

# Chem360 Final Exam Practice

# Mission:

More practice to get in the groove ("getting groovy, baby")



- 1. Resonance (caffeine)
- 2. VOMELDs (O<sub>2</sub> and BrNNCN)
- 3. IR-active modes (HCCH)
- 4. Write out operators (V for HO, H for elementary problems and Fe<sup>2+</sup> and CH<sub>4</sub>)
- 5. Energy level transition math (Phyllis the Photon)
- 6. Probability for being in a range
- 7.  $\langle r \rangle$  and  $r_{mp}$

### Other tips:

- --know your terminology (orthogonal, superposition, eigenfunction, rovibronic, ...
- --know your energy level diagrams
- --lots of little things, e.g. uncertainty = standard deviation = SQRT of variance


#### Exam rules:

- --No bunnyhugs/hoodies! (new rule ~2023)
- --No food/drink except water in clear labelless plastic bottles
- --calculator inspection
- --show university ID (gym rules)

#### 1. Caffeine resonance

In the caffeine molecule, all four N's are sp<sup>2</sup>-hybridized.

- (a) How many occupied  $\sigma_{NB}$  and  $\pi_{NB}$  molecular orbitals are in the molecule?
- (b) Explain each  $\pi_{NB}$  by showing an appropriate secondary Lewis structure with formal charge separation (put the negative charge on an O atom).



- 2. VOMELD for O<sub>2</sub> and BrNNCN
- (a) Sketch the VOMELD for O<sub>2</sub> molecule and predict its HOMO
- (b) Sketch the totalmolecule VOMELD for BrNNCN (the three central atoms are each 2-coordinate)

#### Periodic Table of the Elements 2016

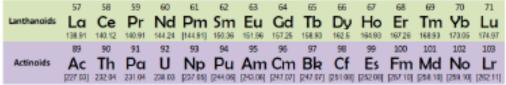
| 1      | 2         | 3      | 4         | 5        | 6              | 7        | 8        | 9      | 10     | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       |
|--------|-----------|--------|-----------|----------|----------------|----------|----------|--------|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1      |           |        |           |          |                |          |          |        |        |          |          |          |          |          |          |          | 2        |
| H      |           |        |           |          |                |          |          |        |        |          |          |          |          |          |          |          | He       |
| 1.008  |           | 1      |           |          |                |          |          |        |        |          |          | _        |          |          |          |          | 4.0026   |
| 3      | 4         |        |           |          |                |          |          |        |        |          |          | 5        | 6        | 7        | 8        | 9        | 10       |
| Li     | Be        |        |           |          |                |          |          |        |        |          |          | В        | С        | N        | 0        | F        | Ne       |
| 6.94   | 9.0122    |        |           |          |                |          |          |        |        |          |          | 10.81    | 12.011   | 14.007   | 15.999   | 18.996   | 20.18    |
| 11     | 12        |        |           |          |                |          |          |        |        |          |          | 13       | 14       | 15       | 16       | 17       | 18       |
| Na     | Mg        |        |           |          |                |          |          |        |        |          |          | AI       | Si       | P        | 5        | CI       | Ar       |
| 22.99  | 24,306    |        |           |          |                |          |          |        |        |          |          | 26,982   | 28.085   | 30.974   | 32.06    | 35.45    | 39,948   |
| 19     | 20        | 21     | 22        | 23       | 24             | 25       | 26       | 27     | 28     | 29       | 30       | 31       | 32       | 33       | 34       | 35       | 36       |
| K      | Ca        | Sc     | Ti        | V        | Cr             | Mn       | Fe       | Co     | Ni     | Cu       | Zn       | Ga       | Ge       | As       | Se       | Br       | Kr       |
| 39.098 | 40.078    | 44.968 | 47.867    | 50.942   | 51.996         | 54.938   | 55.845   | 58.933 | 58.693 | 63.546   | 65.38    | 69.723   | 72.63    | 74.922   | 78.96    | 79.904   | 83.796   |
| 37     | 38        | 39     | 40        | 41       | 42             | 43       | 44       | 45     | 46     | 47       | 48       | 49       | 50       | 51       | 52       | 53       | 54       |
| Rb     | Sr        | γ      | Zr        | Nb       | Мо             | Tc       | Ru       | Rh     | Pd     | Ag       | Cd       | In       | Sn       | Sb       | Te       | -        | Xe       |
| 85.468 | 87.62     | 88.906 | 91.224    | 92,906   | 95.96          | [97.91]  | 101.07   | 102.91 | 106.42 | 107.87   | 112.41   | 114.82   | 118.71   | 121.76   | 127.6    | 126.9    | 131.29   |
| 55     | 96        |        | 72        | 73       | 74             | 75       | 76       | 77     | 78     | 79       | 80       | 81       | 82       | 83       | 84       | 85       | 86       |
| Cs     | Bα        |        | Hf        | Tα       | w              | Re       | Os       | lr     | Pt     | Au       | Hg       | TI       | Pb       | Bi       | Po       | Αt       | Rn       |
| 132.91 | 137.33    |        | 178.49    | 180.95   | 183.84         | 186.21   | 190.23   | 192.22 | 195.08 | 196.97   | 200.59   | 204.38   | 201.2    | 208.98   | [208.98] | [209.89] | [222.02] |
| 87     | 88        |        | 104       | 105      | 106            | 107      | 108      | 109    | 110    | 111      | 112      | 113      | 114      | 115      | 116      | 117      | 118      |
| Fr     | Ra        | **     | Rf        | Db       | Sg             | Bh       | Hs       | Mt     | Ds     | Rg       | Cn       | Nh       | FI       | Mc       | Lv       | Ts       | Og       |
|        | [228.08]  |        | [265, 12] | [268.13] | _              |          | [277.16] |        |        |          | [285.17] |          | [289.19] | [268.19] | [293]    | [294]    | [294]    |
|        |           |        |           |          |                |          |          |        |        |          |          |          |          |          |          |          |          |
|        |           | 57     | 58        | 59       | 60             | 61       | 62       | 63     | 64     | 65       | 66       | 67       | 68       | 69       | 70       | 71       |          |
| Lantha | anoids    | La     | Ce        | Pr       | Nd             | Pm       | Sm       | Eu     | Gd     | Tb       | Dy       | Нο       | Er       | Tm       | Yb       | Lu       |          |
|        |           | 138.91 | 140.12    | 140.91   | 144.24         | [144.91] | 190.36   | 161,96 | 167.25 | 158.93   | 162.6    | 164,93   | 167.26   | 16893    | 173.06   | 174.97   |          |
|        |           | Ac     | 90        | 91<br>Pa | 92<br><b>U</b> | 93<br>Np | 94<br>Pu | 95     | 96     | 97<br>Bk | Cf       | 99<br>Es | 100      | Md       | No.      | 103      |          |
|        | Actinoids |        | Th        |          |                |          |          |        |        |          |          |          |          |          |          | Lr       |          |

#### 3. IR-active modes of HCCH

The molecule HCCH has 7 normal modes of vibration:

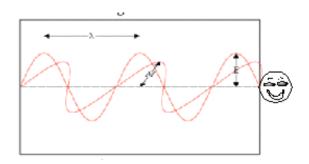
cc str,
sym cH str,
antisym cH str,
sym Hcc bend xz plane,
antisym Hcc bend yz plane,
sym Hcc bend yz plane,
antisym Hcc bend yz plane

- (a) How many of these would be IR active? (Hint: sketching out the modes may help)
- (b) If no overtone or combination bands are present, how many distinct peaks would you expect to see in the ordinary (low-resolution) IR spectrum?


4. Write out operators (V for HO, H for elementary problems and Fe<sup>2+</sup> and CH<sub>4</sub>)

Write out the operators for:

- $(a)\widehat{V}$  for particle in a box
- $(b)\widehat{V}$  for harmonic oscillator
- (c)  $\widehat{H}$  for particle in a box
- $(d)\widehat{H}$  for one-body harmonic oscillator
- (e)  $\widehat{H}$  for two-body 2D rigid rotor
- (f)  $\widehat{H}_{elec}$  for Fe<sup>2+</sup> atom
- $(g) \widehat{H}_{elec}$  for  $CH_4$  molecule


#### Periodic Table of the Elements 2016

| 1      | 2        | 3      | 4        | 5      | 6      | 7       | 8        | 9        | 10     | 11     | 12     | 13     | 14     | 15       | 16       | 17       | 18    |
|--------|----------|--------|----------|--------|--------|---------|----------|----------|--------|--------|--------|--------|--------|----------|----------|----------|-------|
| 1      |          |        |          |        |        |         |          |          |        |        |        |        |        |          |          |          |       |
| Н      |          |        |          |        |        |         |          |          |        |        |        |        |        |          |          |          | He    |
| 1.008  | 4        |        |          |        |        |         |          |          |        |        |        | 5      | 6      | 7        | 8        | 9        | 4.002 |
| Li     | Be       |        |          |        |        |         |          |          |        |        |        | В      | С      | N        | 0        | F        | Ne    |
| 6.94   | 9.0122   |        |          |        |        |         |          |          |        |        |        | 10.81  | 12.011 | 14.007   | 15.999   | 18,998   | 20.1  |
| 11     | 12       |        |          |        |        |         |          |          |        |        |        | 13     | 14     | 15       | 16       | 17       | 18    |
| Nα     | Mg       |        |          |        |        |         |          |          |        |        |        | ΑI     | Si     | Р        | 5        | CI       | A     |
| 22.99  | 24,306   |        |          |        |        |         |          |          |        |        |        | 26,982 | 28.085 | 30.974   | 32.06    | 35.45    | 39.94 |
| 19     | 20       | 21     | 22       | 23     | 24     | 25      | 26       | 27       | 28     | 29     | 30     | 31     | 32     | 33       | 34       | 35       | 36    |
| К      | Ca       | Sc     | Ti       | V      | Cr     | Mn      | Fe       | Co       | Ni     | Cu     | Zn     | Ga     | Ge     | As       | Se       | Br       | Kı    |
| 39.098 | 40.078   | 44.958 | 47.867   | 50.942 | 51.966 | 54.938  | 55.845   | 58.933   | 58.663 | 63.546 | 65.38  | 69.723 | 72.63  | 74.922   | 78.96    | 79.904   | 83.79 |
| 37     | 38       | 39     | 40       | 41     | 42     | 43      | 44       | 45       | 46     | 47     | 48     | 49     | 50     | 51.      | 52       | 53       | 54    |
| Rb     | Sr       | Υ      | Zr       | Nb     | Мо     | Tc      | Ru       | Rh       | Pd     | Ag     | Cd     | In     | Sn     | Sb       | Te       | - 1      | Χe    |
| 85.468 | 87.62    | 88.906 | 91.224   | 92,906 | 95.96  | [97.91] | 101.07   | 102.91   | 108.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76   | 127.6    | 126.9    | 131.2 |
| 55     | 56       |        | 72       | 73     | 74     | 75      | 76       | 77       | 78     | 79     | 80     | 81     | 82     | 83       | 84       | 85       | 86    |
| Cs     | Ba       |        | Hf       | Tα     | w      | Re      | Os       | lr       | Pt     | Au     | Hg     | TI     | Pb     | Bi       | Po       | Αt       | Rr    |
| 132.91 | 137.33   |        | 178.49   | 180.95 | 189.84 | 186.21  | 190.23   | 192.22   | 195.08 | 196.97 | 200.59 | 204.38 | 207.2  | 20898    | [208.98] | [209.99] | 222.0 |
| 87     | 88       |        | 104      | 105    | 106    | 107     | 108      | 109      | 110    | 111    | 112    | 113    | 114    | 115      | 116      | 117      | 118   |
| Fr     | Ra       | **     | Rf       | Db     | Sg     | Bh      | Hs       | Mt       | Ds     | Rg     | Cn     | Nh     | FI     | Mc       | Lv       | Ts       | Og    |
|        | [228.08] |        | (265.12) |        |        | [270]   | (277.16) | [276.15] |        |        |        |        |        | (288.19) | [293]    | [294]    | [294  |



### 5. Phyllis the Photon (energy level transition math)

Phyllis the Photon has an energy of  $7.5 \times 10^{-19} \text{ J}$ .



- a) Determine her frequency, wavenumber, wavelength, and momentum.
- b) She can boost the energy of a neutron from its n=2 to its n=6 state if the neutron is a particle-in-a-1D box with no forces. Determine the length of the 1D box.
- c) She can boost the energy of an oscillating neutron from its n=1 to its n=2 state if the neutron is a one-body harmonic oscillator. Determine the force constant k.
- d) She can kick out a photoelectron from a metal of work function  $\Phi = 4.4 \times 10^{-19} \text{ J}$ . Determine the speed of the photoelectron.

## 6. Probability for being in a range

Consider a particle in a box in its n=2 state.

- (a) How many internal nodes does its wavefunction have?
- (b) Calculate the probability that the particle is in the middle third of its range at any given moment.

# 7. <r> and r<sub>mp</sub>

Calculate <r> and  $\ensuremath{r_{mp}}$  for the excited Be<sup>3+</sup> ion having its only electron up in a 3d orbital.

#### Periodic Table of the Elements 2016

| _1_      | 2        | 3      | 4       | 5          | 6         | 7        | 8            | 9            | 10           | 11       | 12     | 13     | 14          | 15     | 16          | 17       | 18       |
|----------|----------|--------|---------|------------|-----------|----------|--------------|--------------|--------------|----------|--------|--------|-------------|--------|-------------|----------|----------|
| 1        |          |        |         |            |           |          |              |              |              |          |        |        |             |        |             |          | 2        |
| H        |          |        |         |            |           |          |              |              |              |          |        |        |             |        |             |          | He       |
| 1.008    |          |        |         |            |           |          |              |              |              |          |        |        |             |        |             |          | 4.0026   |
| 3        | 4        |        |         |            |           |          |              |              |              |          |        | 5      | 6           | 7      | 8           | 9        | 10       |
| Li       | Be       |        |         |            |           |          |              |              |              |          |        | В      | С           | N      | 0           | F        | Ne       |
| 6.94     | 9.0122   |        |         |            |           |          |              |              |              |          |        | 10.81  | 12.011      | 14.007 | 15.999      | 18.998   | 20.18    |
| 11       | 12       |        |         |            |           |          |              |              |              |          |        | 13     | 14          | 15     | 16          | 17       | 18       |
| Nα       | Mg       |        |         |            |           |          |              |              |              |          |        | ΑI     | Si          | Р      | 5           | CI       | Ar       |
| 22.99    | 24,306   |        |         |            |           |          |              |              |              |          |        | 26,982 | 28.085      | 30.974 | 32.06       | 35.45    | 39.948   |
| 19       | 20       | 21     | 22      | 23         | 24        | 25       | 26           | 27           | 28           | 29       | 30     | 31     | 32          | 33     | 34          | 35       | 36       |
|          | _        |        |         |            |           |          | _            | l _          |              | _        |        |        | _           |        | _           |          |          |
| К        | Ca       | Sc     | Ti      | V          | Cr        | Mn       | Fe           | Co           | Ni           | Cu       | Zn     | Ga     | Ge          | As     | Se          | Br       | Kr       |
| 39.098   | 40.078   | 44.968 | 47.887  | 50.942     | 51.996    | 54.938   | 55.845<br>44 | 58.933<br>45 | 58.693<br>46 | 63.546   | 65.38  | 69.723 | 72.63       | 74.922 | 78.96<br>52 | 79.904   | 83.796   |
| 37       | 38       | 39     | 40      | 41         | 42        | 43       |              |              |              | 47       | 48     | 49     | 50          | 51     |             | 53       | 54       |
| Rb       | Sr       | Υ      | Zr      | Nb         | Mo        | Tc       | Ru           | Rh           | Pd           | Ag       | Cd     | In     | Sn          | Sb     | Te          |          | Xe       |
| 85.468   | 87.62    | 88.906 | 91,224  | 92,906     | 95.96     | [97.91]  | 101.07       | 102.91       | 106.42       | 107.87   | 112.41 | 114.82 | 11871       | 121.76 | 127.6       | 126.9    | 131.29   |
| 55       | 96       |        | 72      | 73         | 74        | 75       | 76           | 77           | 78           | 79       | 80     | 81     | 82          | 83     | 84          | 85       | 86       |
| Cs       | Bα       |        | Hf      | Tα         | w         | Re       | Os           | lr.          | Pt           | Au       | Hg     | TI     | Pb          | Bi     | Po          | Αt       | Rn       |
| 132.91   | 137.33   |        | 178.49  | 180.95     | 183.84    | 186.21   | 190.23       | 192.22       | 195.08       | 196.97   | 200.59 | 204.38 | 207.2       | 20898  | [208.98]    | [209.99] | [222.02] |
| 87       | 88       |        | 104     | 105        | 106       | 107      | 108          | 109          | 110          | 111      | 112    | 113    | 114         | 115    | 116         | 117      | 118      |
| Fr       | Ra       | **     | Rf      | DЬ         | Sg        | Bh       | Hs           | Mt           | Ds           | Rg       | Cn     | Nh     | FI          | Mc     | Lv          | Ts       | Og       |
|          | [228.03] |        |         | [268.13]   | _         |          |              | [276.15]     |              | _        |        |        |             |        | [293]       | 12941    | [294]    |
| Page 200 | [man-col |        | Jan. 31 | processor. | par a seq | gerog    | 2000         | personal     | part rej     | P-04-10] | 200.11 |        | passer, reg |        | Innel       | hard     | proj     |
|          |          | 57     | 58      | 59         | 60        | 61       | 62           | 63           | 64           | 65       | 66     | 67     | 68          | 69     | 70          | 71       |          |
| Lantha   | anoids   | La     | Ce      | Pr         | Nd        | Pm       | Sm           | Eu           | Gd           | Tb       | Dy     | Но     | Er          | Tm     | Yb          | Lu       |          |
|          |          | 138.91 | 140.12  | 140.91     |           | [144.91] | 150.36       | 151,98       | 167.25       | 158.93   | 162.6  | 194,93 | 167.26      | 16893  | 173.05      | 174.97   |          |
|          |          | 89     | 90      | 91         | 92        | 93       | 94           | 20           | 96           | 97       | 98     | 99     | 100         | 101    | 102         | 103      |          |