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ABSTRACT: Ab initio (coupled-cluster and density-functional) calculations of Gibbs
reaction energies in solution, with new entropy-of-solvation damping terms, were
performed for the ether-catalyzed hydroboration of alkenes. The goal was to test the
accuracy of continuum-solvation models for reactions of neutral species in nonaqueous
solvents, and the hope was to achieve an accuracy sufficient to address the mechanism
in the “Pasto case”: B2H6 + alkene in THF solvent. Brown’s SN2/SN1 “dissociative”
mechanism, of SN2 formation of borane−ether adducts followed by SN1 alkene attack,
was at odds with Pasto’s original SN2/SN2 hypothesis, and while Brown could prove his
mechanism for a variety of cases, he could not perform the experimental test with
THF adducts in THF solvent, where the higher THF concentrations might favor an SN2
second step. Two diboranes were tested: B2H6, used by Pasto, and (9BBN)2 (9BBN =
9-borabicyclo[3.3.1]nonane, C8H15B), used by Brown. The new entropy terms resulted in
improved accuracy vs traditional techniques (∼2 kcal mol−1), but this accuracy was not
sufficient to resolve the mechanism in the Pasto case.

1. INTRODUCTION

Hydroboration is the addition of a BH bond of a borane or
organoborane across an unsaturated multiple bond. It is an
important tool in organic synthesis, particularly for the regio-
selective functionalization of CC bonds.1

In the gas phase and in noncomplexing hydrocarbon
solvents, boranes generally appear as H-bridged dimers,
(BR2H)2 (denoted more simply as “B2” in this paper). Their
dissociation equilibria lie heavily to the left. Switching to
complexing solvents, particularly ethers such as tetrahydrofuran
(THF, C4H8O), the rate of hydroboration of alkenes by
boranes is significantly increased.2 To explain the catalytic effect
of ethers, Nobel prizewinner H. C. Brown demonstrated the
existence of an intermediate (here denoted SB) involving an
adduct of nucleophilic solvent S to borane monomer B.2 In the
case of (BH3)2 + THF, the adduct intermediate is even more
stable than the diborane.3,4 The catalytic effect required Brown
to take the view that the initial adduct-forming stage (solvolysis
of diboranes) must be bimolecular (SN2, dimer + solvent), but
he felt the ensuing alkene-addition stage (hydroboration of
alkene) would involve SN1 dissociation of the adduct before
addition of organoborane monomer to alkene. In this regard he
questioned the conclusions of Pasto,3 who for the case of THF·
BH3 argued that the second stage was also bimolecular (SN2,
adduct + alkene). Brown demonstrated the SN1 nature of
alkene addition with two different BH3 adducts (with Et3N and
Me2S) in toluene,5 but not with ethers in ether. Since an
increase in ether concentration would improve the SN2 rate
vis-a-̀vis the SN1 rate, it may be an open question whether

the mechanism of alkene addition is still SN1 in THF solvent.
We wished to test both of Brown’s claims (SN2 solvolysis and
SN1 alkene-addition) for THF-solvated systems, using quantum
chemistry methods.
Computationally, the first stage (solvolysis of diboranes)

has been studied, but not with THF. Studies of B2H6 reacting
with several small molecules (NH3,

6 H2S,
7 and H2O

8) have
predicted a two-step reaction with a singly H-bridged dimer
adduct intermediate, e.g. H3NBH2(H)BH3. The equivalent inter-
mediate with THF solvent has apparently not been investigated.
The solvolysis stage is also useful for calibrating the accuracy
of ΔG computation methods, as Brown provided both rate
and equilibrium constant data for it.2 The second stage (alkene
addition) has drawn interest from computational chemists9−13

mainly because this step determines the anti-Markovnikov
product distributions. These works have predicted a minor
intermediate in this stage as well: a π complex of alkene to
the borane (via the empty p orbital on boron). Regarding the
Brown vs Pasto issue in the second stage, in 1983 Schleyer and
co-workers9 argued for a Pasto SN2 alkene addition, but based
on a Hartree−Fock-optimized “SN2” transition state that is
rather loose, and a later computational study reported by Houk
and co-workers10 in 1990 seemed inconclusive on this issue. As
recently as 2008, Oyola and Singleton11 (in a paper concerned
with the anti-Markovnikov product distribution) commented
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on the lingering doubt in THF solution, tentatively siding with
Brown; they performed a side calculation that showed the SN2
free energy barrier to be 2.3 kcal mol−1 larger than the SN1
dimer-dissociation free energy barrier, but they placed more
weight on experimental results in siding with Brown.
We were curious to know if 2.3 kcal mol−1 accuracy could be

achieved from quantum chemistry methods in predicting SN1 vs
SN2 barriers in THF solution, and thus obtain a more definitive
answer regarding the mechanism in the Pasto case. We set this as
the main goal of our project. A secondary goal was to confirm,
via ab initio prediction, the utility of the spectral signatures
Brown used in identifying intermediates. In the computations,
THF (C4H8O) was the solvent S, isobutene (C4H8) was the
alkene, and two different choices were made for the borane
BR2H: the simple borane BH3 (used by Pasto3,4) and “9BBN”
(9-borabicyclo[3.3.1]nonane, C8H15B, used by Brown in his
solvolysis study2). The project exposed several underappreciated
issues in computing free energy of solvation. An improved
method of calculating entropies of solvation was needed to
improve accuracy over the traditional “compressed gas”
approximation (see the next section), and although the target
accuracy of ±2 kcal mol−1 for these reactions was achieved in the
three quantitative “comparisons” presented here, this accuracy
was not sufficient to resolve all mechanism issues.

2. COMPUTATIONAL METHODS

Using Gaussian03 and Gaussian09,14 three density-functional
theory (DFT) methods (B3LYP,15,16 PBEPBE,17,18 and OLYP19)
and three basis sets (6-31G(d), 6-31G(d,p), and cc-pVDZ)14

were tested with geometry optimization calculations. After testing,
the B3LYP/6-31G(d) structures were used in all ensuing
calculations.
Only the lowest-energy forms were used; this required

conformer studies for 9BBN, (9BBN)2, and THF (Figure 1).
For 9BBN all levels of theory produced the same lowest-energy
form (dd Cs) with a mild distortion from ideal C2v symmetry.
For (9BBN)2 the optimal form (dd,dd D2h) was fully symmetric
at all levels of theory. For THF, the lowest-energy form was
puckered,20 but its symmetry was dependent on the level of
theory used (Cs with PBEPBE, C1 with OLYP, and C2 with
B3LYP); the energies of the Cs, C1, and C2 puckered structures
all lie within 0.15 kcal mol−1 of each other along a low-
frequency pseudorotation mode. The INT=ULTRAFINE
integration grid14 was used for THF only.
For 11B-NMR calculations, single-point B3LYP/6-311+

G(d,p)//B3LYP/6-31G(d) calculations using the gauge-including

atomic orbital (GIAO) method21,22 were employed. The absolute
chemical shifts were converted to shifts relative to that of the
lowest-energy conformer of the BF3·OEt2 adduct, which (in a
conformer search) turned out to be the one having dihedral
BOCC angles of −95.5° and −72.0°.
The Gibbs energies used in this paper were generated as

follows. For each compound, the routine gas-phase ideal-gas
rigid-rotor/harmonic-oscillator (RRHO) value was calculated,
based on B3LYP/6-31G(d) electronic energies, vibrational
frequencies, and rotational moments of inertia. Call this Ggas,init:

δ δ= + + + −G E E E PV TSgas,init elec ZPVE T

where δZPVEE is half the sum of (unscaled) B3LYP/6-31G(d)
vibrational harmonic frequencies, δTE is the RRHO thermal
correction for internal energy E at p = 1 atm and T = 298.15 K,
PV is taken as RT, and S is the RRHO computation of entropy.
To convert Ggas,init into a free energy of a mole of solute in
solution (Gsolv), several additive corrections could be considered
(Table 1), in the same spirit as the focal-point method for
improved Eelec values.

23,24

In Table 1, the first eight terms are corrections for a more
accurate gas-phase Gibbs energy value. For δcorrE the correction
E e l e c [CCSD(T)/c c -pVDZ//B3LYP/6 -31G(d) ] −
Eelec[B3LYP/6-31G(d)] was used; the CCSD(T) (coupled-
cluster25) calculations were performed with MOLPRO2008.26

For δbasisE the correction Eelec[B3LYP/aug-cc-pVTZ//B3LYP/
6-31G(d)] −Eelec[B3LYP/cc-pVDZ] was used. For terms 3 and 4,
δanharmE might be important for reactions which break several
bonds (e.g., atomization) and can be treated by frequency
scaling,27 while δanharmTS might be important for internal-rotation
modes of molecules displaying particularly low harmonic
frequencies (indicating high-entropy nearly free internal rotation)
and can be treated by the E1, E2, or E3 methods published
by East and Radom in 1997.28 Here we computed E1 corrections
for term 4 but the results were negligible and were not used
(see Appendix A). For terms 5 and 6, relevant to large floppy
molecules with many internal rotation modes, δconfE could be
handled by Boltzmann weighting, while δconfTS could be handled
by statistical counting.29,30

Terms 7 and 8 (δFESE and δFESTS) correct for errors due to
computing G at stationary points on the potential energy
surface (PES) instead of the free energy surface (FES). They
are probably negligible terms except for the Gibbs energy of
transition states (G‡) of bond breaking/forming reactions.
Consideration of this proper Gibbs maximum is termed varia-
tional transition-state theory (vTST), and improves agreement

Figure 1. Conformers of THF, 9BBN, and (9BBN)2, with B3LYP/6-31G(d) relative energies in kcal mol−1. Asterisks indicate the number of
imaginary frequencies according to B3LYP/6-31G(d).
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with data from experimental rate constants.31 (For the alkene-
addition stage, Singleton considered this Gibbs energy
maximum in his dynamical investigation of product distribu-
tions.11) In solution, given other approximations, δFESE and
δFESTS were only deemed important in the case of “barrierless”
bond associations and dissociations, where the PES has its
maximum only at separated fragments; for G‡ computation the
free energy maximum is not at separated fragments, but at
locations where the entropy is more restricted (3−4 Å in the
gas phase for bonds between second period atoms). In the
association direction of a “barrierless” reaction, this would be
a purely entropic barrier. Since G‡ prediction for barrierless
reactions was needed in this project, we estimated and used
δFESE and δFESTS shifts of −1.6 and −3.4 kcal mol−1 (i.e.,
δFESG = +1.8 kcal mol−1) for G‡ for “barrierless” dissociations
in THF (see Appendix B). (Note that our reported Gibbs
energy profiles and ΔrxnG° values do not include δFESG
corrections.)
The remaining nine corrections are for the act of solvation, of

which we ignored five, arguing that the “non-electrostatic” terms
δdispE and δcavE contribute little to ΔrxnE, that no H-bonds can
exist between these solutes and THF, and that the solvent-
reordering terms would be minor because the THF cannot
H-bond to itself and is thus not a strongly ordered liquid (as
a counterexample, the hydrophobic effect of nonpolar solutes
in water involves large solvent-reordering terms). Of the four
terms employed (II, VII, VIII, IX), we used Gaussian’s polariz-
able continuum model (PCM)32,33 for II and damping terms
for PV (VII) and entropy (VIII and IX). Entropy-damping
terms are rarely invoked, except perhaps in the protein-folding
community,34,35 and therefore warrant some discussion.
As Henchman explains,35 use of solute entropy damping terms

constitutes one of two conventions one could use for defining
Gibbs energy in solution. He terms this convention the “system-
frame” (SF) convention and notes that it gives entropies of

association in solution that correspond better to experimentally
derived values than the usual use of the “molecule-frame” (MF)
convention. He states that the MF convention, of assigning
unhindered “concentrated-gas” entropies to solutes, is the
approach taken by theories based on continuum-solvation
models. Since continuum-solvation models appear to be aiming
to produce solvation Gibbs energies directly, and no distinction
between ΔHsolv and ΔGsolv is made, problems in estimating
either ΔHsolv or ΔGsolv may occur. Hence, when we first tested
“concentrated-gas” entropies in the MF convention and began
to see inaccuracies when comparing to experimental results,
we switched to an SF convention and desired a damping
method. There is a “one-factor-fits-all” entropy-damping method
published by Wertz in 1980:36

δ = Δ = − ° −S S S0.46( 14.3)damp solvation gas

but, as he noted, certain classes of molecules revealed systematic
errors (for instance, the method damped too much for molecules
with nearly free internal rotation). We developed a more
sophisticated method for more accuracy.
To calibrate a new entropy damping method, we wanted a

method that, in the limit of mole fraction = 1, would reproduce
the condensation thermochemistry of “Trouton” solvents, i.e.
solvents whose ΔSvaporization is roughly 21 eu (cal mol−1 K−1) at
their boiling points.37,38 For Trouton solvents, which include THF,
hexane, diethyl ether, benzene, neopentane, dichloromethane,
and acetone, a perusal of standard enthalpies of formation and
standard entropies at 298 K (i.e., not at boiling points) gives values
for ΔHcond, TΔScond, and ΔGcond of −8, −7, and −1 kcal mol−1

(which puts ΔScond(298K) at −23 eu instead of −21 eu). Attempts
to reproduce these values with current continuum-solvation
models will poorly predict the ΔH value, the ΔG value, or
both, due to ignoring or mistreating the damping of entropy that is
inherent in forcing molecules into condensed phases.
The entropy-damping terms introduced below, when applied

to TΔScond for THF, reproduced the correct −7 kcal mol−1

value. We went on to try to reproduce ΔHcond and/or ΔGcond
for THF using the PCM model in Gaussian09, but obtained
energy values of −2, −12, +4, and −4, depending on whether
we included terms II, II + III, II + III + IV, or “SMD” II + III +
IV (using the alternative PCM parameters from SCRF =
SMD14,39). None of these compare well to the value of −8 for
ΔHcond. The first and last values agree well with the value of −1
for ΔGcond, but arise from different decisions regarding terms
III and IV (should these be in a condensation calculation?).
This disagreement, combined with our past concerns with the
sensitivity of δdispE (III) and δcavE (IV) to cavity size in the PCM
model,40 and the belief that terms III and IV are less important
in ΔrxnG than for ΔGcond or ΔGsolvation, led us to abandon these
terms in the current project. (We did test δdispE and δcavE effects
but only for the dissociation of the adduct 9BBN·THF, and
found reasonable cancellation: ΔrxnE was 12.4 with only II,
13.4 with II + III + IV, and 12.8 with “SMD” II + III + IV.)
The four solvation terms used were as follows:
Solvation IIPolarization of Eelec. Add E[PCM/B3LYP/

6-31G(d)//B3LYP/6-31G(d)] − E[B3LYP/6-31G(d)] for each
compound, using the Gaussian09 polarizable-continuum model
(PCM, keyword SCRF=(solvent=thf)),32,33 which by default in
Gaussian09 includes δpolzE but neither δdispE nor δcavE.

Solvation VIIDamping of PV. Subtract RT =
0.592 kcal mol−1 for each compound. This removes the
PV = RT term added in Ggas,init. In solution, PV should be closer
to zero than to its gas-phase value.

Table 1. Additive Corrections To Convert B3LYP/6-31G(d)
Ggas,init Computation to Gsolv

terma label description
used in this

work

1 δcorrE electron correlation correction to Eelec yes
2 δbasisE basis set correction to Eelec yes
3 δanharmE anharmonic correction to E no
4 δanharmTS anharmonic correction to TS noc

5 δconfE correction to E for multiple conformers no
6 δconfTS correction to TS for multiple conformers no
7 δFESE free-energy-surface geometry-shift

correction to Eb
no

8 δFESTS free-energy-surface geometry-shift
correction to TSb

yes

I δHbondE solute-to-solvent H bonding (if present) no
II δpolzE solute-to-solvent dipole interaction, incl.

polarization
yes

III δdispE solute-to-solvent dispersion-attraction no
IV δcavE cavitation of the solvent no
V δreorE correction to Esystem for solvent reordering no
VI δreorTS correction to TSsystem for solvent

reordering
no

VII δdampPV damping of PV yes
VIII δdampTStrans damping of TStrans yes
IX δdampTSrot damping of TSrot yes

aSolvation terms listed with Roman numerals. bNormally only
important for certain transition states (variational transition-state
theory). cTested but not used due to negligible results.
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Solvation VIIIDamping of TStrans. Add three terms:

δ = Δ + Δ + ΔTS T S S S( )damp trans solvent comp hind

Δ =
−
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−

⎛
⎝
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⎞
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c

ln (solute hindrance)hind
eff

liq
1

where c is the desired concentration of solute (here 1 M), cliq is
the concentration of pure solvent (here 12.3 M for THF), V̅gas

o

is the standard molar volume of an ideal gas (24.466 L mol−1 at
298.15 K and 1 atm), and V̅eff is an effective molar free volume
of (1.5 Å)3NAVO = 0.002032 L per mole of solute molecules.
This formula comes from the following arguments.
All three terms were derived from the basic concentration-

change formula nR ln (Vf/Vi). The first comes from expanding
the solvent to make room for incoming solute, a term
commonly ignored. Per mole of solute dissolved, this is an
expansion of (cliq − c)/c moles of solvent; for expansion of
THF for 1 M solutes we expand (cliq − c)/c = 11.3 mol THF
from Vi = 0.919 L to Vf = 1 L, obtaining ΔSsolvent = +1.90 eu
(cal mol−1 K−1). The second term ΔScomp is the compression of
1 mol gaseous solute from standard gas volume Vi = 24.466 L
to the volume appropriate for the desired solution concen-
tration (here Vf = 1 L), and hence ΔScomp = −6.35 eu. Note
that this value gives rise to TΔScomp = −1.9 kcal mol−1, the
common standard-state shift applied to Ggas before considering
the act of solvation under the constant-ρ convention described
by Ben-Naim.41

The third term ΔShind is the damping term due to transla-
tions being hindered in the liquid state due to the presence of
other molecules. We suppose that a solute-molecule translation
hindrance is roughly equal to a solvent-molecule translation
hindrance when conceptually changing from “concentrated gas”
(a gas at solvent concentration cliq) to pure liquid. Hence we
consider 1 mol of solvent, use Vi = cliq

−1 (i.e., each molecule
freely translates in the molar volume, which for THF is
0.081 L), and for Vf we restrict each molecule to a solvent cage
allowing rattling motions equivalent to a collapsed-point solute
molecule undergoing free translation in a (1.5 Å)3 volume.
Support for this idea comes from Ewing, who in the 1960s
noted that quantized translational energy spacings of ∼100 cm−1

were determined from the band envelope of rotational spectral
bands from a solution of H2 in liquid Ar, and further pointed
out that a particle-in-a-box model with a box width of ∼1 Å
reproduces this spacing.42 Since the solutes here have atoms
of wider electron distributions than H2, we increased the
box width to an arbitrary value of 1.5 Å. Hence, Vf = V̅eff =
(1.5 Å)3NAVO = 0.002032 L, producing ΔShind = −7.33 eu.
While ΔShind is independent of solute concentration, ΔSsolvent
and ΔScomp are not. Note that Henchman treats this damping
with a more laborious procedure, by assuming harmonic
oscillations (rather than free translations) in the solvent cage,
and running dynamics simulations to obtain the relevant force
constants.35

The sum of the three corrections for 1 M solute in THF is
δdampStrans = −11.8 eu. Note that in the limit as c → cliq, our
δdampStrans method extrapolates properly to the case of the
solute becoming a pure liquid of concentration cliq, and thus can
be used to compare to Trouton’s rule. Considering THF as the
solute, and removing arbitrary solvent by extrapolating c → cliq,
the three terms ΔSsolvent + ΔScomp + ΔShind extrapolate to
0 − 11.3 − 7.3 = −18.6 eu. With further damping of Srot (below)
of ∼4 eu, we achieve the Trouton 298 K value of −23 eu.

Solvation IXDamping of TSrot. Writing Srot as a sum of
three principal-axis components (Sa, Sb, Sc), add a damping
correction for each component, as follows:

δ = δ + δ + δTS T S S S( )a b cdamp rot

δ = −S d Si i i
gas

π= + −−d t0.3 (0.4/ )tan [25( 0.5)]i i
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We refer to di as the rotational entropy damping term, a value
between 0.1 (minimal damping of rotation) and 0.5 (strong
damping). It depends on a dimensionless tumbling parameter ti,
which itself depends on the lengths of the solute molecule
along each principal axis (La, Lb, Lc) and the average of the
same three lengths of the solvent molecule, ⟨Lsolvent⟩. These
lengths are obtained in a crude approximation from the mass M
and moments of inertia (Ia, Ib, Ic) of the molecule. Thus, the di
terms require only the M and Ii which are commonly output in
quantum chemistry programs.
The tumbling parameter ti was designed so that ti > 0.5

would denote tumbling that would be significantly hindered in
solution; large ti would result from large Lsolute/Lsolvent ratios,
and large Lb − Lc differences (i.e., spherical solutes regardless of
size would have ti = 0 and be minimally hindered). The tan−1

function in di was chosen for an intuitively sudden but smooth
transition from minimally hindered rotation to a seesaw-like
wobbling vibration as ti crosses 0.5 (Figure 2).

Figure 2. Plot of the rotational entropy damping term d as a function
of tumbling metric t.
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The square-root formulas for the effective molecule lengths
Li arise as follows. Assume that the mass distribution about
a given axis (say, z-axis) is a uniform solid ellipse bound by the
curve (y/y0)

2 + (x/x0)
2 = 1, i.e., ybound = y0[1 − (x/x0)

2]1/2,
where y0 = Ly/2 and x0 = Lx/2. Then, if r is the radial distance
of a point of mass from the z axis,

∫ ∫

∫ ∫
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This expression can be substituted into

∑= ≈ ⟨ ⟩ = +
=

I m r M r
M

L L
16

( )z
i

i i x y
1
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2 2 2 2

from which the square-root expressions for the lengths Li follow.
As a last detail, the gas-phase rotational entropy Srot was

divided into components Sa, Sb, and Sc, according to

π π
σ
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⎛
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where σ is the overall rotational symmetry number.
Computed data for this solvation IX correction appear in

Supporting Information, and were based on B3LYP/6-31G(d)
molecular geometries.
The Concentrated-Gas (cg) Approximation. We will

compare the results of our method to results obtained with a
more common procedure that we term a “concentrated-gas”
or cg method. In this method, the damping terms VII−IX
(Table 1) are ignored except for the gas-compression term
ΔScomp of term VIII.

3. RESULTS AND DISCUSSION
Spectral Signatures. The 11B-NMR spectrum was used by

Wang and Brown2 to identify the presence of the 9BBN·THF
adduct. They attributed observed signals to the (9BBN)2 dimer
(δrel = 28) and 9BBN·THF complex (δrel = 14). Our results
confirm this assignment (Table 2). A peak due to 9BBN
monomer would be much further shifted (δrel = 90−95).

Infrared spectra were also used by Wang and Brown2 to
identify the presence of the 9BBN·THF adduct. In the B−H
stretch region, they attributed a small peak at 2300 cm−1 to be

due to the adduct, and a strong peak at 1570 cm−1 to be due to
BH bridge bonds of the (9BBN)2 dimer. Our results confirm
this also (Table 3): by converting our computed harmonic
frequencies ω to fundamentals ν using a recommended scaling
factor27 of 0.9613, we obtain computed values only 2% larger
than the experimental values (a scaling factor of 0.94 would
have been ideal). The corresponding absorption for a monomer
would be near 2460−2520 cm−1, which was apparently not
observed. The relevant B3LYP/6-31G(d) predicted spectra
appear in the Supporting Information (Figure S1). The intense
peak of the dimer is due to the normal mode involving the
bridging hydrogens moving parallel to the B−B axis.

Mechanism of Solvolysis Stage. Ignored to date has been
the possibility that THF solvolysis of borane dimers might
feature an intermediate in which one of the two BHB hydride
bridges remains in place. We have computationally found
such intermediates for both B2H6 and (9BBN)2 (Supporting
Information, Figure S2). Hence, the mechanism possibilities for
overall solvolysis reaction R1 could be SN2 + SN2 (R2 + R3),
SN2 + SN1 (R2 + R5 + R6), or SN1 + SN1 (R4 + R6 + R6)
(Scheme 1).
First, we wish to point out large errors in B3LYP binding

energies when using the secondary borane 9BBN: binding
energies for reactions R4, R5, and −R6 are all underestimated
by 9−13 kcal mol−1 relative to CCSD(T) results (Table 4).
No such problem exists when using BH3 (Table 5). Some side
tests on methylboranes indicate that the problems might be
general with secondary boranes, which have a more electropositive
boron atom than BH3. We tried two other double-ζ basis sets
with no improvement (very little effect, at most 1.4 kcal mol−1).
We tried two other DFTs, but OLYP was much worse (errors of
>15 kcal mol−1 for the overall reaction R1, due to poor adduct
binding energies), and PBE was inconsistent (a poor reaction R4
binding energy for BH3 dimer but not 9BBN dimer).
Second, the computed Gibbs energy profiles for the

solvolysis stage are plotted in Figure 3 for both B2H6 and
(9BBN)2; they include the three SN2 transition states found.
Values of ΔH and ΔG for each step, including ΔG with the cg
approximation, are tabulated in the Supporting Information.
There are large differences in profile between the two diboranes.
For B2H6 the mechanism is SN2 + SN1, i.e. SN2 conversion to
the SBB intermediate, followed by SN1 rupture of the remaining
H-bridge bond. For (9BBN)2 the mechanism might appear to
be SN1 + SN1, which would disagree with Brown, but the SN2
barrier for step R2 is within 3 kcal mol−1 of the SN1 in this
figure, and a closer inspection of minor effects is warranted.
We first perform four comparisons with experimental data to
support the accuracy of the results.

Comparison 1: K for Reaction R1, B = BH3. Solutions
of B2H6 in THF are known to be dominated by the adduct
BH3·THF and not B2H6.

3 Figure 3 appears to show that adduct
formation is not favored (ΔrxnG° = +1.1 kcal mol−1), but this
simple check is incorrect, due to concentration and Δrxnn
effects. One first must take this standard (1 M) result, convert

Table 2. 11B-NMR Chemical Shifts, GIAO B3LYP/
6-311+G(d,p)//B3LYP/6-31G(d)

species DFT δ absolute DFT δ relativeb expta δ relativeb

BF3·OEt2 101.5 0.0 0.0
9BBN·THF 83.9 17.6 13.8
(9BBN)2 75.3 26.2 27.7
9BBN 8.5 93.0 n/a

aWang and Brown.2 bRelative to BF3·OEt2.

Table 3. Signature BH Stretch Infrared Mode, B3LYP/
6-31G(d)

species DFT ω, cm−1 DFTa ν, cm−1 exptb ν, cm−1

9BBN 2617 2516 n/a
THF·9BBN 2445 2350 2300
(9BBN)2 1678 1613 1570

aUsing 0.9613 scale factor.27 bWang and Brown.2
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it to an equilibrium constant (K° = e−ΔG°/RT = 0.2), invoke its
expression as a ratio of molarity products:

= =

⇒ = ≈ =

−

−

K

K

[BS]
[B ][S]

0.2 M

[BS]
[B ]

[S] (0.2 M )(12.3 M) 30 M

2

2
2

1

2

2

2 1 2

and realize that this produces [BS] ≫ [B2] at typical con-
centrations, for instance if [BS] = 0.3 M then [B2] = 0.003 M.
The cg approximation in our hands (see Methods) gives ΔrxnG° =
−0.2 kcal mol−1, which also results in [BS] ≫ [B2].

Comparison 2: ΔG° for Reaction R1, B = 9BBN. For this
Brown2 derived an equilibrium constant value of 8.05 × 10−5 M−1,
corresponding to ΔrxnG° = +5.6 kcal mol−1 (his eq 11). Our
method obtains +5.0 kcal mol−1 (in THF; our gas-phase result
is +9.7). The cg value in our hands gives +4.9 kcal mol−1, also in
very good agreement with experiment.

Comparison 3: Δ‡G° for Reaction R4, B = 9BBN. Brown2

reported rate constants of k1 = 1.5 × 10−4 s−1 for dimer loss
(d[B2]/dt = −k1[B2]) when performing (9BBN)2 hydroborations

Table 4. Results for ΔEelec for Reactions R1−R6 for 9BBN Dimer

reaction OLYP/6-31G(d) PBEPBE/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d,p) B3LYP/cc-pVDZ CCSD(T)/cc-pVDZa

R1: B2 + 2S → 2SB 17.2 3.9 1.1 2.0 1.4 −8.5
R2: B2 + S → SBB DNEb 9.1 9.0 9.8 10.1 −0.3
R3: SBB + S → 2SB DNE −5.2 −7.9 −7.8 −8.7 −8.2
R4: B2 → 2B 23.1 34.3 23.5 24.5 24.9 36.7
R5: SBB → SB + B DNE 10.0 3.3 3.4 3.1 14.4
R6: B + S → SB −2.9 −15.2 −11.2 −11.3 −11.7 −22.6

aSingle-point calculations at B3LYP/6-31G(d) geometries. bDNE: does not exist.

Table 5. Results for ΔEelec (kcal mol−1) for Reactions R1−R6 for B2H6

reaction OLYP/6-31G(d) PBEPBE/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d,p) B3LYP/cc-pVDZ CCSD(T)/cc-pVDZa

R1: B2 + 2S → 2SB 9.2 −0.4 −3.4 −2.2 −3.6 −8.3
R2: B2 + S → SBB 11.5 1.8 1.5 2.2 1.8 −1.1
R3: SBB + S → 2SB −2.3 −2.3 −4.9 −4.4 −5.3 −7.2
R4: B2 → 2B 41.8 51.0 39.1 40.2 39.5 39.4
R5: SBB → SB + B 14.0 23.5 16.3 16.8 16.2 16.7
R6: B + S → SB −16.3 −25.7 −21.2 −21.2 −21.5 −23.9

aSingle-point calculations at B3LYP/6-31G(d) geometries.

Figure 3. Gibbs energy profiles of the solvolysis reaction R1 and its elementary reactions R2−R6, from our composite method applied to THF
solutions (298 K, 1 mol L−1).

Scheme 1. Overall Solvolysis Reaction (R1), Its Possible
Elementary Steps (R2−R6), and Depiction of the R2 + R3
Hypothesis for Reaction R1a

aS = OR2 (solvent), B = BR2H (borane).
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of “fast” alkenes in noncomplexing nonpolar solvents like
CCl4 or cyclohexane (his Table 1). From the Eyring equation
(Appendix B) one derives Δ‡G°(expt) = 22.7 kcal mol−1. Taking
our computed value for ΔrxnG° for (9BBN)2 dissociation in THF
(20.8), removing the THF polarization effect (adding 0.4), and
adding a vTST δFESG correction (1.8, see Methods), we obtain
Δ‡G° = 23.0 kcal mol−1. The cg method produces 18.8 kcal mol−1,
which is outside our goal of 2 kcal mol−1 accuracy.
Comparison 4: Δ‡G° for Reaction R2 in THF, B = 9BBN.

Brown2 reported a 10× faster rate of dimer loss (k1
eff = 1.42 ×

10−3 s−1) when performing (9BBN)2 hydroborations of “fast”
alkenes in THF, instead of in noncomplexing nonpolar solvents
(his Table 1). He proposed that this is due to a solvolysis stage in
THF, the rate being governed by an SN2 step, R2(B = 9BBN).
Note that solvolysis of (9BBN)2 involves only one SN2 step
(Figure 3, right), unlike that of B2H6 which requires two (Figure 3,
left). In an SN2 step, the rate of dimer loss is d[B2]/dt =
−k2[S][B2] = −k1eff[B2], so k2 = k1

eff/[S] = 1.15 × 10−4 M−1 s−1

which by Eyring gives Δ‡G°(expt) = 22.8 kcal mol−1. Our method
(using the optimized SN2 transition-state geometry, i.e. straight
from Figure 3) gives 24.0, while the cg method gives 24.6. Again
our method appears to improve upon the cg method.
Application 1: SN1 vs SN2 Rate for Reaction R1 in THF, B =

9BBN. Since Figure 3 (right) shows that the reaction R2 SN2
Gibbs barrier is only 3 kcal mol−1 higher than the reaction R4
SN1 dissociation Gibbs energy, it is better to focus on the rate
law ratio v(SN2)/v(SN1), where other factors that need be
considered are (i) rate law complexity, (ii) [THF] effects, and
(iii) a vTST correction for Δ‡G°(SN1).
We start with factor i. While the rate law for SN2 step dimer

loss in (9BBN)2 solvolysis is elementary, the general SN1 steady-
state rate expression (from reactions R4, R-4, and R6) is43
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−
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but for “fast” alkenes k−4[B] ≪ (1/2)k6[S], so the rate law
collapses to
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which is an elementary step. This k4 is the k1 of Brown,
2 just

as it was for noncomplexing solvents (comparison 3). Since
the SN2 rate law was d[B2]/dt = −k2[S][B2] = −k1eff[B2]
(comparison 4), the rate ratio is
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where we see effect ii: the SN2 rate depends on THF con-
centration [S]. Effect iii, the vTST correction, is used inside
k1(SN1) to convert ΔG°(B2→2B) to Δ‡G°. With the vTST
and [THF] effects incorporated, the predicted rate ratio is 1.1,
indicating that the SN2 pathway leads to a faster rate (in
agreement with Brown, and the reverse of the conclusion from
the naiv̈e curve comparison in Figure 3). The cg method
produces a rate ratio of 0.0013, which erroneously predicts an
SN1 pathway for 9BBN·THF adduct formation. The correct
prediction from our method is somewhat fortuitous, as we are
expecting an accuracy of only a factor of 30 in a rate constant
(see Appendix B); however, this is a vast improvement from the

cg result, whose rate ratio must be in error by three orders of
magnitude.
We can also use the above results to predict the catalytic

speedup of using THF as solvent. This would be the rate ratio
k1

eff(SN2,THF)/k1(SN1,CCl4), which from Brown’s data2 is
0.00142/0.00015 = 9.5. Using our Δ‡G° values, our method
gives a rate ratio of 2.3, while the cg method gives 0.0027. The
cg method predicts no catalytic speedup; our method is again
fortuitous with its correct qualitative prediction.
Our first conclusion is that one should not venture to make

a conclusion regarding SN1 vs SN2 mechanisms if our method
gives their ab initio rates to be within a factor of 30. Our second
conclusion is that the cg method is likely to be less reliable than
ours for such rate comparisons.

Mechanism of the Alkene-Addition Stage. We pursued
this step only as far as the monoalkylborane Me2CHCH2BR2,
since ensuing exothermic steps (complexation to solvent or
addition of another alkene) would then be straightforward
extensions. Given the (computationally) known π-complex
intermediate BH3·alkene, which undergoes a fast 4-electron
rearrangement to the monoalkylborane, the mechanism possibilities
for overall alkene-addition reaction R7 are then SN2 + 4e (reactions
R8 + R11), or SN1 + 4e (reactions R9 + R10 + R11) (Scheme 2).
For reaction energetics, again B3LYP performed poorly for

B = 9BBN but well for B = BH3 (Tables 6 and 7), due again to
the poorly predicted 9BBN·THF binding energy. OLYP and
PBE are rated worse because they do not produce the BH3·
C4H8 π-complex.
Second, the computed Gibbs energy profiles for this alkene-

addition stage are plotted in Figure 4 for both B2H6 and
(9BBN)2; they include the three SN2 transition states found.
Values of ΔH and ΔG for each step, including ΔG(cg),
are tabulated in the Supporting Information. For (9BBN)2
(right plot) the mechanism is SN1 + 4e, i.e. SN1 dissociation of
the adducts, followed by 4e rearrangement without any 9BBN·
C4H8 π-complex involved. For B2H6 the mechanism might
appear to be SN1 + 4e, but the SN2 barrier for step R8 is within
3 kcal mol−1 of the SN1 in this figure, and hence a closer
inspection of minor effects is warranted once again.

Application 2: SN1 vs SN2 Rate for Reaction R7 in THF, B =
BH3. Again as in application 1 it is better to focus on the rate
law ratio v(SN2)/v(SN1) than a simple free energy comparison,
and consider (i) rate law complexity, (ii) [THF] effects, and
(iii) a vTST correction for Δ‡G°(SN1). Although Singleton did
factor in effects ii and iii in his recent comparison,11 he used the
less reliable cg method (and it is not clear to us how the THF
concentration was used).
Pasto3 reported a rate constant of k2 = 1.6 M−1 s−1 for alkyl-

borane production (d[BA]/dt = k2[SB][A]) when performing
hydroboration of tetramethylethylene with BH3·THF adducts
in THF at 25 °C (his Table 1). He thought the mechanism
was SN2 (reaction R8; at that time the ensuing instantaneous
reaction R11 step was not known), from second order kinetics.
However, Brown5 demonstrated that second order kinetics for
product formation can also be achieved by an SN1 mechanism
(with monomeric borane as intermediate) as long as the rate
for the B + S back-reaction (reaction R−9) was faster than the
B + A step (reaction R10), because the SN1 steady-state rate
law for product formation is5
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which can be written
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if k−9[S] ≫ k10[A]. The rate law ratio v(SN2)/v(SN1) in this
case becomes
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but note that we compute the full k2
eff for the ratio and do not

make the approximations indicated.
Brown further went on to prove that the SN1 mechanism for

BH3 adducts was operating in some non-THF systems in which
[S] was neither THF nor solvent, but alternative complexing
Lewis bases (Me2S, Et3N) at solute concentrations (<1 M) in
toluene solvent.5 Thus, in Brown’s cases, it must be true that
k2

eff(SN1) > k2(SN2). However, there may be lingering doubt
about the mechanism in THF solvent, because (a) ethers may
have different binding energies than amines or sulfides, and (b)
in THF [S] ≈ 12.3 M, which reduces k2

eff (and thus the SN1
rate) by a factor of 12.3.
From our Δ‡G° value for the SN2 path (reaction R8(TS),

16.5 kcal mol−1), the Eyring equation gives k2(SN2) =
4.6 M−1 s−1, in close agreement with k2(expt) = 1.6. However,
we compute k2

eff(SN1) = 8.0 M−1 s−1, which is faster. Hence
our predicted rate ratio is v(SN2)/v(SN1) ≈ 0.6, i.e. for every

Table 6. Results for ΔEelec (kcal mol−1) for Reactions R7−R11 for 9BBN Dimer

reaction OLYP/6-31G(d) PBEPBE/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d,p) B3LYP/cc-pVDZ CCSD(T)/cc-pVDZa

R7: SB + A → S + BA −59.3 −16.2 −15.6 −16.1 −15.2 −11.2
R8: SB + A → S + B·A DNEb DNE DNE DNE DNE DNE
R9: SB → S + B 2.9 15.2 11.2 11.3 11.7 22.6
R10: B + A → B·A DNE DNE DNE DNE DNE DNE
R11: B·A → BA DNE DNE DNE DNE DNE DNE

aSingle-point calculations at B3LYP/6-31G(d) geometries. bDNE: does not exist.

Table 7. Results for ΔEelec (kcal mol−1) for Reactions R7−R11 for B2H6

reaction OLYP/6-31G(d) PBEPBE/6-31G(d) B3LYP/6-31G(d) B3LYP/6-31G(d,p) B3LYP/cc-pVDZ CCSD(T)/cc-pVDZa

R7: SB + A → S + BA −10.2 −7.8 −7.6 −8.2 −7.8 −7.5
R8: SB + A → S + B·A DNEb DNE 9.8 9.6 10.0 11.3
R9: SB → S + B 16.3 25.7 21.2 21.2 21.5 23.9
R10: B + A → B·A DNE DNE −11.4 −11.6 −11.5 −12.6
R11: B·A → BA DNE DNE −17.5 −17.8 −17.8 −18.8

aSingle-point calculations at B3LYP/6-31G(d) geometries. bDNE: does not exist.

Figure 4. Gibbs energy profiles of the alkene-addition reaction R7 and its elementary reactions R8−R11, from our composite method applied to
THF solutions (298 K, 1 mol L−1). In the right-hand plot, reaction R11 (4e− rearrangement) starts from fully dissociated reactants because the
π-complex 9BBN·C4H8 does not exist.

Scheme 2. Overall Alkene-Addition Reaction (R7), Its
Possible Elementary Steps (R8−R11), and Depiction of the
R8 + R11 Hypothesis for Reaction R7a

aS = OR2 (solvent), B = BR2H (borane), A = CnH2n (alkene).
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8 product molecules, 3 came from an SN2 mechanism. This
predicted SN1 dominance agrees with Brown and not Pasto,
but the results are within an order of magnitude, which cannot
be considered conclusive since our accuracy is worse than that.
(The less accurate cg approximation in our hands gave
k2(SN2) = 0.33 M−1 s−1, k2

eff(SN1) = 4.3 M−1 s−1, and hence
a rate ratio of 0.077, which from application 1 we know to be an
equally inconclusive result.)
Comparison 5: Ea for Reaction R7 in THF, B = BH3. We

make one final comparison to experiment. Pasto used temperature-
dependent results for rate constants to compute an activation
energy Ea = Δ‡H° + RT = 9 kcal mol−1, and activation entropy
Δ‡S° = −27 eu, for the reaction of BH3·THF adducts with
tetramethylethene.3 His Ea disagrees substantially with ours
(14.7 or 21.8 kcal mol−1 for SN2 or SN1 mechanisms,
respectively). Since the comparisons so far suggest that our
accuracy is within 2 kcal mol−1, we conclude that something
is wrong in the experimental value. Singleton suspected problems
with the temperatures reported for the rate constants.11 How-
ever, there might be problems with the temperature dependence
of the Eyring equation itself; we had problems reproducing an
Eyring-determined Δ‡S° value for a permanganate reaction,44

and Brown noted historical problems in using Eyring-determined
Δ‡S° values for understanding mechanism.2

4. CONCLUSIONS

The nature of boranes in solution (monomer, dimer, or solvent
adduct) can be monitored with 11B-NMR or infrared measure-
ments, as the Brown group2 did. Our calculations confirm that
monomer peaks would appear in noticeably different locations
in both spectra.
The entropy-damping (system-frame) procedures introduced

here appear to improve upon the concentrated-gas (molecule-
frame) method (comparisons 3 and 4 and application 1,
(9BBN)2 dissociation vs solvolysis). Based only on the tests
performed here, we appear to have achieved 2 kcal mol−1

accuracy in these systems, but for rate constants this still allows
for errors of a factor of 30. Because of this, our improvements
were not sufficient to verify all of Brown’s hypotheses for hydro-
boration in THF solvent. The calculations showed that the
solvolysis stage is SN2 (to SBB intermediate) + SN1 (to 2 SB)
for B2H6, but could not confirm this for (9BBN)2, and they
showed that the alkene addition stage is SN1 + 4e rearrangement
for 9BBN·THF, but could not confirm this for BH3·THF.
Differences between ΔrxnH and ΔrxnG in THF solution are

significant (see the Supporting Information), and continuum-
solvation methodologies could be improved to address this.

■ APPENDIX A: INTERNAL ROTATION ENTROPY
TESTS

We tested the harmonic-oscillator (HO) entropy estimate for
the nine internal rotation modes that we thought might be least
hindered. E1 theory28 required us to compute MP2/6-31G(d)
internal-rotation barrier heights, and to replace SHO with Sfree

free-rotor results if the MP2/6-31G(d) barriers were less than
1.4RT = 3.5 kJ mol−1. Table 8 shows that the SHO value is
sufficiently accurate, even in the cases where E1 theory
recommends replacement with Sfree, and so no replacements
were done. The largest error we made by keeping SHO values
would be in the first case of Table 8: by keeping (16.6 + 11.3)/2
instead of using 16.1, we make an error of 2.1 J mol−1 K−1 in S,
or an error of 0.2 kcal mol−1 in TS or G.

■ APPENDIX B: VARIATIONAL TRANSITION-STATE
EFFECTS

Accurate computation of activation free energies Δ‡G (G‡ −
Greactants) are needed to predict rates via Eyring-equation rate
constants k:

κ= ° −Δ °‡
k Q

k T
h

e G RTB /

where kB is Boltzmann’s constant, h is Planck’s constant, κ is
the recrossings factor, and Q° is the reaction quotient of
standard concentrations, [transition state]/[reactant(s)], i.e. in
solution normally Q° is 1 for unimolecular reactions and 1 M−1

for bimolecular reactions. The challenging goal of reducing
uncertainty in Δ‡G prediction in solution to 2 kcal mol−1 would
reduce inaccuracies in k to a factor of 30. Due to this limited
accuracy, (i) we set κ = 1, because the error in neglecting
recrossings is likely to be swamped by the error in Δ‡G, and (ii)
we focused on determining values for δFESG (the sum of terms
7 and 8 in Table 1) only for the free energy of transition states
of barrierless reactions (for which the terms might be largest).
We first computed gas-phase values for δFESG, with the intent

of adding solvation corrections later. The gas-phase values were
determined by performing partial geometry optimizations at
various fixed values of interfragment distance (RB−O for adduct
dissociation, RB−B for diborane dissociation), computing an
ideal-gas RRHO-based Gibbs energy after each optimization,
plotting these Ggas,init(R) values, and taking the maximum value
to be G‡. Table 9 shows some results.
Before adding solvation corrections to these, we first

compared to an experimental value for the gas-phase reaction
2BH3 → B2H6, derived as follows. Mappes and co-workers45

performed experiments and used a Slater extrapolation to
determine a high-pressure-limit second-order rate constant of
k2 = 1010.6±0.4 at T = 545 K. Using k = AeEa/RT and a plot of ln k
vs 1/T they determined that Ea = −1 ± 2 kcal mol−1. This gives
A = 1010.3; using this A and Ea but with T = 298 K one finds
k2(298K) = 1011.0. Equating this with the Eyring equation
above, one derives Δ‡G° = 2.4 kcal mol−1. (Since Δ‡H° = Ea −
2RT for a bimolecular reaction, Δ‡H° = −2.2 kcal mol−1,
leaving TΔ‡S° = −4.6 kcal mol−1. The uncertainties in Δ‡G°,
Δ‡H°, and TΔ‡S° are slightly greater than 2 kcal mol−1.) In
comparison to this experimental result for BH3 dimerization,
we overpredict Δ‡G° (5.8, versus 2.4 ± 2). This could be due
to an overly low HO-based estimate of S*, causing our TΔ‡S°
(−7.0, versus −4.6 ± 2) to be too large a drop; anharmonic
effects should bring this value into better agreement with
experiment. (A more elaborate prediction of Δ‡G°, for the
2CH3 → C2H6 reaction, gave Δ‡G° = 3 kcal mol−1,46 matching
this value for 2BH3 from experiment, but this procedure may
not be possible for our largest molecule.)
The poor agreement in the gas phase led us to discard

Table 9 results and instead add solvation corrections to the
experimental gas-phase values of {+2.4, −2.2, −4.6} kcal mol−1
for {Δ‡G°, Δ‡H°, TΔ‡S°} for barrierless associations. For
solvation corrections (terms I−IX in Table 1), we assumed that
term II (polarization) does not appreciably change during the
approach of two molecules to the loose variational transition
state, and focused on damping terms. Damping PV (by −RT on
the transition state and −2RT on the fragments) adds +0.6 to
Δ‡H , whi le damping TS (by 25% of TS g a s for
both the transition state and the fragments, since this
reproduces the computed damping on the fragments) will
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add −0.25 TΔ‡Sgas = +1.2 to TΔ‡S. This resulted in solution-
phase values of {+1.8, −1.6, −3.4} kcal mol−1 for {Δ‡G°, Δ‡H°,
TΔ‡S°} for barrierless associations in THF. Hence, these values
were used as {δFESG, δFESE = δFESH, δFESTS} for SN1 barrierless
dissociations in THF solution.
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reaction method basis set R‡/Åa
Δ‡G(gas)/
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2 9BBN → (9BBN)2 B3LYP 6-31G(d) 3.0 11.0b

2 9BBN → (9BBN)2 MP2 6-31G(d) 4.0 6.6b

2 BH3 → B2H6 MP2 6-31G(d) 3.0 5.8c

BH3 + THF → BH3THF B3LYP aug-cc-pVDZ 3.5 4.6
BH3 + NH3 → BH3NH3 B3LYP aug-cc-pVDZ 4.0 3.8
BH3 + NH3 → BH3NH3 B3LYP 6-31G(d) 4.5 3.7
aR(B−B) for the first 3 rows; R(B−O) for the 4th row; R(B−N) for
the last 2 rows. bRather large estimates for 9BBN dimerization may be
due to increased error in the HO approximation, caused by frequencies
lowered by the large mass of the system. cExperimental result is
2.4 ± 2 kcal mol−1 (see text).

Table 8. Entropy S of Internal Rotation Modes, from MP2/6-31G(d) Optimizations

aReduced moment of inertia for internal rotation.28 bTwo normal modes share internal rotation character; in such a case one might consider
replacing their average contribution with a free-rotor contribution. c“Fine”: The harmonic oscillator prediction would not need replacing according
to E1 theory.23 dB3LYP/6-31G(d) result.
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