Pure cocycle perturbations of E_0 -semigroups

Remus Floricel

Dedicated to the memory of Bill Arveson

Abstract. We establish a parameterization of the class of pure E_0 -semigroups that are cocycle conjugate to a given E_0 -semigroup $\rho = \{\rho_t\}_{t\geq 0}$ of $\mathscr{B}(H)$ in terms of the class of pure essential mixing states of the spectral C^* algebra of the concrete product system of the semigroup $\rho = \{\rho_t\}_{t\geq 0}$.

Mathematics Subject Classification (2010). Primary 46L55; Secondary 46L30, 46L57, 47D60.

Keywords. pure E_0 -semigroups, cocycle conjugacy, mixing states.

1. Introduction

Purification of E_0 -semigroups is a central theme of the theory of noncommutative dynamics [1], a theme which has revolved around two main problems: (i) to decide whether or not every E_0 -semigroup is cocycle conjugate to a pure E_0 -semigroup [1][4], and; (ii) to describe the class of pure E_0 -semigroups that are cocycle conjugate to a given E_0 -semigroup [2][3]. A solution to the former problem was obtained in the affirmative by V. Liebscher, as a direct consequence of an intricate analysis of product systems of W^* -algebras [4, Theorem 7.23].

It is our main purpose, in paper, to initiate a study of the latter problem from the perspective of Arveson's theory of spectral C^* -algebras. More precisely, we show that Arveson's characterization of cocycle perturbations of an E_0 -semigroup in terms of essential states of the spectral C^* -algebra pertains to the study of pure E_0 -semigroups, and determines a surjective correspondence from the set of all pure essential mixing states of the spectral C^* -algebra $C^*(E_{\rho})$ of the concrete product system E_{ρ} of an arbitrary E_0 -semigroup $\rho = {\rho_t}_{t\geq 0}$ onto the set of all pure E_0 -semigroups that are cocycle conjugate to the semigroup $\rho = {\rho_t}_{t>0}$.

This self-contained paper is organized as follows. In Section 2, we collect several definitions and facts regarding E_0 -semigroups. For a more detailed

Research supported by a Discovery Grant from NSERC .

treatment of various aspects of this subject, we refer the reader to [1]. In Section 3, we show that the regular representation of the concrete product system E_{ρ} of an E_0 -semigroup $\rho = \{\rho_t\}_{t\geq 0}$ induces a strongly continuous one-parameter contractive semigroup $\alpha^* = \{\alpha_t^*\}_{t\geq 0}$ on the dual space of the spectral C^* -algebra $C^*(E_{\rho})$. We then obtain a complete characterization of the class of essential bounded linear functionals of $C^*(E_{\rho})$ in terms of this semigroup. In Section 4, we introduce the new concept of mixing bounded linear functionals of the spectral C^* -algebra, which is defined with respect to the semigroup $\alpha^* = \{\alpha_t^*\}_{t\geq 0}$. We show that every mixing essential state completely defines the pureness of the natural E_0 -semigroup acting on the von Neumann algebra generated by the spectral C^* -algebra under the GNS representation of the state. This result produces the aforementioned surjective correspondence between pure essential mixing states and pure E_0 -semigroups.

2. Background on the theory of E_0 -semigroups, product systems, and spectral C^* -algebras

Introduced by R. Powers in [5], E_0 -semigroups are pointwise σ -weak continuous one parameter semigroups $\rho = {\rho_t}_{t\geq 0}$ of unit-preserving normal *-endomorphisms acting on a von Neumann algebra M, usually a type I_{∞} factor $\mathscr{B}(H)$, where H is a separable Hilbert space. Non-unital E_0 -semigroups are conveniently called E-semigroups. An E_0 -semigroup $\rho = {\rho_t}_{t\geq 0}$ is said to be pure if its tail algebra is trivial, i.e.,

$$\bigcap_{t\geq 0}\rho_t(M) = \mathbb{C}\cdot \mathbb{1}.$$

The main focus of this theory is on the classification of E_0 -semigroups up to conjugacy and cocycle conjugacy. Two E_0 -semigroups $\rho = \{\rho_t\}_{t\geq 0}$ and $\sigma = \{\sigma_t\}_{t\geq 0}$ acting on $\mathscr{B}(H)$, respectively $\mathscr{B}(K)$, are said to be conjugate if there is a *-isomorphism $\theta : \mathscr{B}(H) \to \mathscr{B}(K)$ such that $\theta \circ \rho_t = \sigma_t \circ \theta$, $t \geq 0$. They are said to be cocycle conjugate if σ is conjugate to a cocycle perturbation of ρ , i.e., to an E_0 -semigroup of the form $\{\mathrm{Ad}(u_t) \circ \rho_t\}_{t\geq 0}$, where $\{u_t\}_{t\geq 0} \subset \mathscr{B}(H)$ is a unitary ρ -cocycle, i.e., a strongly continuous family of unitaries u_t satisfying the cocycle relation $u_{s+t} = u_s \rho_s(u_t)$, for all $s, t \geq 0$.

As shown by Arveson, the classification problem of E_0 -semigroups up to cocycle conjugacy is equivalent to the classification problem of product systems up to an isomorphism. More precisely, one can associate to each E_0 semigroup (or to an *E*-semigroup) $\rho = \{\rho_t\}_{\geq 0}$ acting on $\mathscr{B}(H)$, the Borel bundle $E_{\rho} = \{E_{\rho}(t)\}_{t>0} \subset \mathscr{B}(H)$ of Hilbert spaces of intertwining operators

$$E_{\rho}(t) = \{ v \in \mathscr{B}(H) \mid \rho_t(x)v = vx, \text{ for all } x \in \mathscr{B}(H) \}.$$

endowed with the inner product $\langle u, v \rangle_{E_{\rho}(t)} \cdot \mathbb{1} = v^* u, u, v \in E_{\rho}(t)$. The bundle $E_{\rho} = \{E_{\rho}(t)\}_{t>0}$, called the concrete product system of ρ , has the property that its isomorphism class is a complete cocycle conjugacy invariant, in the sense that two E_0 -semigroups ρ and σ are cocycle conjugate iff E_{ρ} and E_{σ} are isomorphic as product systems. One should also note that there is a concept

of abstract product system, which is not defined in terms of the intertwining spaces of an E_0 -semigroup. However, any abstract product system can be transformed, via an isomorphism, into a concrete product system by a procedure similar to the one that follows.

One can describe all E_0 -semigroups $\tilde{\rho} = {\tilde{\rho}_t}_{\geq 0}$ that are cocycle conjugate to a given E_0 -semigroup ρ acting on $\mathscr{B}(H)$ by making use of the representation theory of the concrete product system E_{ρ} . More precisely, if ϕ is a representation of E_{ρ} on a Hilbert space K, i.e., a measurable operator-valued function $\phi : E_{\rho} \to \mathscr{B}(K)$ satisfying the conditions (i) $\phi(v)^*\phi(u) = \langle u, v \rangle_{E(t)} \cdot \mathbf{1}, u, v \in E_{\rho}(t), t > 0$; and (ii) $\phi(uv) = \phi(u)\phi(v), u \in E_{\rho}(s), y \in E_{\rho}(t), s, t > 0$, then $\{\phi(E_{\rho}(t))\}_{t>0}$ is a Borel bundel of Hilbert spaces that is isomorphic to E_{ρ} , and $\tilde{\rho} = \{\tilde{\rho}_t\}_{t\geq 0}$, where

$$\widetilde{\rho}_t(x) = \sum_{n=1}^{\infty} \phi(e_n(t)) x \phi(e_n(t))^*, \ t > 0, \ x \in \mathscr{B}(K),$$
(2.1)

and $\rho_0 := \operatorname{Id}_{\mathscr{B}(K)}$, is a *E*-semigroup acting on $\mathscr{B}(K)$ with concrete product system $E_{\widetilde{\rho}} = \{\phi(E_{\rho}(t))\}_{t>0}$. Here $\{e_n(t)\}_{n\in\mathbb{N},\ t>0}$ is a Borel orthonormal basis for E_{ρ} , i.e., for every $n \in \mathbb{N},\ (0,\infty) \ni t \mapsto e_n(t) \in E_{\rho}(t)$ is a Borel section of E_{ρ} in such a way that $\{e_n(t)\}_n$ is orthonormal basis for $E_{\rho}(t)$, for every t > 0. The semigroup $\widetilde{\rho} = \{\widetilde{\rho}_t\}_{t\geq 0}$ is an E_0 -semigroup if and only if

$$[\phi(E_{\rho}(t))K] = K, \ t > 0, \tag{2.2}$$

in which case we say that ϕ is an essential representation of the product system E_{ρ} . At the opposite end are the singular representations of E_{ρ} , i.e., representations ϕ satisfying $\bigcap_{t>0} [\phi(E_{\rho}(t))K] = \{0\}$.

Essential representations of a concrete product system $E_{\rho} = \{E_{\rho}(t)\}_{t>0}$ or, equivalently, E_0 -semigroups that are cocycle conjugate to ρ , can be constructed by making use of the representation theory of the spectral C^* algebra $C^*(E_{\rho})$ of E_{ρ} , a C^* -algebra that plays the role of the "spectrum" of the E_0 -semigroup ρ . To define this C^* -algebra, we consider, for $p \in \{1, 2\}$, the spaces $L^p(E_{\rho})$ of all measurable sections $(0, \infty) \ni \mapsto f(t) \in E_{\rho}(t)$ that are *p*-integrable, i.e., $\int_{(0,\infty)} ||f(t)||^p dt < \infty$, endowed with the usual norm $||f||_p = (\int_{(0,\infty)} ||f(t)||^p dt)^{1/p}$. Every representation ϕ of E_{ρ} on a Hilbert space K extends to a contractive representation of the Banach algebra $L^1(E_{\rho})$ on K by the formula

$$\phi(f) := \int_{(0,\infty)} \phi(f(t)) dt, \ f \in L^1(E_{\rho}).$$
(2.3)

The spectral C^* -algebra $C^*(E_{\rho}) \subseteq \mathscr{B}(L^2(E_{\rho}))$ is then defined as the norm closure of the linear span of all products of the form $\ell_f \ell_g^*$ with $f, g \in L^1(E_{\rho})$, where $\ell : E_{\rho} \to \mathscr{B}(L^2(E_{\rho}))$ is the regular representation of E_{ρ} ,

$$(\ell_x f)(s) = \begin{cases} xf(s-t), & s > t, \\ 0, & 0 < s \le t, \end{cases}$$

for $x \in E_{\rho}(t)$, t > 0, and $f \in L^{2}(E_{\rho})$, and ℓ_{f} , ℓ_{g} are as in (2.3) for $f, g \in L^{1}(E_{\rho})$. Note that the regular representation ℓ is singular.

The spectral C^* -algebra $C^*(E_{\rho})$ is non-unital, separable, irreducible, nuclear, simple at least for spatial E_0 -semigroups, and its representation theory echoes the representation theory of the product system E_{ρ} . More precisely, there is a 1-1 correspondence between nondegenerate representations $\pi : C^*(E_{\rho}) \to \mathscr{B}(K)$ of the C^* -algebra $C^*(E_{\rho})$ and representations $\phi : E_{\rho} \to \mathscr{B}(K)$ of the product system E_{ρ} , given by

$$\pi(\ell_f \ell_g^*) = \phi(f)\phi(g)^*, \ f, g \in L^1(E_\rho).$$
(2.4)

A representation π of $C^*(E_{\rho})$ is said to be essential iff the corresponding representation ϕ of E_{ρ} satisfying (2.4) is essential. In particular, a bounded linear functional $\omega \in C^*(E_{\rho})^*$ is said to be essential iff the GNS representation of the positive linear functional $|\omega|$ obtained from the polar decomposition applied to ω is essential. As shown by Arveson, the set of all essential bounded linear functionals of $C^*(E_{\rho})$ is a non-trivial, complementable norm-closed linear subspaces of $C^*(E_{\rho})^*$.

3. A strongly continuous contractive semigroup on $C^*(E_{\rho})^*$

Let $\rho = {\rho_t}_{t\geq 0}$ be an E_0 -semigroup of $\mathscr{B}(H)$ with concrete product system $E_\rho = {E_\rho(t)}_{t>0}$. We infer from the definition of the spectral C^* -algebra $C^*(E_\rho)$ that the inclusion

$$\ell_u C^*(E_\rho) \ell_v^* \subseteq C^*(E_\rho), \tag{3.1}$$

holds true for all $u \in E_{\rho}(s)$, $v \in E_{\rho}(t)$, and s, t > 0. In particular, if $\{e_n(t)\}_{n \in \mathbb{N}, t>0}$ is a Borel orthogonal basis for E_{ρ} , then one can associate to each bounded linear functional $\omega \in C^*(E_{\rho})^*$, the family of bounded linear functionals $\{\omega_{n,t}\}_{n \in \mathbb{N}, t>0}$ on $C^*(E_{\rho})$, defined as

$$\omega_{n,t}(x) = \omega(\ell_{e_n(t)} x \ell_{e_n(t)}^*), \ x \in C^*(E_\rho).$$
(3.2)

In the following lemma, we discuss the convergence of the series determined by these functionals.

Lemma 3.1. Suppose $\rho = {\rho_t}_{t\geq 0}$ is an E_0 -semigroup of $\mathscr{B}(H)$ with concrete product system $E_{\rho} = {E_{\rho}(t)}_{t\geq 0}$. Let ${e_n(t)}_{n\in\mathbb{N}, t\geq 0}$ be a Borel orthogonal basis for E_{ρ} , and let $\omega \in C^*(E_{\rho})^*$. Then for every t > 0, the series $\sum_n \omega_{n,t}$ converges uniformly in $C^*(E_{\rho})^*$, and

$$\sum_{n} \|\omega_{n,t}\| \le \|\omega\|. \tag{3.3}$$

Proof. Applying the polar decomposition to ω , and the GNS construction to $|\omega|$, one can find a representation π of the C^* -algebra $C^*(E_{\rho})$ on a Hilbert space K, and two cyclic vectors ξ , $\eta \in K$, $\|\xi\|^2 = \|\eta\|^2 = \|\omega\|$, such that

$$\omega(x) = \langle \pi(x)\xi, \eta \rangle, \ x \in C^*(E_\rho).$$
(3.4)

Let $\phi : E_{\rho} \to \mathscr{B}(K)$ be the representation of the product system E_{ρ} associated with π as in (2.4), and $\tilde{\rho} = {\{\tilde{\rho}_t\}_{t \geq 0}}$ be the *E*-semigroup of $\mathscr{B}(K)$ constructed as in (2.1). Let t > 0 be fixed. For every positive integer n and every $x \in C^*(E_{\rho})$, we have

$$\omega_{n,t}(x) = \omega(\ell_{e_n(t)} x \ell_{e_n(t)}^*) = \langle \pi_{\omega}(x) \xi_n(t), \eta_n(t) \rangle,$$

where $\xi_n(t) = \phi(e_n(t))^* \xi$ and $\eta_n(t) = \phi(e_n(t))^* \eta$. Since

$$\widetilde{\rho}_t(1) = \sum_n \phi(e_n(t))\phi(e_n(t))^*$$

is an orthogonal projection, we deduce that

$$\sum_{n=1}^{\infty} \|\xi_n(t)\|^2 = \|\widetilde{\rho}_t(1)\xi\|^2 \le \|\xi\|^2 = \|\omega\|,$$

and similarly $\sum_{n=1}^{\infty} \|\eta_n(t)\|^2 \le \|\omega\|$. Using now the Schwarz inequality, we obtain

$$\sum_{n=1}^{\infty} \|\omega_{n,t}\| = \sum_{n=1}^{\infty} \sup_{\|x\| \le 1} |\langle \pi(x)\xi_n(t), \eta_n(t)\rangle|$$

$$\leq \sum_{n=1}^{\infty} \|\xi_n(t)\| \|\eta_n(t)\|$$

$$\leq \|\widetilde{\rho}_t(\mathbb{1})\xi\| \|\widetilde{\rho}_t(\mathbb{1})\eta\| \le \|\omega\|.$$

This concludes the proof of the lemma.

Definition 3.2. Let $\rho = {\rho_t}_{t\geq 0}$ be an E_0 -semigroup of $\mathscr{B}(H)$ with concrete product system $E_{\rho} = {E_{\rho}(t)}_{t\geq 0}$, and ${e_n(t)}_{n\in\mathbb{N}, t\geq 0}$ be a Borel orthogonal basis for E_{ρ} . For every t > 0, consider the mapping $\alpha_t^* : C^*(E_{\rho})^* \to C^*(E_{\rho})^*$, defined as

$$\alpha_t^*(\omega)(x) = \sum_n \omega_{n,t}(x) = \sum_n \omega(\ell_{e_n(t)} x \ell_{e_n(t)}^*),$$

for $\omega \in C^*(E_{\rho})^*$ and $x \in C^*(E_{\rho})$. For t = 0, we set α_0^* to be the identity mapping on $C^*(E_{\rho})^*$.

It is readily seen that the above definition does not depend on the particular choice of the basis $\{e_n(t)\}_{n\in\mathbb{N}}$, for every t > 0.

Proposition 3.3. $\alpha^* = {\alpha_t^*}_{t\geq 0}$ is a strongly continuous semigroup of contractions on the Banach space $C^*(E_{\rho})^*$.

Proof. We firstly show that $\{\alpha_t^*\}_{t\geq 0}$ is a one-parameter semigroup of contractions. Let s, t > 0 be fixed. Since $\{e_n(t)e_m(s)\}_{m,n\in\mathbb{N}}$ is an orthogonal basis for $E_{\rho}(s+t)$, we have

$$\begin{aligned} \alpha_{s+t}^*(\omega)(x) &= \sum_{m,n} \omega \left(\ell_{e_n(t)e_m(s)} x \ell_{e_n(t)e_m(s)}^* \right) = \sum_m \alpha_t^*(\omega) \left(\ell_{e_m(s)} x \ell_{e_m(s)}^* \right) \\ &= \alpha_s^* \circ \alpha_t^*(\omega)(x), \end{aligned}$$

for every $\omega \in C^*(E_{\rho})^*$ and $x \in C^*(E_{\rho})$. Therefore $\{\alpha_t^*\}_{t\geq 0}$ is a one-parameter semigroup, which is contractive by (3.3).

To show that the semigroup is strongly continuous, fix a bounded linear functional $\omega \in C^*(E_{\rho})^*$, and consider the representation π of $C^*(E_{\rho})$ associated with ω as in (3.4), as well as the corresponding *E*-semigroup $\tilde{\rho} = {\tilde{\rho}_t}_{t\geq 0}$ of $\mathscr{B}(K)$, constructed as in (2.1). A direct calculation produces the following relation between $\tilde{\rho}_t$ and $\alpha_t^*(\omega)$:

$$\alpha_t^*(\omega)(x) = \langle \widetilde{\rho}_t(\pi(x))\xi, \eta \rangle, \ x \in C^*(E_\rho).$$
(3.5)

Indeed, it is enough to verify (3.5) on elements of the form $x = \ell_f \ell_g^*$ with $f, g \in L^1(E_\rho)$. For such an x, we obtain by using (2.4) that

$$\begin{aligned} \alpha_t^*(\omega)(x) &= \sum_n \omega(\ell_{e_n(t)} \cdot f \ell_{e_n(t)}^* \cdot g) = \sum_n \left\langle \pi(\ell_{e_n(t)} \cdot f \ell_{e_n(t)}^* \cdot g) \xi, \eta \right\rangle \\ &= \sum_n \left\langle \phi(e_n(t)) \pi(\ell_f \ell_g^*) \phi(e_n(t)^*) \xi, \eta \right\rangle = \left\langle \widetilde{\rho}_t(\pi(x)) \xi, \eta \right\rangle, \end{aligned}$$

where $e_n(t) \cdot f$ is the $L^1(E_\rho)$ -section $(e_n(t) \cdot f)(s) = \begin{cases} e_n(t)f(s-t), & s > t, \\ 0, & 0 < s \le t, \end{cases}$. Now for every t > 0, we have:

$$\begin{aligned} \|\alpha_t^*(\omega) - \omega\| &= \sup_{\|x\| \le 1} |\langle \widetilde{\rho}_t(\pi(x))\xi, \eta \rangle - \langle \pi(x)\xi, \eta \rangle| \\ &\leq \|\omega_{\xi, \eta} \circ \widetilde{\rho}_t - \omega_{\xi, \eta}\|, \end{aligned}$$

where $\omega_{\xi,\eta}(x) = \langle x\xi,\eta\rangle$, $x \in \mathscr{B}(K)$. Since $\tilde{\rho}$ is an *E*-semigroup, the last term tends to zero as $t \to 0$ by [1, Prop. 2.3.1], and thus $\{\alpha_t^*\}_{t\geq 0}$ is strongly continuous.

Next, we describe the space of all essential bounded functionals on $C^*(E_{\rho})$ in terms of the semigroup $\alpha^* = \{\alpha_t^*\}_{t \ge 0}$.

Theorem 3.4. Let $\rho = \{\rho_t\}_{t\geq 0}$ be an E_0 -semigroup of $\mathscr{B}(H)$ with concrete product system $E_\rho = \{E_\rho(t)\}_{t\geq 0}$. A bounded linear functional $\omega \in C^*(E_\rho)^*$ is essential if and only if $\|\alpha_t^*(\omega)\| = \|\omega\|$, for all $t \geq 0$.

Proof. It follows immediately from the polar decomposition that, in order to prove this result, it is enough to consider positive linear functionals on $C^*(E_{\rho})$. For such a functional $\omega \in C^*(E_{\rho}), \omega \geq 0$, we consider its GNS representation $\pi : C^*(E_{\rho}) \to \mathscr{B}(K)$ with cyclic vector ξ , $\|\xi\|^2 = \|\omega\|$, and the *E*-semigroup $\tilde{\rho} = {\tilde{\rho}_t}_{t\geq 0}$ of $\mathscr{B}(K)$ constructed with respect to the product system representation ϕ . As in (3.5), we have

$$\alpha_t^*(\omega)(x) = \langle \widetilde{\rho}_t(\pi(x))\xi, \xi \rangle, \ x \in C^*(E_\rho).$$
(3.6)

We claim that

$$\|\alpha_t^*(\omega)\| = \|\widetilde{\rho}_t(1)\xi\|^2, \ t > 0.$$
(3.7)

Indeed, if $e_1 \leq e_2 \leq \ldots$ is an approximate identity for $C^*(E_\rho)$, then $\{\pi(e_n)\}_n$ converges strongly to the identity operator, and thus

$$\|\alpha_t^*(\omega)\| = \lim_{n \to \infty} \langle \widetilde{\rho}_t(\pi(e_n))\xi, \xi \rangle = \langle \widetilde{\rho}_t(\mathbb{1})\xi, \xi \rangle = \|\widetilde{\rho}_t(\mathbb{1})\xi\|^2.$$

We are now ready to prove the theorem. The implication " \Rightarrow " follows immediately from (3.7). For the converse implication, let $\omega \in C^*(E_\rho), \omega \ge 0$ satisfying $\|\alpha_t^*(\omega)\| = \|\omega\|$, for every t > 0, and let $\widetilde{K} = \bigcap_{t>0} K_t$, be the intersection of the decreasing family of Hilbert spaces

$$K_t = [\phi(E_\rho(t))K] = \widetilde{\rho_t}(1)K, \ t > 0.$$

Since $\|\xi\|^2 = \|\omega\| = \|\alpha_t^*(\omega)\| = \|\widetilde{\rho}_t(\mathbb{1})\xi\|$ for every t > 0, we have $\xi \in \widetilde{K}$. We claim that the Hilbert space \widetilde{K} is invariant under $\phi(E_\rho) \bigcup \phi(E_\rho)^*$. It is obvious that

$$\phi(E_{\rho}(t))K_s \subseteq K_{t+s},$$

for all s, t > 0, so \widetilde{K} is invariant under $\phi(E_{\rho})$. Moreover, since $\{\phi(E_{\rho}(t)\}_{t>0}$ is the concrete product system of the *E*-semigroup $\widetilde{\rho}$, the Hilbert space $\phi(E_{\rho}(s))$ is the closed linear span of $\phi(E_{\rho}(t))\phi(E_{\rho}(s-t))$ for s > t, and we have

$$\phi(E_{\rho}(t))^{*}K_{s} \subseteq [\phi(E_{\rho}(t))^{*}\phi(E_{\rho}(s))K]$$

=
$$[\phi(E_{\rho}(t))^{*}\phi(E_{\rho}(t))\phi(E_{\rho}(s-t))K]$$

=
$$[\phi(E_{\rho}(s-t))K] = K_{s-t},$$

for 0 < t < s. Therefore

$$\phi(E_{\rho}(t))^*\widetilde{K} \subseteq \bigcap_{s>t} [\phi(E_{\rho}(t))^*K_s] \subseteq \bigcap_{s>t} K_{s-t} = \widetilde{K},$$

for every t > 0, so \widetilde{K} is also invariant under $\phi(E_{\rho})^*$ as well, which proves our claim. It then follows that \widetilde{K} is invariant under the von Neumann algebra generated by $\phi(E_{\rho})$, which coincides with the von Neumann algebra $\pi(C^*(E_{\rho}))''$. But ξ is a cyclic vector for the representation π , and $\xi \in \widetilde{K}$, thus $\widetilde{K} = K$, i.e., ω is an essential functional. \Box

Observation 3.5. One can easily deduce from (3.7) that a representation ϕ of the product system E_{ρ} associated with $\omega \in C^*(E_{\rho})^*$ is singular if and only if the orbit of ω under the semigroup $\{\alpha_t^*\}_{t\geq 0}$ is stable, i.e., $\lim_{t\to\infty} \|\alpha_t^*(\omega)\| = 0$.

4. Mixing states of $C^*(E_{\rho})$ and purification

Let $\rho = {\rho_t}_{t\geq 0}$ be an E_0 -semigroup of $\mathscr{B}(H)$ with concrete product system $E_\rho = {E_\rho(t)}_{t>0}$. We use the semigroup $\alpha^* = {\alpha_t^*}_{t\geq 0}$ from the previous section to introduce a property of bounded linear functionals on $C^*(E_\rho)$ that resembles the notion of mixing in ergodic theory.

Definition 4.1. A bounded linear functional $\omega \in C^*(E_\rho)^*$ is said to be mixing, if

$$\lim_{t \to \infty} \|\alpha_t^*(a\omega b) - \omega(ab)\alpha_t^*(\omega)\| = 0,$$
(4.1)

for every $a, b \in C^*(E_{\rho})$. Here $a\omega b$ is the bounded linear functional $a\omega b(x) = \omega(axb), x \in C^*(E_{\rho})$.

The class of mixing bounded linear functionals is quite large, as shown by the following proposition.

Proposition 4.2. Every vector state of $C^*(E_{\rho})$ is mixing.

Proof. Let $\xi \in L^2(E_{\rho})$ be a unit vector, and ω_{ξ} be the corresponding vector state. Since the C^* -algebra $C^*(E_{\rho})$ is irreducible, the GNS representation associated with ω_{ξ} can be taken to be the identity representation, having ξ as corresponding cyclic vector.

Let now $\alpha = {\alpha_t}_{t\geq 0}$ be the *E*-semigroup of $\mathscr{B}(L^2(E_{\rho}))$ associated with the regular representation ℓ of E_{ρ} . Since ℓ is a singular representation, we have $\alpha_t(1) \downarrow 0$ as $t \to \infty$. Moreover, using (3.6), we obtain

$$\alpha_t^*(a\omega_{\xi}b)(x) = \langle \alpha_t(x)b\xi, a^*\xi \rangle = \langle \alpha_t(x)\alpha_t(\mathbb{1})b\xi, \alpha_t(\mathbb{1})a^*\xi \rangle,$$

for all $a, b, x \in C^*(E_\rho)$. Therefore

$$\sup_{\|x\| \le 1} |\alpha_t^*(a\omega_\xi b)(x)| \le \|\alpha_t(1)a^*\xi\| \|\alpha_t(1)b\xi\| \to 0$$

as $t \to \infty$. Using (3.7), we also have

$$\sup_{\|x\|\leq 1} |\omega_{\xi}(ab)\alpha_t^*(\omega_{\xi})(x)| \leq |\omega_{\xi}(ab)| \cdot \|\alpha_t(1)\xi\|^2 \to 0,$$

 \square

as $t \to \infty$. In particular, $\|\alpha_t^*(a\omega_{\xi}b) - \omega_{\xi}(ab)\alpha_t^*(\omega_{\xi})\| \to 0$ as $t \to \infty$.

Observation 4.3. Although the vector states of $C^*(E_{\rho})$ are mixing states, they fail to be essential states, as one can easily see from (3.7) and Theorem 3.4.

Next, we describe the relation between mixing essential states and pure E_0 -semigroups. We need, for this purpose, the following proposition, which is a straightforward variation of Arveson's classical characterization of pure E_0 -semigroups acting on a von Neumann algebra in terms of the asymptotic behavior of the action of the semigroup on the predual [2][1].

Proposition 4.4. Suppose $\rho = {\rho_t}_{t\geq 0}$ is an E_0 -semigroup of a von Neumann algebra $M \subseteq \mathscr{B}(K)$. The following conditions are equivalent:

- 1. ρ is pure;
- 2. for any two normal states ω , ψ of $\mathscr{B}(K)$, $\|\omega|_{\rho_t(M)} \psi|_{\rho_t(M)}\|$ converges to 0 as $t \to \infty$;
- 3. for any two unit vectors $\xi, \eta \in K$, $\|\omega_{\xi} \circ \rho_t \omega_{\eta} \circ \rho_t\|$ converges to 0 as $t \to \infty$.

Proof. (1) \Leftrightarrow (2) is similar to the proof of [1, Proposition 2.9.2].

(2) \Rightarrow (3) follows immediately from the fact that $\|\omega \circ \rho_t\| = \|\omega|_{\rho_t(M)}\|$, for every normal linear functional on $\mathscr{B}(K)$ and every $t \ge 0$.

(3) \Rightarrow (2) Let $\xi \in K$ be a fixed unit vector. Using the triangle inequality and the previous fact, it is enough to show that $\|\omega \circ \rho_t - \omega_{\xi} \circ \rho_t\|$ converges to 0 as $t \to \infty$, for every normal state ω of $\mathscr{B}(K)$. To prove this, realize the state ω as $\omega = \sum_n \lambda_n \omega_{\xi_n}$, where $\{\xi_n\}_n \subset K$ is a sequence of unit vectors and $\{\lambda_n\}_n$ is a sequence of positive real numbers summing up to 1. We then have

$$\|\omega \circ \rho_t - \omega_{\xi} \circ \rho_t\| \le \sum_n \lambda_n \|\omega_{\xi_n} \circ \rho_t - \omega_{\xi} \circ \rho_t\| \to 0,$$

as $t \to \infty$. The proof is complete.

Theorem 4.5. Let $\rho = {\rho_t}_{t\geq 0}$ be an E_0 -semigroup of $\mathscr{B}(H)$ with concrete product system $E_{\rho} = {E_{\rho}(t)}_{t>0}$, and ω be an essential state of $C^*(E_{\rho})$. Let $\pi : C^*(E_{\rho}) \to \mathscr{B}(K)$ be GNS representation of ω , and $\tilde{\rho} = {\tilde{\rho}_t}_{t\geq 0}$ be the corresponding E_0 -semigroup of $\mathscr{B}(K)$. The following statements are equivalent:

- 1. The restriction of $\tilde{\rho}$ to the von Neumann algebra $M = \pi(C^*(E_{\rho}))''$ is a a pure E_0 -semigroup of M.
- 2. ω is a mixing state.

Proof. It is clear from the definition of the E_0 -semigroup $\tilde{\rho} = {\tilde{\rho}_t}_{t\geq 0}$ that $\tilde{\rho}_t(M) \subseteq M$, so that $\tilde{\rho}$ restricts to an E_0 -semigroup of the von Neumann algebra M. Let $\xi \in K$ be the cyclic unit vector in the GNS construction associated with ω .

(1) \Rightarrow (2): Consider an element $a \in C^*(E_\rho)$. If $\omega(a^*a) \neq 0$, then let $\eta \in K$ be the unit vector

$$\eta = \|\pi(a)\xi\|^{-1}\pi(a)\xi.$$

Since $\tilde{\rho}$ is pure, we have

$$\lim_{t \to \infty} \|\omega_{\xi} \circ \rho_t - \omega_{\eta} \circ \rho_t\| = 0 \tag{4.2}$$

by the previous proposition. Substituting η into (4.2), and using (3.6), we obtain

$$\lim_{t \to \infty} \sup_{\|x\| \le 1} \left| \alpha_t^*(\omega)(x) - \frac{\alpha_t^*(a^*\omega a)(x)}{\omega(a^*a)} \right| = 0$$
(4.3)

so that one has

$$\lim_{t \to \infty} \|\omega(a^*a)\alpha_t^*(\omega) - \alpha_t^*(a^*\omega a)\| = 0.$$
(4.4)

Clearly (4.4) holds true if $\omega(a^*a) = 0$, and hence for all $a \in C^*(E_{\rho})$. A direct polarization argument shows that (4.4) is equivalent to (4.1), and the conclusion follows.

(2) \Rightarrow (1) is similar: if ω is mixing, then property (4.4) holds true for all $a \in C^*(E_{\rho})$. This implies (4.3) when $\omega(a^*a) \neq 0$. Using the fact that the most general unit vector in $\pi(C^*(E_{\rho}))\xi$ is of the form $\|\pi(a)\xi\|^{-1}\pi(a)\xi$ where $\omega(a^*a) \neq 0$, (4.3) implies that (4.2) holds true for all unit vectors η in the dense linear manifold $\pi(C^*(E_{\rho})\xi)$ of K. In particular, since ξ is cyclic, (4.2) holds for all unit vectors $\eta \in H$. Now using the triangle inequality and Proposition 4.4, we obtain that $\tilde{\rho}$ is a pure E_0 -semigroup of M. This ends the proof of the theorem.

Corollary 4.6. Every essential mixing state of $C^*(E_{\rho})$ is a factor state.

Proof. It is easily seen that the center of the von Neumann algebra $M = \pi(C^*(E_{\rho}))''$ coincides with the fixed point algebra $\{x \in M \mid \tilde{\rho}_t(x) = x, \forall t \geq 0\}$ of the restriction of the E_0 -semigroup $\tilde{\rho} = {\{\tilde{\rho}_t\}_{t\geq 0}}$ to M. Since the tail algebra of $\tilde{\rho}$ contains the fixed point algebra, the conclusion follows. \Box

The main result of our paper is a straightforward consequence of the previous theorem.

Theorem 4.7. Let $\rho = {\rho_t}_{t\geq 0}$ be an E_0 -semigroup of $\mathscr{B}(H)$. The mapping $\omega \longmapsto \widetilde{\rho} = {\widetilde{\rho_t}}_{t\geq 0}$

that appears in Theorem 4.5 restricts to a surjective mapping from the set of all pure essential mixing states of the spectral C^* -algebra $C^*(E_{\rho})$ onto the set of all pure E_0 -semigroups that are cocycle conjugate to ρ .

Using the purification theorem of V. Liebscher that was mentioned in the introduction, we obtain the following:

Corollary 4.8. For every E_0 -semigroup $\rho = {\rho_t}_{t\geq 0}$ of $\mathscr{B}(H)$, there exists pure essential mixing states of the spectral C^* -algebra $C^*(E_\rho)$.

The structure of the set of all pure essential mixing states will be discussed in a subsequent publication.

References

- W. Arveson. Noncommutative Dynamics and E-semigroups. Monographs in Mathematics. Springer-Verlag, New York, 2003.
- [2] W. Arveson. Pure E₀-semigroups and absorbing states. Comm. Math. Phys. 187 (1997), no. 1, 19 – 43.
- [3] R. Floricel. A conjugacy criterion for pure E₀-semigroups. J. Math. Anal. Appl. 373 (2011), no. 1, 175–178.
- [4] V. Liebscher. Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces. Mem. Amer. Math. Soc. 199 (2009), no. 930, xiv+101 pp.
- [5] R.T. Powers. An index theory for semigroups of *-endomorphisms of ℬ(H) and type II₁ factors, Canad. J. Math. 40 (1988), no. 1, 86–114.

Remus Floricel University of Regina Department of Mathematics Regina, SK Canada e-mail: floricel@math.uregina.ca