely generated projective R-modules.

Definition 11.1 (Quillen). For n > 0, the algebraic K-groups of R are defined by

Kn(R) = πn
(
BGL(R)+

)
.

Remark 11.2. This definition recovers the group K1(R) previously defined by Bass [Bas64]
and the group K2(R) defined by Milnor [Mil71].

Covering the ingredients that go into this definition would provide enough material for a
project. A more ambitious project could also tackle the following result.

Theorem 11.3 (Quillen). Let Fq be a finite field of cardinality q. Then the algebraic
K-groups of Fq are: 

K0(Fq) = Z
K2i(Fq) = 0 for i ≥ 1

K2i−1(Fq) = Z/(qi − 1) for i ≥ 1.

References: [Qui73], [Qui75], [Ros94, §5], [Wei13, §IV.1], [Wei99].

12. Stokes’ theorem and De Rham cohomology

Theorem 12.1 (Stokes’ theorem). Let M be a compact oriented n-dimensional smooth ma-
nifold with boundary ∂M . Let ω be an (n− 1)-form on M . Then we have∫

M

dω =

∫
∂M

ω,

where dω denotes the exterior derivative of ω.

Theorem 12.2 (de Rham). Let M be an n-dimensional smooth manifold. There is a natural
isomorphism

H∗dR(M) ∼= H∗(M ;R)

between de Rham cohomology of M and singular cohomology of M with real coefficients.

Remark 12.3. Armed with those two theorems, it is fun to revisit vector calculus in dimensions
2 and 3. Gradient, curl, and divergence are the differentials in the de Rham complex.
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References: [Bre97, §V.1–V.5, V.9], [War83, §4,5], [Rud76, §10] [BT82, §1–5, 8] [GP10,
§4.1–4.7], [Tao18].

13. The Morse homology theorem

Theorem 13.1 (Smale). Let M be a closed smooth manifold and f : M → R a Morse
function. Then M admits a handle decomposition with one k-handle for each critical point
of f of index k.

See [Sma61, §6], [Pal63, §12], [Kos93, §VII.2].

Theorem 13.2. Let M be a closed oriented smooth manifold, f : M → R a Morse function,
and g a Riemannian metric on M making the pair (f, g) Morse–Smale. Then there is a
canonical isomorphism

HMorse
∗ (f, g) ∼= H∗(M ;Z)

between the Morse homology of the pair (f, g) and the singular homology of M .

Remark 13.3. With more work, one can remove the assumption that M be orientable.

References: [Mil63, §1], [Mat02], [Hir94, §6], [Sch93, §4], [Hut02, §1–4], [BH04], [Nic11, §1–
2].
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[Sma61] S. Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74
(1961), 391–406, DOI 10.2307/1970239. MR0137124

[Sta70] J. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161,
Springer-Verlag, Berlin-New York, 1970. MR0270372

[Tao18] T. Tao, Differential forms and integration (Aug. 25, 2018), Preprint, available at https://www.

math.ucla.edu/~tao/preprints/forms.pdf.
[Tho54] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954),
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