ABSENCE OF GAUGE-INVARIANT FUNCTIONALS ON SPECTRAL C*-ALGEBRAS

REMUS FLORICEL

ABSTRACT. We show that Arveson's spectral C^* -algebra $C^*(E)$ of an arbitrary product system $E = \{E(t)\}_{t>0}$ admits no non-zero gauge-invariant positive functionals.

1. INTRODUCTION AND BACKGROUND

The study of gauge-invariant states has played a central role in the development of the representation theory of Cuntz algebras [5][7][1] or, equivalently, in the theory of *-endomorphisms of the algebra $\mathscr{B}(H)$ of all bounded linear operators on a Hilbert space H [4]. A continuous analogue of the Cuntz algebras, called the spectral C^* -algebra of a product system, was introduced by Arveson in [2], with the purpose of constructing and classifying E_0 -semigroups of $\mathscr{B}(H)$, i.e., weak*-continuous one parameter semigroups $\rho = \{\rho_t\}_{t\geq 0}$ of unit-preserving normal *-endomorphisms of $\mathscr{B}(H)$. Ever since its introduction, the spectral C^* -algebra of a product system has emerged as a pivotal concept in the classification theory of E_0 -semigroups [3], and has been the subject of numerous investigations, mostly based on methods and techniques specific to the representation theory of Cuntz algebras[3][8][6].

It is our main purpose, in this paper, to show in full generality that the analogy between the theory of Cuntz algebras and that of spectral C^* -algebras has certain limitations (see also [9] for similar results obtained in the particular case of spatial product systems). More precisely, we prove the following theorem:

Theorem. Let $E = \{E(t)\}_{t>0}$ be a product system, and ω be a positive linear functional on the spectral C^* -algebra $C^*(E)$ of E. If ω is gaugeinvariant in the sense that $\omega \circ \gamma_{\lambda} = \omega$, $\lambda \in \mathbb{R}$, where $\{\gamma_{\lambda}\}_{\lambda \in \mathbb{R}}$ is the gauge group of $C^*(E)$, then $\omega = 0$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L55; Secondary 46L30, 46L57, 47D60.

Key words and phrases. spectral C^* -algebras, product systems, gauge groups, gauge-invariant states.

Research supported in part by a Discovery Grant from NSERC .

REMUS FLORICEL

It is noteworthy that, despite the lack of non-trivial gauge-invariant positive functionals, the spectral C^* -algebra of a product system admits certain gauge-invariant weights that encounter similar behavior to some well-known functionals on Cuntz algebras, provided that the product system is spatial (see [9]). Whether or not such weights exist for arbitrary product systems is still unknown.

In the remaining of this section, we present some background on product systems and spectral C^* -algebras. For more detailed information, we refer the reader to [3]. A product system is a standard Borel bundel $E = \{E(t)\}_{t>0}$ of infinite dimensional separable Hilbert spaces E(t), which is trivial in the sense that $E \cong E(t_0) \times (0, \infty)$ as a measurable family of Hilbert spaces, and which is endowed with a measurable family $\{U_{s,t}\}_{s,t>0}$ of unitary operators

 $E(s) \otimes E(t) \ni x \otimes y \longmapsto U_{s,t}(x \otimes y) =: x \cdot y \in E(t+s), \ s, \ t > 0,$

that obey the associativity rule

$$U_{t_1,t_2+t_3}(\mathbb{1}_{E(t_1)} \otimes U_{t_2,t_3}) = U_{t_1+t_2,t_3}(U_{t_1,t_2} \otimes \mathbb{1}_{E(t_3)}), \ t_1, t_2, t_3 > 0.$$

For every $p \in \{1, 2\}$, we consider the spaces $L^p(E)$ of all measurable sections $(0, \infty) \ni \mapsto f(t) \in E(t)$ that are *p*-integrable, i.e., $\int_{(0,\infty)} ||f(t)||^p dt < \infty$, endowed with the usual norm $||f||_p = (\int_{(0,\infty)} ||f(t)||^p dt)^{1/p}$. Every representation ϕ of E on a Hilbert space H, i.e., a measurable operator-valued function $\phi : E \to \mathscr{B}(H)$ satisfying the conditions (i) $\phi(y)^*\phi(x) = \langle x, y \rangle \cdot 1, x, y \in E(t), t > 0$; and (ii) $\phi(x \cdot y) = \phi(x)\phi(y), x \in E(s), y \in E(t), s, t > 0$, extends to a contractive representation of the Banach algebra $L^1(E)$ on H via the formula

(1.1)
$$\phi(f) := \int_{\mathbb{R}_+} \phi(f(t)) dt, \quad f \in L^1(E)$$

The spectral C^* -algebra $C^*(E) \subseteq \mathscr{B}(L^2(E))$ is then defined as

$$C^*(E) = \overline{\operatorname{span}}\{\ell_f \ell_g^* \mid f, g \in L^1(E)\},\$$

where $\ell: E \to \mathscr{B}(L^2(E))$ is the regular representation of E,

$$(\ell_x f)(s) = \begin{cases} x \cdot f(s-t), & s > t, \\ 0, & 0 < s \le t, \end{cases}$$

for $x \in E(t)$, t > 0, and $f \in L^2(E)$, and ℓ_f , ℓ_g are as in (1.1) for $f, g \in L^1(E)$. The C^{*}-algebra C^{*}(E) admits a natural one-parameter automorphism group, the gauge group $\{\gamma_{\lambda}\}_{\lambda \in \mathbb{R}}$, acting as

$$\gamma_{\lambda}(\ell_{f}\ell_{g}^{*}) = \ell_{e^{i\lambda}f}\ell_{e^{i\lambda}g}^{*}, \ \lambda \in \mathbb{R}$$

where $(e^{i\lambda}f)(t) = e^{i\lambda t}f(t)$, for $f \in L^1(E)$, t > 0, and $\lambda \in \mathbb{R}$.

2. Proof of the theorem

Let ω be a gauge-invariant positive linear functional on $C^*(E)$, and $\pi : C^*(E) \to \mathscr{B}(H)$ be the corresponding GNS representation with cyclic vector $\xi \in H$. Using [3, Theorem 4.1.7], one can find a representation $\phi : E \to \mathscr{B}(H)$ satisfying

$$\pi(\ell_f \ell_g^*) = \phi(f)\phi(g)^*, \ f, g \in L^1(E).$$

We then have

(2.1)
$$\omega(\ell_f \ell_g^*) = \langle \pi(\ell_f \ell_g^*) \xi, \xi \rangle = \langle \phi(g)^* \xi, \phi(f)^* \xi \rangle$$
$$= \iint_{\mathbb{R}_+ \times \mathbb{R}_+} \langle \phi(g(t))^* \xi, \phi(f(s))^* \xi \rangle \, ds dt.$$

For every $f, g \in L^1(E)$, we consider the complex-valued measure $\mu_{f,g}$ on $\mathbb{R}_+ \times \mathbb{R}_+$, defined by

$$d\mu_{f,g} = \langle \phi(g(t))^* \xi, \phi(f(s))^* \xi \rangle \ dsdt.$$

Is is readily seen that $\|\mu_{f,g}\| \leq \|\omega\| \|f\|_1 \|g\|_1$, and that $\mu_{f,g}$ is absolutely continuous with respect to the Lebesgue measure.

We claim that $\mu_{f,g} = 0$, for every $f, g \in L^1(E)$. For this purpose, fix $f, g \in L^1(E)$, and consider the sections $uf, vg \in L^1(E)$,

$$(uf)(t) = u(t)f(t), \ (vg)(t) = v(t)g(t), \ t > 0,$$

associated with continuous functions with compact support $u, v \in C_{00}([0,\infty))$. Since ω is gauge invariant, we have

$$\iint_{\mathbb{R}_+ \times \mathbb{R}_+} e^{i\lambda(s-t)} u(s)\overline{v}(t) \, d\mu_{f,g}(s,t) = \iint_{\mathbb{R}_+ \times \mathbb{R}_+} u(s)\overline{v}(t) \, d\mu_{f,g}(s,t),$$

for all $u, v \in C_{00}([0, \infty))$ and $\lambda \in \mathbb{R}$. Indeed

$$\iint_{\mathbb{R}_{+}\times\mathbb{R}_{+}} u(s)\overline{v}(t) d\mu_{f,g}(s,t) = \iint_{\mathbb{R}_{+}\times\mathbb{R}_{+}} \langle \phi((vg)(t))^{*}\xi, \phi((uf)(s))^{*}\xi \rangle dsdt$$
$$= \omega(\ell_{uf}\ell_{vg}^{*}) = \omega(\ell_{e^{i\lambda}uf}\ell_{e^{i\lambda}vg}^{*})$$
$$= \iint_{\mathbb{R}_{+}\times\mathbb{R}_{+}} e^{i\lambda(s-t)}u(s)\overline{v}(t) d\mu_{f,g}(s,t).$$

Let now $\eta \in L^1(\mathbb{R})$ satisfying $\hat{\eta}(0) = 0$, where $\hat{\eta}$ is the Fourier transform of η . Multiplying the previous equation by $\eta(\lambda)$ and integrating with respect to λ , we obtain

$$\iint_{\mathbb{R}_+\times\mathbb{R}_+} \hat{\eta}(s-t)u(s)\overline{v}(t)\,d\mu_{f,g}(s,t) = \hat{\eta}(0)\iint_{\mathbb{R}_+\times\mathbb{R}_+} u(s)\overline{v}(t)\,d\mu_{f,g}(s,t) = 0.$$

Using the Stone-Weierstrass theorem, one can easily see that the set of all linear combinations of functions of the form $\hat{\eta}(s-t)u(s)\overline{v}(t)$, where

REMUS FLORICEL

 u, v, η are as before, is uniformly dense in the space of all continuous functions D(s,t) on $[0,\infty) \times [0,\infty)$ that vanish both at ∞ and along the diagonal

$$\mathscr{D} = \{(s,s) \mid s \in [0,\infty)\}$$

It then follows that for any such function D, we have

$$\iint_{\mathbb{R}_+ \times \mathbb{R}_+} D(s,t) \, d\mu_{f,g}(s,t) = 0.$$

Consequently, the measure $\mu_{f,g}$ vanishes on the complement of the set \mathscr{D} . Since \mathscr{D} is a set of Lebesgue measure zero and $\mu_{f,g}$ is absolutely continuous with respect to Lebesgue measure, we obtain that $\mu_{f,g} = 0$ as claimed. Finally, we infer from (2.1) that $\omega(\ell_f \ell_g^*) = 0$ for all $f, g \in L^1(E)$, i.e., $\omega = 0$. The theorem is proved.

References

- [1] H. Araki, A. Carey and D. Evans. On \mathcal{O}_{n+1} . J. Operator Theory 12 (1984), no. 2, 247–264.
- W. Arveson. Continuous analogues of Fock space. II. The spectral C*-algebra. J. Funct. Anal. 90 (1990), no. 1, 138–205.
- [3] W. Arveson. Noncommutative Dynamics and E-semigroups. Monographs in Mathematics. Springer-Verlag, New York, 2003.
- [4] O. Bratteli, P. Jorgensen and G. Price. Endomorphisms of *B(H)*. Proc. Sympos. Pure Math., 59, (1996), 93–138.
- [5] D. Evans. On *On*. Publ. Res. Inst. Math. Sci. 16 (1980), no. 3, 915–927.
- [6] R. Floricel. Pure cocycle perturbations of E_0 -semigroups. preprint.
- [7] M. Laca. Gauge invariant states of \mathcal{O}_{∞} . J. Operator Theory 30 (1993), no. 2, 381–396.
- [8] J. Zacharias. Continuous tensor products and Arveson's spectral C*-algebras. Mem. Amer. Math. Soc. 143 (2000), no. 680.
- [9] J. Zacharias. Endomorphisms of continuous Cuntz algebras. J. Operator Theory 46 (2001), no. 3, suppl., 561 – 577.

UNIVERSITY OF REGINA, DEPARTMENT OF MATHEMATICS, REGINA, SK, CANADA *E-mail address:* floricel@math.uregina.ca

4