DIRECTED READING PROJECTS

MARTIN FRANKLAND

Below are some topics that could serve as basis for a directed reading project, over one or two semesters. I find the mentioned results interesting, important, and beautiful. In each case, the goals of the project are the following.

- Understand the notions in and around the statement.
- Go through the proof and learn some of the techniques involved.
- Look at examples and applications of the statement.

1. Serre's finiteness theorem

Theorem 1.1 (Serre). The homotopy group $\pi_{n+k}(S^n)$ is finite for k > 0 except for an evendimensional sphere n = 2m and k = 2m - 1, in which case we have $\pi_{4m-1}(S^{2m}) = \mathbb{Z} \oplus F_m$ for some finite group F_m .

Corollary 1.2. For every k > 0, the stable homotopy group π_k^S is finite.

References: [Ser53a], [Hat04, Theorem 1.21], [tD08, §20.8], [Rav04, §1.1].

2. The first few stable homotopy groups of spheres

Theorem 2.1. The first few stable homotopy groups of spheres π_k^S are as follows.

k	0	1	2	3	4	5	6	7
π_k^S	Z	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/24$	0	0	$\mathbb{Z}/2$	$\mathbb{Z}/240$

We will follow Serre's method of iteratively getting rid of the bottom homotopy group and using the Serre spectral sequence.

References: [CS52], [Ser52], [Hat04, §1.Computing homotopy groups of spheres], [Rav04, §1.2].

Remark 2.2. Secretly, this project is an invitation to the Adams spectral sequence. Serre's method becomes unwieldy as the stem increases.

3. The Steenrod Algebra and its dual

Theorem 3.1 (Serre). The mod 2 Steenrod algebra is given as a graded \mathbb{F}_2 -algebra by

 $\mathcal{A}^* = T_{\mathbb{F}_2}(\mathrm{Sq}^1, \mathrm{Sq}^2, \ldots) / Adem \ relations.$

Here, Sq^i denotes the *i*th Steenrod square, with degree $|Sq^i| = i$.

Date: June 18, 2019.

Theorem 3.2 (Cartan). For an odd prime p, the mod p Steenrod algebra is given as a graded \mathbb{F}_p -algebra by

$$\mathcal{A}^* = T_{\mathbb{F}_n}(\beta, P^1, P^2, \ldots) / Adem \ relations.$$

Here, P^i denotes the *i*th Steenrod reduced p^{th} power, with degree $|P^i| = 2i(p-1)$, and β denotes the mod p Bockstein operation, with degree $|\beta| = 1$.

Theorem 3.3 (Milnor). The mod 2 dual Steenrod algebra is a polynomial \mathbb{F}_2 -algebra

$$\mathcal{A}_* = \mathbb{F}_2[\xi_1, \xi_2, \ldots]$$

on generators ξ_i of degree $|\xi_i| = 2^i - 1$.

For p an odd prime, the mod p dual Steenrod algebra is free as a graded-commutative \mathbb{F}_p -algebra, namely

$$\mathcal{A}_* = \mathbb{F}_p[\xi_1, \xi_2, \ldots] \otimes_{\mathbb{F}_p} \Lambda_{\mathbb{F}_p}[\tau_0, \tau_1, \ldots]$$

on generators ξ_i of degree $|\xi_i| = 2p^i - 2$ and τ_i of degree $|\tau_i| = 2p^i - 1$.

References: [Ser53b], [Car55], [Mil58], [Hat02, §4.L], [MT68, §6], [Ada74, III.12], [May99, §22.5], [Mar83, §15].

4. The unoriented cobordism ring

Theorem 4.1 (Thom). The unoriented bordism ring is a polynomial \mathbb{F}_2 -algebra

$$\Omega^{O}_{*} \cong \pi_{*}MO = \mathbb{F}_{2}[u_{2}, u_{4}, u_{5}, u_{6}, u_{8}, u_{9}, \ldots]$$

on generators u_i of degree $|u_i| = i$ for all positive i not of the form $2^k - 1$.

References: [Tho54], [May99, §25], [tD08, §21].

5. The complex cobordism ring

Theorem 5.1 (Milnor, Novikov). The complex bordism ring is a polynomial ring

$$\Omega^U_* \cong \pi_* M U = \mathbb{Z}[x_1, x_2, \ldots]$$

on generators x_i of degree $|x_i| = 2i$.

Let L denote the Lazard ring, which classifies formal group laws. That is, the data of a formal group law on a commutative ring R is the same data as a ring homomorphism $L \to R$.

Theorem 5.2 (Lazard). The ring L is a polynomial ring

$$L \cong \mathbb{Z}[a_1, a_2, \ldots].$$

For an appropriate choice of grading, the generators have degree $|a_i| = i$. To match the grading appearing in topology, we should double this grading to $|a_i| = 2i$.

Theorem 5.3 (Quillen). The complex orientation of MU induces the universal formal group law on π_*MU . In other words, the corresponding ring homomorphism $L \xrightarrow{\cong} \pi_*MU$ is an isomorphism.

References: [Laz55], [Mil60], [Qui69], [Rav04, §1.2–1.3], [Ada74, §II.0-II.10], [KT06, §6].

6. The Bott periodicity theorem

Theorem 6.1 (Bott). The stable unitary group $U = \bigcup_n U(n)$ satisfies $\Omega^2 U \simeq U$. Its homotopy groups are given by $\pi_0 U = 0$, $\pi_1 U = \mathbb{Z}$, and the 2-periodicity.

Theorem 6.2 (Bott). The stable orthogonal group $O = \bigcup_n O(n)$ satisfies $\Omega^8 O \simeq O$. Its homotopy groups are given by

k	0	1	2	3	4	5	6	7
$\pi_k O$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	0	\mathbb{Z}	0	0	0	\mathbb{Z}

and the 8-periodicity.

References: [Bot59], [May99, §24.2], [Hat17, §2.2], [KT06, §4.2], [Ati67, §2.2], [Mil63, §23].

7. SIMPLICIAL SETS AS A MODEL FOR SPACES

Theorem 7.1 (Quillen). The geometric realization functor $|\cdot|$ and the singular set functor Sing form a Quillen equivalence

$$|\cdot|: s\mathbf{Set} \rightleftharpoons \mathbf{Top}: \mathrm{Sing}$$

between simplicial sets (with the Kan–Quillen model structure) and topological spaces (with the Serre model structure).

References: [Qui67, §II.3], [Qui68], [GJ09, §I.11], [Hov99, §3.6], [MP12, §17.5], [DS95, §8,11], [Hir03, §7.10, 8.5].

8. The Dold–Kan correspondence

Theorem 8.1 (Dold,Kan). The normalized chain complex functor

 $N: sAb \to Ch_{>0}(\mathbb{Z})$

from simplicial abelian groups to non-negatively graded chain complexes of abelian groups is an equivalence of categories.

Under this correspondence:

- The homotopy groups of a simplicial abelian group A correspond to the homology groups of its normalized chain complex: $\pi_n A \cong H_n(NA)$.
- Simplicially homotopic maps $f, g: A \to B$ correspond to chain homotopic maps $Nf, Ng: NA \to NB$.

References: [Dol58, §1–2], [DP61, §3], [Wei94, §8.4], [GJ09, §III.2].

9. The recognition principle for loop spaces

Theorem 9.1 (Stasheff, May, Boardman–Vogt). A topological space X is weakly equivalent to a loop space ΩY if and only if it admits the structure of a group-like A_{∞} space.

References: [Sta70, §11], [May72, §3, 13], [BV73, §I.1–I.4, VI.1–VI.3], [MSS02, §I.1.6, II.2.1–II.2.3].

10. Universal algebra from a categorical viewpoint

Theorem 10.1 (Lawvere). The following properties of a category C are equivalent: C is equivalent to...

- (1) A (one-sorted) finitary variety of algebras.
- (2) The category of finite product preserving functors $\mathcal{T} \to \mathbf{Set}$ for a (one-sorted) Lawvere theory \mathcal{T} .
- (3) The category of algebras for a finitary monad on **Set**.
- (4) A cocomplete category with a small projective generator and effective equivalence relations.

References: [Law63], [AR94, §3.A], [ARV11, §1,6], [ML98, §V.6, VI.8], [Bor94, §3.1–3.9, 4.1–4.4].

11. Algebraic K-theory

Let R be a ring. The 0th algebraic K-group $K_0(R)$ is defined as the Grothendieck group of finitely generated projective R-modules.

Definition 11.1 (Quillen). For n > 0, the algebraic K-groups of R are defined by

$$K_n(R) = \pi_n \left(BGL(R)^+ \right)$$

Remark 11.2. This definition recovers the group $K_1(R)$ previously defined by Bass [Bas64] and the group $K_2(R)$ defined by Milnor [Mil71].

Covering the ingredients that go into this definition would provide enough material for a project. A more ambitious project could also tackle the following result.

Theorem 11.3 (Quillen). Let \mathbb{F}_q be a finite field of cardinality q. Then the algebraic K-groups of \mathbb{F}_q are:

$$\begin{cases} K_0(\mathbb{F}_q) = \mathbb{Z} \\ K_{2i}(\mathbb{F}_q) = 0 & \text{for } i \ge 1 \\ K_{2i-1}(\mathbb{F}_q) = \mathbb{Z}/(q^i - 1) & \text{for } i \ge 1. \end{cases}$$

References: [Qui73], [Qui75], [Ros94, §5], [Wei13, §IV.1], [Wei99].

Theorem 12.1 (Stokes' theorem). Let M be a compact oriented n-dimensional smooth manifold with boundary ∂M . Let ω be an (n-1)-form on M. Then we have

$$\int_M d\omega = \int_{\partial M} \omega,$$

where $d\omega$ denotes the exterior derivative of ω .

Theorem 12.2 (de Rham). Let M be an n-dimensional smooth manifold. There is a natural isomorphism

$$H^*_{dB}(M) \cong H^*(M;\mathbb{R})$$

between de Rham cohomology of M and singular cohomology of M with real coefficients.

Remark 12.3. Armed with those two theorems, it is fun to revisit vector calculus in dimensions 2 and 3. Gradient, curl, and divergence are the differentials in the de Rham complex.

References: [Bre97, $\SV.1-V.5$, V.9], [War83, $\S4,5$], [Rud76, $\S10$] [BT82, $\S1-5$, 8] [GP10, $\S4.1-4.7$], [Tao18].

13. The Morse homology theorem

Theorem 13.1 (Smale). Let M be a closed smooth manifold and $f: M \to \mathbb{R}$ a Morse function. Then M admits a handle decomposition with one k-handle for each critical point of f of index k.

See [Sma61, §6], [Pal63, §12], [Kos93, §VII.2].

Theorem 13.2. Let M be a closed oriented smooth manifold, $f: M \to \mathbb{R}$ a Morse function, and g a Riemannian metric on M making the pair (f, g) Morse–Smale. Then there is a canonical isomorphism

$$H^{\text{Morse}}_*(f,g) \cong H_*(M;\mathbb{Z})$$

between the Morse homology of the pair (f, g) and the singular homology of M.

Remark 13.3. With more work, one can remove the assumption that M be orientable.

References: [Mil63, §1], [Mat02], [Hir94, §6], [Sch93, §4], [Hut02, §1–4], [BH04], [Nic11, §1–2].

References

- [AR94] J. Adámek and J. Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR1294136
- [ARV11] J. Adámek, J. Rosický, and E. M. Vitale, Algebraic theories, Cambridge Tracts in Mathematics, vol. 184, Cambridge University Press, Cambridge, 2011. A categorical introduction to general algebra; With a foreword by F. W. Lawvere. MR2757312
- [Ada74] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, vol. 17, University of Chicago Press, Chicago, IL, 1974.
- [Ati67] M. Atiyah, K-theory, W. A. Benjamin, Inc., 1967.
- [BH04] A. Banyaga and D. Hurtubise, Lectures on Morse homology, Kluwer Texts in the Mathematical Sciences, vol. 29, Kluwer Academic Publishers Group, Dordrecht, 2004. MR2145196
- [Bas64] H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60. MR0174604
- [BV73] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR0420609
- [Bor94] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, 1994.
- [Bot59] R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313–337, DOI 10.2307/1970106. MR0110104
- [BT82] R. Bott and L. W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR658304
- [Bre97] G. E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original. MR1700700
- [CS52] H. Cartan and J.-P. Serre, Espaces fibrés et groupes d'homotopie. II. Applications, C. R. Acad. Sci. Paris 234 (1952), 393–395 (French). MR0046046
- [Car55] H. Cartan, Sur l'itération des opérations de Steenrod, Comment. Math. Helv. 29 (1955), 40–58, DOI 10.1007/BF02564270 (French). MR0068219
- [Dol58] A. Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. (2) 68 (1958), 54–80, DOI 10.2307/1970043. MR0097057
- [DP61] A. Dold and D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201–312 (German, with French summary). MR0150183

MARTIN FRANKLAND

- [DS95] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126, DOI 10.1016/B978-044481779-2/50003-1. MR1361887
- [GJ09] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR2840650
- [GP10] V. Guillemin and A. Pollack, *Differential topology*, AMS Chelsea Publishing, Providence, RI, 2010. Reprint of the 1974 original. MR2680546
- [Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354
- [Hat04] _____, Spectral Sequences in Algebraic Topology, Jan. 5, 2004, Unpublished draft available on the author's website.
- [Hat17] _____, Vector Bundles and K-Theory, Version 2.2, Nov. 2017, Unpublished draft available on the author's website.
- [Hir94] M. W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR1336822
- [Hir03] P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR1944041 (2003j:18018)
- [Hov99] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR1650134 (99h:55031)
- [Hut02] M. Hutchings, Lecture notes on Morse homology (with an eye towards Floer theory and pseudoholomorphic curves) (Dec. 2002), Unpublished notes available on the author's website.
- [KT06] A. Kono and D. Tamaki, Generalized cohomology, Translations of Mathematical Monographs, vol. 230, American Mathematical Society, Providence, RI, 2006. Translated from the 2002 Japanese edition by Tamaki; Iwanami Series in Modern Mathematics. MR2225848
- [Kos93] A. A. Kosinski, Differential manifolds, Pure and Applied Mathematics, vol. 138, Academic Press, Inc., Boston, MA, 1993. MR1190010
- [Law63] F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869–872. MR0158921 (28 #2143)
- [Laz55] M. Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251–274 (French). MR0073925
- [ML98] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR1712872
- [Mar83] H. R. Margolis, Spectra and the Steenrod algebra, North-Holland Mathematical Library, vol. 29, North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable homotopy category. MR738973 (86j:55001)
- [MSS02] M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002. MR1898414
- [Mat02] Y. Matsumoto, An introduction to Morse theory, Translations of Mathematical Monographs, vol. 208, American Mathematical Society, Providence, RI, 2002. Translated from the 1997 Japanese original by Kiki Hudson and Masahico Saito; Iwanami Series in Modern Mathematics. MR1873233
- [May72] J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. MR0420610
- [May99] _____, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR1702278 (2000h:55002)
- [MP12] J. P. May and K. Ponto, More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012. Localization, completion, and model categories. MR2884233
- [Mil58] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR0099653
- [Mil60] J. Milnor, On the cobordism ring Ω^{*} and a complex analogue. I, Amer. J. Math. 82 (1960), 505–521, DOI 10.2307/2372970. MR0119209
- [Mil63] _____, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR0163331
- [Mil71] J. Milnor, Introduction to algebraic K-theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR0349811

- [MT68] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968. MR0226634 (37 #2223)
- [Nic11] L. Nicolaescu, An invitation to Morse theory, 2nd ed., Universitext, Springer, New York, 2011. MR2883440
- [Pal63] R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340, DOI 10.1016/0040-9383(63)90013-2. MR0158410
- [Qui67] D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1967. MR0223432
- [Qui68] _____, The geometric realization of a Kan fibration is a Serre fibration, Proc. Amer. Math. Soc. 19 (1968), 1499–1500, DOI 10.2307/2036240. MR0238322
- [Qui69] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293–1298, DOI 10.1090/S0002-9904-1969-12401-8. MR0253350
- [Qui73] _____, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR0338129
- [Qui75] _____, Higher algebraic K-theory, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Canad. Math. Congress, Montreal, Que., 1975, pp. 171–176. MR0422392
- [Rav04] D. C. Ravenel, *Complex cobordism and stable homotopy groups of spheres*, Second, Vol. 347, AMS Chelsea Publishing, 2004.
- [Ros94] J. Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. MR1282290
- [Rud76] W. Rudin, *Principles of mathematical analysis*, 3rd ed., McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. International Series in Pure and Applied Mathematics. MR0385023
- [Sch93] M. Schwarz, Morse homology, Progress in Mathematics, vol. 111, Birkhäuser Verlag, Basel, 1993. MR1239174
- [Ser52] J.-P. Serre, Sur les groupes d'Eilenberg-MacLane, C. R. Acad. Sci. Paris 234 (1952), 1243–1245 (French). MR0046047
- [Ser53a] _____, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294, DOI 10.2307/1969789 (French). MR0059548
- [Ser53b] _____, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232, DOI 10.1007/BF02564562 (French). MR0060234
- [Sma61] S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391–406, DOI 10.2307/1970239. MR0137124
- [Sta70] J. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin-New York, 1970. MR0270372
- [Tao18] T. Tao, Differential forms and integration (Aug. 25, 2018), Preprint, available at https://www.math.ucla.edu/~tao/preprints/forms.pdf.
- [Tho54] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86, DOI 10.1007/BF02566923 (French). MR0061823
- [tD08] T. tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR2456045
- [War83] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR722297
- [Wei94] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1994.
- [Wei99] C. A. Weibel, The development of algebraic K-theory before 1980, Algebra, K-theory, groups, and education (New York, 1997), Contemp. Math., vol. 243, Amer. Math. Soc., Providence, RI, 1999, pp. 211–238, DOI 10.1090/conm/243/03695. MR1732049
- [Wei13] _____, *The K-book*, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic *K*-theory. MR3076731

Email address: Martin.Frankland@uregina.ca