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1. Introduction

Purification of E0-semigroups is a central theme of the theory of noncommu-
tative dynamics [1], a theme which has revolved around two main problems:
(i) to decide whether or not every E0-semigroup is cocycle conjugate to a pure
E0-semigroup [1][4], and; (ii) to describe the class of pure E0-semigroups that
are cocycle conjugate to a given E0-semigroup [2][3]. A solution to the for-
mer problem was obtained in the affirmative by V. Liebscher, as a direct
consequence of an intricate analysis of product systems of W ∗-algebras [4,
Theorem 7.23].

It is our main purpose, in paper, to initiate a study of the latter prob-
lem from the perspective of Arveson’s theory of spectral C∗-algebras. More
precisely, we show that Arveson’s characterization of cocycle perturbations
of an E0-semigroup in terms of essential states of the spectral C∗-algebra
pertains to the study of pure E0-semigroups, and determines a surjective
correspondence from the set of all pure essential mixing states of the spec-
tral C∗-algebra C∗(Eρ) of the concrete product system Eρ of an arbitrary
E0-semigroup ρ = {ρt}t≥0 onto the set of all pure E0-semigroups that are
cocycle conjugate to the semigroup ρ = {ρt}t≥0.

This self-contained paper is organized as follows. In Section 2, we collect
several definitions and facts regarding E0-semigroups. For a more detailed
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treatment of various aspects of this subject, we refer the reader to [1]. In
Section 3, we show that the regular representation of the concrete product
system Eρ of an E0-semigroup ρ = {ρt}t≥0 induces a strongly continuous
one-parameter contractive semigroup α∗ = {α∗t }t≥0 on the dual space of the
spectral C∗-algebra C∗(Eρ). We then obtain a complete characterization of
the class of essential bounded linear functionals of C∗(Eρ) in terms of this
semigroup. In Section 4, we introduce the new concept of mixing bounded
linear functionals of the spectral C∗-algebra, which is defined with respect to
the semigroup α∗ = {α∗t }t≥0. We show that every mixing essential state com-
pletely defines the pureness of the natural E0-semigroup acting on the von
Neumann algebra generated by the spectral C∗-algebra under the GNS rep-
resentation of the state. This result produces the aforementioned surjective
correspondence between pure essential mixing states and pure E0-semigroups.

2. Background on the theory of E0-semigroups, product
systems, and spectral C∗-algebras

Introduced by R. Powers in [5], E0-semigroups are pointwise σ-weak con-
tinuous one parameter semigroups ρ = {ρt}t≥0 of unit-preserving normal
*-endomorphisms acting on a von Neumann algebra M , usually a type I∞
factor B(H), where H is a separable Hilbert space. Non-unital E0-semigroups
are conveniently called E-semigroups. An E0-semigroup ρ = {ρt}t≥0 is said
to be pure if its tail algebra is trivial, i.e.,⋂

t≥0

ρt(M) = C · 1.

The main focus of this theory is on the classification of E0-semigroups
up to conjugacy and cocycle conjugacy. Two E0-semigroups ρ = {ρt}t≥0 and
σ = {σt}t≥0 acting on B(H), respectively B(K), are said to be conjugate
if there is a *-isomorphism θ : B(H) → B(K) such that θ ◦ ρt = σt ◦ θ,
t ≥ 0. They are said to be cocycle conjugate if σ is conjugate to a cocycle
perturbation of ρ, i.e., to an E0-semigroup of the form {Ad(ut)◦ρt}t≥0, where
{ut}t≥0 ⊂ B(H) is a unitary ρ-cocycle, i.e., a strongly continuous family of
unitaries ut satisfying the cocycle relation us+t = usρs(ut), for all s, t ≥ 0.

As shown by Arveson, the classification problem of E0-semigroups up
to cocycle conjugacy is equivalent to the classification problem of product
systems up to an isomorphism. More precisely, one can associate to each E0-
semigroup (or to an E-semigroup) ρ = {ρt}≥0 acting on B(H), the Borel
bundle Eρ = {Eρ(t)}t>0 ⊂ B(H) of Hilbert spaces of intertwining operators

Eρ(t) = {v ∈ B(H) | ρt(x)v = vx, for all x ∈ B(H)},
endowed with the inner product 〈u, v〉Eρ(t) ·1 = v∗u, u, v ∈ Eρ(t). The bundle
Eρ = {Eρ(t)}t>0, called the concrete product system of ρ, has the property
that its isomorphism class is a complete cocycle conjugacy invariant, in the
sense that two E0-semigroups ρ and σ are cocycle conjugate iff Eρ and Eσ are
isomorphic as product systems. One should also note that there is a concept
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of abstract product system, which is not defined in terms of the intertwining
spaces of an E0-semigroup. However, any abstract product system can be
transformed, via an isomorphism, into a concrete product system by a pro-
cedure similar to the one that follows.

One can describe all E0-semigroups ρ̃ = {ρ̃t}≥0 that are cocycle con-
jugate to a given E0-semigroup ρ acting on B(H) by making use of the
representation theory of the concrete product system Eρ. More precisely, if
φ is a representation of Eρ on a Hilbert space K, i.e., a measurable operator-
valued function φ : Eρ → B(K) satisfying the conditions (i) φ(v)∗φ(u) =
〈u, v〉E(t) · 1, u, v ∈ Eρ(t), t > 0; and (ii) φ(uv) = φ(u)φ(v), u ∈ Eρ(s), y ∈
Eρ(t), s, t > 0, then {φ(Eρ(t))}t>0 is a Borel bundel of Hilbert spaces that
is isomorphic to Eρ, and ρ̃ = {ρ̃t}t≥0, where

ρ̃t(x) =
∞∑
n=1

φ(en(t))xφ(en(t))∗, t > 0, x ∈ B(K), (2.1)

and ρ0 := IdB(K), is a E-semigroup acting on B(K) with concrete product
system Eeρ = {φ(Eρ(t))}t>0. Here {en(t)}n∈N, t>0 is a Borel orthonormal basis
for Eρ, i.e., for every n ∈ N, (0,∞) 3 t 7→ en(t) ∈ Eρ(t) is a Borel section
of Eρ in such a way that {en(t)}n is orthonormal basis for Eρ(t), for every
t > 0. The semigroup ρ̃ = {ρ̃t}t≥0 is an E0-semigroup if and only if

[φ(Eρ(t))K] = K, t > 0, (2.2)

in which case we say that φ is an essential representation of the product
system Eρ. At the opposite end are the singular representations of Eρ, i.e.,
representations φ satisfying

⋂
t>0[φ(Eρ(t))K] = {0}.

Essential representations of a concrete product system Eρ = {Eρ(t)}t>0

or, equivalently, E0-semigroups that are cocycle conjugate to ρ, can be con-
structed by making use of the representation theory of the spectral C∗-
algebra C∗(Eρ) of Eρ, a C∗-algebra that plays the role of the “spectrum”
of the E0-semigroup ρ. To define this C∗-algebra, we consider, for p ∈ {1, 2},
the spaces Lp(Eρ) of all measurable sections (0,∞) 37→ f(t) ∈ Eρ(t) that
are p-integrable, i.e.,

∫
(0,∞)

‖f(t)‖pdt < ∞, endowed with the usual norm
‖f‖p = (

∫
(0,∞)

‖f(t)‖pdt)1/p. Every representation φ of Eρ on a Hilbert space
K extends to a contractive representation of the Banach algebra L1(Eρ) on
K by the formula

φ(f) :=
∫

(0,∞)

φ(f(t))dt, f ∈ L1(Eρ). (2.3)

The spectral C∗-algebra C∗(Eρ) ⊆ B(L2(Eρ)) is then defined as the norm
closure of the linear span of all products of the form `f `

∗
g with f, g ∈ L1(Eρ),

where ` : Eρ → B(L2(Eρ)) is the regular representation of Eρ,

(`xf)(s) =
{
xf(s− t), s > t,
0, 0 < s ≤ t,
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for x ∈ Eρ(t), t > 0, and f ∈ L2(Eρ), and `f , `g are as in (2.3) for
f, g ∈ L1(Eρ). Note that the regular representation ` is singular.

The spectral C∗-algebra C∗(Eρ) is non-unital, separable, irreducible,
nuclear, simple at least for spatial E0-semigroups, and its representation
theory echoes the representation theory of the product system Eρ. More
precisely, there is a 1-1 correspondence between nondegenerate representa-
tions π : C∗(Eρ) → B(K) of the C∗-algebra C∗(Eρ) and representations
φ : Eρ → B(K) of the product system Eρ, given by

π(`f `∗g) = φ(f)φ(g)∗, f, g ∈ L1(Eρ). (2.4)

A representation π of C∗(Eρ) is said to be essential iff the corresponding rep-
resentation φ of Eρ satisfying (2.4) is essential. In particular, a bounded linear
functional ω ∈ C∗(Eρ)∗ is said to be essential iff the GNS representation of
the positive linear functional |ω| obtained from the polar decomposition ap-
plied to ω is essential. As shown by Arveson, the set of all essential bounded
linear functionals of C∗(Eρ) is a non-trivial, complementable norm-closed
linear subspaces of C∗(Eρ)∗.

3. A strongly continuous contractive semigroup on C∗(Eρ)
∗

Let ρ = {ρt}t≥0 be an E0-semigroup of B(H) with concrete product system
Eρ = {Eρ(t)}t>0. We infer from the definition of the spectral C∗-algebra
C∗(Eρ) that the inclusion

`uC
∗(Eρ)`∗v ⊆ C∗(Eρ), (3.1)

holds true for all u ∈ Eρ(s), v ∈ Eρ(t), and s, t > 0. In particular, if
{en(t)}n∈N, ,t>0 is a Borel orthogonal basis for Eρ, then one can associate
to each bounded linear functional ω ∈ C∗(Eρ)∗, the family of bounded linear
functionals {ωn,t}n∈N, t>0 on C∗(Eρ), defined as

ωn,t(x) = ω(`en(t)x`
∗
en(t)), x ∈ C∗(Eρ). (3.2)

In the following lemma, we discuss the convergence of the series determined
by these functionals.

Lemma 3.1. Suppose ρ = {ρt}t≥0 is an E0-semigroup of B(H) with concrete
product system Eρ = {Eρ(t)}t>0. Let {en(t)}n∈N, t>0 be a Borel orthogonal
basis for Eρ, and let ω ∈ C∗(Eρ)∗. Then for every t > 0, the series

∑
n ωn,t

converges uniformly in C∗(Eρ)∗, and∑
n

‖ωn,t‖ ≤ ‖ω‖. (3.3)

Proof. Applying the polar decomposition to ω, and the GNS construction to
|ω|, one can find a representation π of the C∗-algebra C∗(Eρ) on a Hilbert
space K, and two cyclic vectors ξ, η ∈ K, ‖ξ‖2 = ‖η‖2 = ‖ω‖, such that

ω(x) = 〈π(x)ξ, η〉 , x ∈ C∗(Eρ). (3.4)
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Let φ : Eρ → B(K) be the representation of the product system Eρ as-
sociated with π as in (2.4), and ρ̃ = {ρ̃t}t≥0 be the E-semigroup of B(K)
constructed as in (2.1). Let t > 0 be fixed. For every positive integer n and
every x ∈ C∗(Eρ), we have

ωn,t(x) = ω(`en(t)x`
∗
en(t)) = 〈πω(x)ξn(t), ηn(t)〉 ,

where ξn(t) = φ(en(t))∗ξ and ηn(t) = φ(en(t))∗η. Since

ρ̃t(1) =
∑
n

φ(en(t))φ(en(t))∗

is an orthogonal projection, we deduce that
∞∑
n=1

‖ξn(t)‖2 = ‖ρ̃t(1)ξ‖2 ≤ ‖ξ‖2 = ‖ω‖,

and similarly
∑∞
n=1 ‖ηn(t)‖2 ≤ ‖ω‖. Using now the Schwarz inequality, we

obtain
∞∑
n=1

‖ωn,t‖ =
∞∑
n=1

sup
‖x‖≤1

|〈π(x)ξn(t), ηn(t)〉|

≤
∞∑
n=1

‖ξn(t)‖‖ηn(t)‖

≤ ‖ρ̃t(1)ξ‖‖ρ̃t(1)η‖ ≤ ‖ω‖.
This concludes the proof of the lemma. �

Definition 3.2. Let ρ = {ρt}t≥0 be an E0-semigroup of B(H) with concrete
product system Eρ = {Eρ(t)}t>0, and {en(t)}n∈N, t>0 be a Borel orthogonal
basis for Eρ. For every t > 0, consider the mapping α∗t : C∗(Eρ)∗ → C∗(Eρ)∗,
defined as

α∗t (ω)(x) =
∑
n

ωn,t(x) =
∑
n

ω(`en(t)x`
∗
en(t)),

for ω ∈ C∗(Eρ)∗ and x ∈ C∗(Eρ). For t = 0, we set α∗0 to be the identity
mapping on C∗(Eρ)∗.

It is readily seen that the above definition does not depend on the par-
ticular choice of the basis {en(t)}n∈N, for every t > 0.

Proposition 3.3. α∗ = {α∗t }t≥0 is a strongly continuous semigroup of con-
tractions on the Banach space C∗(Eρ)∗.

Proof. We firstly show that {α∗t }t≥0 is a one-parameter semigroup of con-
tractions. Let s, t > 0 be fixed. Since {en(t)em(s)}m,n∈N is an orthogonal
basis for Eρ(s+ t), we have

α∗s+t(ω)(x) =
∑
m,n

ω
(
`en(t)em(s)x`

∗
en(t)em(s)

)
=
∑
m

α∗t (ω)
(
`em(s)x`

∗
em(s)

)
= α∗s ◦ α

∗
t (ω)(x),
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for every ω ∈ C∗(Eρ)∗ and x ∈ C∗(Eρ). Therefore {α∗t }t≥0 is a one-parameter
semigroup, which is contractive by (3.3).

To show that the semigroup is strongly continuous, fix a bounded linear
functional ω ∈ C∗(Eρ)∗, and consider the representation π of C∗(Eρ) associ-
ated with ω as in (3.4), as well as the corresponding E-semigroup ρ̃ = {ρ̃t}t≥0

of B(K), constructed as in (2.1). A direct calculation produces the following
relation between ρ̃t and α∗t (ω):

α∗t (ω)(x) = 〈ρ̃t(π(x))ξ, η〉 , x ∈ C∗(Eρ). (3.5)

Indeed, it is enough to verify (3.5) on elements of the form x = `f `
∗
g with

f, g ∈ L1(Eρ). For such an x, we obtain by using (2.4) that

α∗t (ω)(x) =
∑
n

ω(`en(t)·f `
∗
en(t)·g) =

∑
n

〈
π(`en(t)·f `

∗
en(t)·g)ξ, η

〉
=

∑
n

〈
φ(en(t))π(`f `∗g)φ(en(t)∗)ξ, η

〉
= 〈ρ̃t(π(x))ξ, η〉 ,

where en(t)·f is the L1(Eρ)-section (en(t)·f)(s) =
{
en(t)f(s− t), s > t,
0, 0 < s ≤ t, .

Now for every t > 0, we have:

‖α∗t (ω)− ω‖ = sup
‖x‖≤1

|〈ρ̃t(π(x))ξ, η〉 − 〈π(x)ξ, η〉|

≤ ‖ωξ, η ◦ ρ̃t − ωξ,η‖,
where ωξ,η(x) = 〈xξ, η〉, x ∈ B(K). Since ρ̃ is an E-semigroup, the last
term tends to zero as t→ 0 by [1, Prop. 2.3.1], and thus {α∗t }t≥0 is strongly
continuous. �

Next, we describe the space of all essential bounded functionals on
C∗(Eρ) in terms of the semigroup α∗ = {α∗t }t≥0.

Theorem 3.4. Let ρ = {ρt}t≥0 be an E0-semigroup of B(H) with concrete
product system Eρ = {Eρ(t)}t>0. A bounded linear functional ω ∈ C∗(Eρ)∗
is essential if and only if ‖α∗t (ω)‖ = ‖ω‖, for all t ≥ 0.

Proof. It follows immediately from the polar decomposition that, in order
to prove this result, it is enough to consider positive linear functionals on
C∗(Eρ). For such a functional ω ∈ C∗(Eρ), ω ≥ 0, we consider its GNS
representation π : C∗(Eρ)→ B(K) with cyclic vector ξ, ‖ξ‖2 = ‖ω‖, and the
E-semigroup ρ̃ = {ρ̃t}t≥0 of B(K) constructed with respect to the product
system representation φ. As in (3.5), we have

α∗t (ω)(x) = 〈ρ̃t(π(x))ξ, ξ〉 , x ∈ C∗(Eρ). (3.6)

We claim that

‖α∗t (ω)‖ = ‖ρ̃t(1)ξ‖2, t > 0. (3.7)

Indeed, if e1 ≤ e2 ≤ . . . is an approximate identity for C∗(Eρ), then {π(en)}n
converges strongly to the identity operator, and thus

‖α∗t (ω)‖ = lim
n→∞

〈ρ̃t(π(en))ξ, ξ〉 = 〈ρ̃t(1)ξ, ξ〉 = ‖ρ̃t(1)ξ‖2.



Pure cocycle perturbations of E0-semigroups 7

We are now ready to prove the theorem. The implication “ ⇒ ” follows
immediately from (3.7). For the converse implication, let ω ∈ C∗(Eρ), ω ≥ 0
satisfying ‖α∗t (ω)‖ = ‖ω‖, for every t > 0, and let K̃ =

⋂
t>0Kt, be the

intersection of the decreasing family of Hilbert spaces

Kt = [φ(Eρ(t))K] = ρ̃t(1)K, t > 0.

Since ‖ξ‖2 = ‖ω‖ = ‖α∗t (ω)‖ = ‖ρ̃t(1)ξ‖ for every t > 0, we have ξ ∈ K̃.
We claim that the Hilbert space K̃ is invariant under φ(Eρ)

⋃
φ(Eρ)∗. It is

obvious that
φ(Eρ(t))Ks ⊆ Kt+s,

for all s, t > 0, so K̃ is invariant under φ(Eρ). Moreover, since {φ(Eρ(t)}t>0 is
the concrete product system of the E-semigroup ρ̃, the Hilbert space φ(Eρ(s))
is the closed linear span of φ(Eρ(t))φ(Eρ(s− t)) for s > t, and we have

φ(Eρ(t))∗Ks ⊆ [φ(Eρ(t))∗φ(Eρ(s))K]
= [φ(Eρ(t))∗φ(Eρ(t))φ(Eρ(s− t))K]
= [φ(Eρ(s− t))K] = Ks−t,

for 0 < t < s. Therefore

φ(Eρ(t))∗K̃ ⊆
⋂
s>t

[φ(Eρ(t))∗Ks] ⊆
⋂
s>t

Ks−t = K̃,

for every t > 0, so K̃ is also invariant under φ(Eρ)∗ as well, which proves
our claim. It then follows that K̃ is invariant under the von Neumann al-
gebra generated by φ(Eρ), which coincides with the von Neumann algebra
π(C∗(Eρ))′′. But ξ is a cyclic vector for the representation π, and ξ ∈ K̃,
thus K̃ = K, i.e., ω is an essential functional. �

Observation 3.5. One can easily deduce from (3.7) that a representation φ of
the product system Eρ associated with ω ∈ C∗(Eρ)∗ is singular if and only if
the orbit of ω under the semigroup {α∗t }t≥0 is stable, i.e., limt→∞ ‖α∗t (ω)‖ =
0.

4. Mixing states of C∗(Eρ) and purification

Let ρ = {ρt}t≥0 be an E0-semigroup of B(H) with concrete product system
Eρ = {Eρ(t)}t>0. We use the semigroup α∗ = {α∗t }t≥0 from the previous
section to introduce a property of bounded linear functionals on C∗(Eρ) that
resembles the notion of mixing in ergodic theory.

Definition 4.1. A bounded linear functional ω ∈ C∗(Eρ)∗ is said to be mixing,
if

lim
t→∞

‖α∗t (aωb)− ω(ab)α∗t (ω)‖ = 0, (4.1)

for every a, b ∈ C∗(Eρ). Here aωb is the bounded linear functional aωb(x) =
ω(axb), x ∈ C∗(Eρ).
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The class of mixing bounded linear functionals is quite large, as shown
by the following proposition.

Proposition 4.2. Every vector state of C∗(Eρ) is mixing.

Proof. Let ξ ∈ L2(Eρ) be a unit vector, and ωξ be the corresponding vector
state. Since the C∗-algebra C∗(Eρ) is irreducible, the GNS representation
associated with ωξ can be taken to be the identity representation, having ξ
as corresponding cyclic vector.

Let now α = {αt}t≥0 be the E-semigroup of B(L2(Eρ)) associated with
the regular representation ` of Eρ. Since ` is a singular representation, we
have αt(1) ↓ 0 as t→∞. Moreover, using (3.6), we obtain

α∗t (aωξb)(x) = 〈αt(x)bξ, a∗ξ〉 = 〈αt(x)αt(1)bξ, αt(1)a∗ξ〉 ,

for all a, b, x ∈ C∗(Eρ). Therefore

sup
‖x‖≤1

|α∗t (aωξb)(x)| ≤ ‖αt(1)a∗ξ‖‖αt(1)bξ‖ → 0

as t→∞. Using (3.7), we also have

sup
‖x‖≤1

|ωξ(ab)α∗t (ωξ)(x)| ≤ |ωξ(ab)| · ‖αt(1)ξ‖2 → 0,

as t→∞. In particular, ‖α∗t (aωξb)− ωξ(ab)α∗t (ωξ)‖ → 0 as t→∞. �

Observation 4.3. Although the vector states of C∗(Eρ) are mixing states,
they fail to be essential states, as one can easily see from (3.7) and Theorem
3.4.

Next, we describe the relation between mixing essential states and pure
E0-semigroups. We need, for this purpose, the following proposition, which
is a straightforward variation of Arveson’s classical characterization of pure
E0-semigroups acting on a von Neumann algebra in terms of the asymptotic
behavior of the action of the semigroup on the predual [2][1].

Proposition 4.4. Suppose ρ = {ρt}t≥0 is an E0-semigroup of a von Neumann
algebra M ⊆ B(K). The following conditions are equivalent:

1. ρ is pure;
2. for any two normal states ω, ψ of B(K), ‖ω �ρt(M) −ψ �ρt(M) ‖ con-

verges to 0 as t→∞;
3. for any two unit vectors ξ, η ∈ K, ‖ωξ ◦ ρt − ωη ◦ ρt‖ converges to 0 as
t→∞.

Proof. (1)⇔ (2) is similar to the proof of [1, Proposition 2.9.2].
(2)⇒ (3) follows immediately from the fact that ‖ω ◦ ρt‖ = ‖ω �ρt(M) ‖, for
every normal linear functional on B(K) and every t ≥ 0.
(3)⇒ (2) Let ξ ∈ K be a fixed unit vector. Using the triangle inequality and
the previous fact, it is enough to show that ‖ω ◦ρt−ωξ ◦ρt‖ converges to 0 as
t→∞, for every normal state ω of B(K). To prove this, realize the state ω



Pure cocycle perturbations of E0-semigroups 9

as ω =
∑
n λnωξn , where {ξn}n ⊂ K is a sequence of unit vectors and {λn}n

is a sequence of positive real numbers summing up to 1. We then have

‖ω ◦ ρt − ωξ ◦ ρt‖ ≤
∑
n

λn‖ωξn ◦ ρt − ωξ ◦ ρt‖ → 0,

as t→∞. The proof is complete. �

Theorem 4.5. Let ρ = {ρt}t≥0 be an E0-semigroup of B(H) with concrete
product system Eρ = {Eρ(t)}t>0, and ω be an essential state of C∗(Eρ).
Let π : C∗(Eρ) → B(K) be GNS representation of ω, and ρ̃ = {ρ̃t}t≥0

be the corresponding E0-semigroup of B(K). The following statements are
equivalent:

1. The restriction of ρ̃ to the von Neumann algebra M = π(C∗(Eρ))′′ is a
a pure E0-semigroup of M .

2. ω is a mixing state.

Proof. It is clear from the definition of the E0-semigroup ρ̃ = {ρ̃t}t≥0 that
ρ̃t(M) ⊆ M , so that ρ̃ restricts to an E0-semigroup of the von Neumann
algebra M . Let ξ ∈ K be the cyclic unit vector in the GNS construction
associated with ω.
(1) ⇒ (2): Consider an element a ∈ C∗(Eρ). If ω(a∗a) 6= 0, then let η ∈ K
be the unit vector

η = ‖π(a)ξ‖−1π(a)ξ.
Since ρ̃ is pure, we have

lim
t→∞

‖ωξ ◦ ρt − ωη ◦ ρt‖ = 0 (4.2)

by the previous proposition. Substituting η into (4.2), and using (3.6), we
obtain

lim
t→∞

sup
‖x‖≤1

∣∣∣∣α∗t (ω)(x)− α∗t (a
∗ωa)(x)

ω(a∗a)

∣∣∣∣ = 0 (4.3)

so that one has

lim
t→∞

‖ω(a∗a)α∗t (ω)− α∗t (a∗ωa)‖ = 0. (4.4)

Clearly (4.4) holds true if ω(a∗a) = 0, and hence for all a ∈ C∗(Eρ). A direct
polarization argument shows that (4.4) is equivalent to (4.1), and the con-
clusion follows.
(2) ⇒ (1) is similar: if ω is mixing, then property (4.4) holds true for all
a ∈ C∗(Eρ). This implies (4.3) when ω(a∗a) 6= 0. Using the fact that the
most general unit vector in π(C∗(Eρ))ξ is of the form ‖π(a)ξ‖−1π(a)ξ where
ω(a∗a) 6= 0, (4.3) implies that (4.2) holds true for all unit vectors η in the
dense linear manifold π(C∗(Eρ)ξ of K. In particular, since ξ is cyclic, (4.2)
holds for all unit vectors η ∈ H. Now using the triangle inequality and Propo-
sition 4.4, we obtain that ρ̃ is a pure E0-semigroup of M . This ends the proof
of the theorem. �

Corollary 4.6. Every essential mixing state of C∗(Eρ) is a factor state.
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Proof. It is easily seen that the center of the von Neumann algebra M =
π(C∗(Eρ))′′ coincides with the fixed point algebra {x ∈ M | ρ̃t(x) = x, ∀t ≥
0} of the restriction of the E0-semigroup ρ̃ = {ρ̃t}t≥0 to M . Since the tail
algebra of ρ̃ contains the fixed point algebra, the conclusion follows. �

The main result of our paper is a straightforward consequence of the
previous theorem.

Theorem 4.7. Let ρ = {ρt}t≥0 be an E0-semigroup of B(H). The mapping

ω 7−→ ρ̃ = {ρ̃t}t≥0

that appears in Theorem 4.5 restricts to a surjective mapping from the set of
all pure essential mixing states of the spectral C∗-algebra C∗(Eρ) onto the set
of all pure E0-semigroups that are cocycle conjugate to ρ.

Using the purification theorem of V. Liebscher that was mentioned in
the introduction, we obtain the following:

Corollary 4.8. For every E0-semigroup ρ = {ρt}t≥0 of B(H), there exists
pure essential mixing states of the spectral C∗-algebra C∗(Eρ).

The structure of the set of all pure essential mixing states will be dis-
cussed in a subsequent publication.
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