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A new theory is presented to explain the conductivity maxima of molten salts (versus temperature
and pressure). In the new theory, conductivity is due to ions hopping from counterion to counterion,
and its temperature dependence can be explained with an ordinary Arrhenius equation in which the
frequency prefactor A (for hopping opportunities) and activation energy Ea (for hopping) are density
dependent. The conductivity maximum is due to competing effects: as density decreases, the fre-
quency of opportunities for hopping increases, but the probability that an opportunity is successfully
hopped decreases due to rising Ea caused by the increased hopping distance. The theory is success-
fully applied to molten bismuth (III) chloride, and supported by density-functional based molecular
dynamics simulations which not only reproduce the conductivity maximum, but disprove the long-
standing conjecture that this liquid features an equilibrium between BiCl3 molecules, and BiCl2+ and
BiCl4− ions that shifts to the left with increasing temperature. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3694830]

I. INTRODUCTION

Modern ionic liquids have potential as non-aqueous
electrolytes,1 but improved understanding of their mecha-
nisms of electrical conductivity is needed. One issue thought
to be understood was the origins of conductivity maxima of
simple molten salts (versus PVT variables), a phenomenon
discovered by Grantham and Yosim in the 1960’s.2–5 Bis-
muth (III) chloride played a special role in the develop-
ment of a theory to explain this phenomenon, because its
conductivity maximum is relatively easy to reach in the
laboratory (425 ◦C),2 and because the conductivity can be
reduced by several orders of magnitude near supercritical
temperatures.5, 6 Grantham and Yosim’s original hypothesis
was that the loss of conductivity at higher temperatures is
due to increased ion association as density falls. This hypoth-
esis was supported by Tödheide, who incorporated a degree
of ionization α into the theory, assumed for BiCl3 an ionic
equilibrium of 2BiCl3 � BiCl2+ + BiCl4−, and used mono-
tonically increasing ion mobilities with temperature to show
that the conductivity maximum can be explained with α val-
ues that steadily decrease as the density falls during ortho-
baric heating.6, 7 Raman and neutron-scattering studies have
been inconclusive on the nature of the ions present.8–11 The
purpose of this paper is to show that Tödheide’s assumptions
appear to be incorrect, and that the conductivity maximum
can be explained with an ordinary Arrhenius equation hav-
ing density-dependent parameters justifiable with a model of
atomic ions.

In the degree-of-ionization theory of Tödheide,7 one
starts with a general formula for the specific conductivity σ

a)Present address: Department of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada.

b)Author to whom correspondence should be addressed: allan.east@
uregina.ca.

due to mobile ions

σ =
∑

i

ρi |zie|μi, (1)

where ρ i, zie, and μi are the number density, charge, and con-
ventional mobility (units C s kg−1) of ion type i, respectively.
To incorporate a degree of ionization α for partly ionized liq-
uids, Tödheide wrote

ρi = νiαρ0 = νiαNAVO/Vm, (2)

where ρ0 is the number density of the molecules when the
salt is completely unionized, ν i is a stoichiometric coefficient,
NAVO is Avogadro’s number, and Vm is the molar volume. This
leads to

σ = α(NAVO/Vm)
∑

i

νi |zie|μi (3)

in which Tödheide points out that PVT dependence can be in
any of Vm, μi, and α. One also defines a molar conductivity
� ≡ σVm, and hence,

� = αNAVO

∑
i

νi |zie|μi (4)

in which the PVT dependence is only in μi and α.
Equations (3) and (4) appeared to be sufficient to explain

observed phenomena. For fully ionized systems where α = 1,
the PVT dependence of molar conductivity of the fully ion-
ized liquid would lie entirely in the mobilities, and this agrees
with experimental observations for molten alkali halides (ex-
cept lithium halides), for which molar conductivity rises with
T (constant p), and falls with p (constant T). The dependence
on temperature is nicely modelled by the Arrhenius law

� = Ae−Ea/RT (5)

for these molten salts, since plots of ln � vs. 1/T are linear.
Specific conductivity σ also rises with T (constant p) for these
alkali halides.12
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Equations (3) and (4) also nicely explained the conduc-
tivity maximum versus T at mild pressures that had been ob-
served in other metal halide melts such as BiCl3. Bismuth
chloride has a melting point of 232 ◦C,13 a normal boiling
point of 442 ◦C,14 and a critical point of 905 ◦C.15 Yosim and
co-workers studied the dependence of molten BiCl3 conduc-
tivity upon T, but along the more convenient “orthobaric” liq-
uid/vapour coexistence curve rather than at constant p or V.
This procedure allowed them to collect data over a larger liq-
uid range than could be done at atmospheric pressures (ini-
tially 230–630 ◦C,2 and later up to 960 ◦C4). They found a
maximum in σ at 425 ◦C, and a maximum in � at 460 ◦C
(Ref. 2) later corrected to 475 ◦C.15 Since molar volume does
not appear in Eq. (4), these maxima were ascribed to com-
peting effects of μ vs. α: if mobility is increasing in the
400–500 ◦C range, then α must be decreasing, i.e., the de-
gree of ionization must be falling. This Yosim hypothesis
(later formalized by Tödheide) was supported by Johnson and
Cubicciotti,15 who measured orthobaric densities of BiCl3
beyond the normal boiling point and identified their tem-
perature dependence as behaving like those of a molecular
fluid. Also, this decrease in α at high T is a phenomenon
known to cause similar maxima in the conductivity of aque-
ous electrolytes.16, 17

To this day, this hypothesis of a decreasing degree of
ionization of BiCl3 versus T has had no apparent holes. We
hoped to observe this shift in equilibrium by undertaking a
series of ab initio molecular dynamics (AIMD) simulations
of molten BiCl3 at a variety of temperatures and densities.
The results here reproduce the conductivity maximum under
orthobaric conditions, but in these simulations Cl ions have
coordination numbers of 2, not 1, and thus the Tödheide
equilibrium now appears to be incorrect. In this report, we
provide evidence that the degree of ionization approach of
Tödheide is not satisfactory for BiCl3, and instead assign
the conductivity maximum to a maximum in relative ion
mobility, best understood as a product of two competing
mobility effects that vary with liquid density. This is a
fundamental change to the theory of conductivity in molten
BiCl3 and may find broader application.

II. THEORETICAL METHODS

Simulations were performed using the Vienna
ab initio simulation package (VASP) software,18, 19 us-
ing its potpawGGA plane-wave basis sets,20, 21 standard
precision (PREC = NORMAL), ENMAX = 400 eV, a Nosé
thermostat for canonical-ensemble (NVT) conditions22 with
40 fs thermal oscillations (SMASS = 0), and a Verlet velocity
algorithm23 with time step τ = 4 fs. The cubic simulation
cell consisted of Bi16Cl48 and was replicated using periodic
boundary conditions to mimic the bulk liquid. Simulations
typically went for 1000 steps (4 ps) for equilibration, and
then 54 000 steps (216 ps) for sampling.

For forces the PW91 level of density functional theory24

was used, but with an added, Grimme-style,25 semiempiri-
cal van der Waals (vdW) attractive potential, because our ini-
tial simulations in 2008 and 2010 without this vdW potential
seemed more solid-like than liquid-like at 240 ◦C and 330 ◦C,

temperatures past the true melting point. Grimme parame-
ters for bismuth were taken to be C6 = 63.55 J nm6 mol−1

and R0 = 1.9 Å; the former was calculated using the same
UPBE0/QZVP recipe Grimme used (we practiced this by re-
producing Grimme’s value for P atom), and the latter was
taken to be the same as Grimme used for Sb, the element
above it in the periodic table, due to the lanthanide contraction
rule.

Equilibration testing was performed using high-
temperature simulations (T = 580 ◦C, cell width 13.91 Å,
time 16 ps) with different starting atomic arrangements. The
“ionic” set began with a random array of eight BiCl2+ and
eight BiCl4− ions, while the “molecular” set began with
16 pyramidal BiCl3 molecules in a regular array. A third
“random” set began from an already equilibrated geometry
from an old set of data from 2010 whose simulation did
not employ the added Grimme’s potential. Each simulation
equilibrated at around 4 ps of simulation time, converging
both structurally and energetically to a common structure of
atomic ions. Hence we were free to start with any of these
equilibrated samples. The relative cell positions (“direct” co-
ordinates) of the atoms at the final time step of the molecular
array run were used as the starting positions for all ensuing
runs. The energies of the orthobaric production runs were
also monitored and found to be equilibrated throughout the
sample time (Fig. 1).

Two sets of production runs were performed. The main
set was performed at six (ρ,T) points mimicking Yosim’s orig-
inal orthobaric experimental conditions:2 six temperatures
were chosen from 260 to 660 ◦C in 80◦ intervals, and the den-
sities were taken according to the density function

ρ(g mL−1) = 5.073 − 0.0023 T (K), (6)

which was summarized by Janz26 from fits of experimental
data for the temperature range of 250–350 ◦C. The function
also fits well (within 3%) the orthobaric ρ data determined
in the 500–700 ◦C range by Johnson and Cubicciotti,15 and
hence is appropriate throughout the temperature range of in-
terest. The simulations beyond the normal boiling point cor-
respond to raised-pressure, sub-critical liquids. The second
set of production runs were designed to apportion changes
in conductivity to either changes in density or in temperature,

FIG. 1. Energy stability monitoring plots from AIMD simulations. Each
point is an average of the energies of 2000 consecutive steps.
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via simulations that held either the density or the temperature
constant.

Diffusion coefficients DBi and DCl and specific conduc-
tivity σ were computed via both Einstein and Green-Kubo
formulae. The Green-Kubo formulae employed were

DGK
X = 1

3

〈〈�v2
X,i(t0)

〉〉 ∫ ∞

t=0
C̃X,i(t ; t0)dt, (7)

where

C̃X,i(t ; t0) = 〈〈�vX,i(t) · �vX,i(t0)〉〉
〈〈�v2

X,i(t0)〉〉 , (8)

σGK = ρn�

∫ ∞

t=0
C̃J (t ; t0)dt, (9)

where

C̃J (t ; t0) = 〈�j (t) · �j (t0)〉
〈 �j 2(t0)〉 , (10)

�j (t) =
Nions∑

i

zie�vi(t), (11)

� = zAzBe2

(
zB

mB

− zA

mA

)
. (12)

In Eqs. (7) and (8), CX,i(t;t0) is the normalized velocity
autocorrelation function for ion i of type X, �vX,i(t) is the in-
stantaneous velocity of ion i of type X at time t, and the brack-
ets denote averaging over all ions i of type X, and over all
choices of time zero t0.23 In Eqs. (9)–(12), ρn is the number
density (m−3) of AxBy (here BiCl3) formula units in the sim-
ulation cell, � is a charge/mass factor (for BiCl3 zA = +3, zB

= −1, and � = 1.974 × 10−12 C2/kg), �j (t) is the instanta-
neous current in the simulation cell at time t, e is the pro-
ton charge (1.60218 × 10−19C), and C̃J (t ; t0) is the normal-
ized current autocorrelation function, averaged only over the
choices of time zero t0 since current is a collective property.
Equation (9) is derived in the Appendix. The Einstein formu-
lae used were

DEin
X = lim

t→∞
〈〈|�rX,i(t) − �rX,i(t0)|2〉〉

6t
, (13)

σEin = 3ρn�

〈 �j 2(t0)〉 lim
t→∞

〈| �M(t) − �M(t0)|2〉
6t

, (14)

Here �rX,i(t) is the Cartesian position of the ith atom of type X
at time t, and �M(t) is the total electric dipole of the simulation
cell at time t. The brackets indicate averaging as before, and
Eq. (14) is derived in the Appendix.

We also tested the Nernst-Einstein approximation27

σNE ≈ (NAVOe)2

VmRT

(
z2
AνADA + z2

BνBDB

)
(15)

to demonstrate its complete breakdown at high temperatures;
in this equation νA and νB are the stoichiometric coefficients
of the ions (1 and 3 for Bi and Cl, respectively). A ref-
eree suggested that we also list computed Haven ratios (H
= σ NE/σ true),28 which, like Watanabe’s29, 30 �true/�NMR

(which is essentially 1/H (Ref. 31) for liquids) and Hansen
and McDonald’s 	,32 are a measure of the error of this ap-

proximation. The Nernst-Einstein approximation assumes ion
motions are uncorrelated, and if true H = 1. However, Haven
ratios are less than one for ionic solids, due to common-
ion correlation,28 and greater than one for ionic liquids, due
to opposing-ion correlation.31, 33 Some, e.g., Watanabe, have
used these deviations from Nernst-Einstein “ideality” to de-
fine an effective “ionicity” of a liquid for the purposes of elec-
trolyte assessment.30, 34

For Green-Kubo calculations, the numerical integration
from 0 to “infinity” was performed by recording running in-
tegral values via Simpson’s rule every 50 timesteps (tf = 50
τ , 100 τ , . . . ,), and averaging all such values starting from tf
= 1000 τ (4 ps). This averaging was done to improve pre-
cision, as the autocorrelation functions (particularly C̃J (t))
were somewhat noisy due to the limited sampling possible
with the AIMD technique (Fig. 2). Due to the need to also
average over a number of choices of t0 (say, nzero) to improve
the quality of the correlation functions before integration, the
integration range (ninf) could not be the full 54 000 timesteps:
the choices of (nzero, ninf) we tried were (8k, 46k), (18k, 36k),
(28k, 26k), (38k, 16k). Note τ = 4 fs, and hence integrals out
to 46 × 4 = 184 ps were done on low-quality functions and
out to 16 × 4 = 64 ps on our highest-quality functions.

For Einstein calculations, the extrapolation to infinity of
the relevant function in Eqs. (13) or (14) was performed by
recording values of the function every 25 timesteps, and av-
eraging all such values starting from tf = 1000 τ (4 ps). This
averaging was done because the function values appear to os-
cillate aperiodically about an asymptote. We used the same
choices of (nzero, ninf) here as for the Green-Kubo calculations.

Radial distribution (pair correlation) functions gBiCl(r)
were computed in 0.1 Å bins using visual molecular dynamics
software35 and 54 000 timesteps of data. Coordination num-
bers of Bi (average number of Cl atoms near Bi) were calcu-
lated from the gBiCl(r) using Eq. (16):

NBi =
∫ rshell

0
gBiCl(r) · ρCl · 4πr2 · dr, (16)

where ρCl = number density (Å−3) of Cl atoms in the cell.
The integration limit rshell was taken to be 4.0 Å (the loca-
tion of the first minimum of the integrand). We also defined a
“tight coordination number” (TNBi), using the same equation
but choosing rshell = 2.7 Å, as a crude metric for the number
of Cl atoms that were bound to only one Bi atom. By stoi-
chiometry, the coordination numbers of Cl atoms (NCl, TNCl)
are simply 1/3 of the Bi values (NBi, TNBi).

III. RESULTS

A. Specific conductivity σ

Figure 3 plots running-integral results for the Green-
Kubo computations of DCl, DBi, and σ . The short-range nu-
merical noise (best seen in the left-side plots which have more
points) increases from DCl → DBi → σ because the amount of
data per time step decreases: 48 → 16 → 1. Theoretically the
curves in these six plots should have horizontal asymptotes,
although this is only clear in the chlorine diffusion integrals
(top row of plots); these curves must be prone to slow and
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FIG. 2. Normalized autocorrelation functions for BiCl3. Left set: At 580 ◦C, showing effects of function averaging over choices of time zero (from light to
dark: 8000, 18 000, 28 000, 38 000 choices). Right set: Using only the most accurate 38 000-t0-averaged functions, showing effects of temperature (from light
to dark: 660, 580, 500, 420, 340, 260 ◦C). Note the persistent oscillations (∼10 per ps) due to Cl vibrations (∼300 cm−1) in all plots.

random oscillations (“wandering”) about asymptotic values.
The left-side plots show a bit less of this random long-range
oscillation when more accurate functions (from increased
function averaging, darker curves) are used. Gratifyingly, de-
spite the uncertainties in asymptote derivation, the conductiv-
ity integrals (bottom right plot) do appear to give the largest
values for intermediate temperatures, in agreement with
the experimentally observed conductivity maximum versus
temperature.

Figure 4 plots running-limit results for the Einstein com-
putations of the same properties. The left-side plots show
much less short-range noise than in the Green-Kubo computa-
tions of Fig. 3, and although there are long-range oscillations,
they are in Fig. 4 somewhat improved from their Fig. 3 coun-
terparts. A nice barometer of the precision of results was the
smoothness of the resulting DBi values (Table I): fits of our re-
sults to a simple 2nd order polynomial in T revealed that DEin

outperformed DGK for all choices of (nzero, ninf), and that the
use of (nzero, ninf) = (38k, 16k) gave near-perfect fits with ei-

ther DEin or DGK. Only results from using (nzero, ninf) = (38k,
16k) will be presented below.

Table II presents results from the most efficient use of
our data. The most important result here is that the con-
ductivity estimates σ GK and σ Ein qualitatively reproduce the
experimental phenomenon of a maximum versus tempera-
ture. As expected from observations above, the σ Ein values
appear to be somewhat more precise than σ GK values, re-
sulting in a smoother dependence upon T. The values are
2 to 4 times larger than σ expt, which we suspect is due to
Bi-Cl attractive forces being slightly underpredicted by the
non-relativistic Born-Oppenheimer density functional theory
approximation used in the simulation. Considering that the
∼10−6 �−1 cm−1conductivity of molten SbCl3 36 is 500 000
times smaller than that of BiCl3, the level of agreement with
experiment here seems quite satisfactory. Since the AIMD
simulations have proved to be successful in qualitatively re-
producing the maximum, they can be further analyzed to find
reasons for this maximum.
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124504-5 Clay et al. J. Chem. Phys. 136, 124504 (2012)

FIG. 3. Running integrals of normalized autocorrelation functions for BiCl3. Left set: at 500 ◦C, showing effects of function averaging over choices of time
zero (from light to dark: 8000, 18 000, 28 000, 38 000 choices). Right set: data from 18 000-t0-averaged functions, showing effects of temperature. The values
are seen to wander about their theoretical asymptotes. Despite the uncertainty in determining asymptotic values, conductivities (bottom right plot) are noticeably
largest for the midrange temperatures (420 and 500 oC), as observed experimentally.

Also in Table II, the computed diffusion coefficients DBi

and DCl are seen to rise continuously with temperature, which
forces the Nernst-Einstein values for specific conductivity
(σ NE) to also rise continuously with temperature, leading to
increasingly poorer Haven ratios. Clearly, correlation of mo-
tion of ions of opposing charge is occurring and increasing
with T. Nernst-Einstein errors of ∼20% were seen for alkali
halides long ago,29 but here the problems with this approxi-
mation are significantly worse.

It had been believed that the conductivity maximum un-
der orthobaric conditions was due primarily to changes in
density rather than temperature, since the maximum goes
away at high pressures which minimize density changes.5, 7, 37

Density effects are more complex than had been thought. In
our second set of runs, a 260 ◦C simulation was run at the den-
sity of the 580 ◦C run, and vice versa (Table III). The diffu-

sion constants show a dependence on both T and ρ: diffusion
is enhanced by warmer temperatures and reduced densities.
The conductivity trends are more interesting: as the density
was jumped from 3.11 to 3.85 g ml−1, conductivity rose at
cold T but fell at high T. This complex behaviour was an im-
portant clue for deciphering the underlying Arrhenius relation
for BiCl3 conductivity (see Sec. III C).

B. Coordination numbers

The observed coordination numbers of bismuth atoms
(NBi) in the simulated melt were not the expected 2 to 4
from Tödheide’s hypothetical equilibrium, but 5.7 to 6.8
(Table IV). The number is 3 in the gas38 and a “frustrated”
8 in the crystal39 (three Cl atoms at 2.5 Å, the next five at
3.2–3.4 Å). The radial distribution functions (Fig. 5) show,
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FIG. 4. Einstein-style functions for BiCl3 (see Eq. (13) and (14)). Left set: at 340 ◦C, showing effects of function averaging over choices of time zero (from
light to dark: 8000, 18 000, 28 000, 38 000 choices). Right set: data from 18 000-t0-averaged functions, showing effects of temperature. Both the long-range
wandering about their theoretical asymptotes and the short-range noise is reduced here compared to Green-Kubo computations (Fig. 3). Conductivities here
(bottom right plot) again show largest values for midrange temperatures (500 and 580 ◦C).

as temperature increases, a distribution of nearest Cl atoms
that becomes increasingly L-shaped, with more Cl atoms at a
2.6 Å covalent position. The simulation movies revealed all
Cl atoms spending substantial times bridging two Bi atoms,
but also frequently migrating to new interbismuth areas via
brief periods of single-Bi coordination, on a picosecond
timescale. At the hotter temperatures, there were clearer in-

TABLE I. R2 values from parabolic fits of DBi (from AIMD simulations)
versus temperature.

(nzero,ninf) R2 (DBi
Ein) R2 (DBi

GK)

(38, 16) 1.000 0.999
(28, 26) 0.997 0.968
(18, 36) 0.983 0.919
(8, 46) 0.982 0.901

stances of Cl atoms periodically behaving as non-bridging,
covalently bound Cl atoms (1-coordinate Cl atoms), vibrating
between 2.4 and 2.6 Å.

With the absence of identifiable molecular ions, what,
then, are the conducting ions in this liquid? Is there still an
identifiable ion-association equilibrium for which a degree-
of-ionization theory may still be applied? We tested the most
logical idea left to us by the simulations: that the conductiv-
ity is due to mobile Cl− ions moving against (and exchang-
ing with) large networks of BixClyz+ clusters. We considered
an equilibrium between mobile (“ionic”) and locked (“cova-
lent”) chloride ions, and as a distinguishing criterion we con-
sidered immobile chlorides be those within 2.7 Å of a Bi
atom, since in almost all of these instances (except perhaps
at the coldest temperatures) these Cl atoms are essentially
“locked” onto and vibrating against one Bi atom. Table IV
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TABLE II. Diffusion coefficients D and specific conductivity σ from AIMD simulations.

DBi
Ein/10−10 DCl

Ein/10−10

T (◦C) ρa (g cm−3) (m2 s−1) (m2 s−1) σ expt b (�−1 cm−1) σEin (�−1 cm−1) σGK (�−1 cm−1) σNE (�−1 cm−1) Haven ratioc

260 3.8468 4.9 8.5 0.433 0.9 1.0 1.8 2.1
340 3.6628 8.2 15.0 0.551 1.2 0.3 2.5 2.1
420 3.4788 15.0 25.9 0.585 1.5 2.1 3.8 2.6
500 3.2948 24.7 44.2 0.556 2.0 2.2 5.4 2.7
580 3.1108 37.9 61.2 0.489 1.8 1.5 6.8 3.8
660 2.9268 53.7 81.6 0.404 0.8 0.5 8.1 9.7

aDensity employed in the simulations, from Eq. (6).
bInterpolated from data of Grantham and Yosim Ref. 2.
cComputed as σ NE/σ Ein.

reveals that these tight coordination numbers TNi generally
increase with temperature, in opposition to the regular Ni val-
ues, and in agreement with the Yosim hypothesis that there
is increasing ion association as T increases. However, assum-
ing TNCl to be a weighted average of 0 (mobile Cl) and 1
(locked Cl)

T NCl = (α)0 + (1 − α)1 (17)

the degree of ionization α takes on rather small values of
0.15–0.22, much lower than the values Tödheide derived from
the erroneous assumptions of heavier BiClx ions and mono-
tonically rising ion mobilities. When the experimentally mea-
sured conductivities are back-corrected for this mild effect of
degree of ionization via Eq. (4), the resulting mobilities of
mobile chloride (Table IV) do not monotonically rise with
temperature, but exhibit a maximum.

How can ion mobilities go through a maximum if their
diffusion coefficients do not? The answer is that the abso-
lute diffusion constants are related to absolute mobility, but
Eqs. (1)–(4) require relative mobility of cations against an-
ions. Equation (1) fails for molten salts for the same reason
that the Nernst-Einstein approximation does: cation and an-
ion motions are not sufficiently independent, and hence rel-
ative and absolute mobilities cannot be equated. Given the
difficulty in expressing a relative mobility, the difficulty in
attempting to define a degree of ionization in this liquid, and
considering that Tödheide himself admitted an ambiguity in
separating α from μi in the case of molten lithium halides,7

we feel that the degree-of-ionization theory is inappropriate.
A new theory is needed.

C. New theory, and least-squares fits

Molten BiCl3 is composed of atomic ions. The temper-
ature dependence of its conductivity can be expressed as an

TABLE III. Temperature and density effects on DBi, DCl, and σ from
AIMD simulations.

DBi
Ein/ DCl

Ein/
T (◦C) ρ (g cm−3) 10−10 m2 s−1 10−10 m2 s−1 σEin (�−1 cm−1)

260 3.8468 4.9 8.5 0.9
260 3.1108 10.5 16.7 0.6
580 3.8468 18.2 32.3 1.3
580 3.1108 37.9 61.2 1.8

ordinary Arrhenius relation if both the frequency factor A
and the activation energy Ea are expressed as functions of
density

σ (T , ρ) = A(ρ)e−Ea (ρ)/kT . (18)

Unlike hole theory, in which activation energies re-
late to formation of suitably sized holes40 and has been
criticized,7, 37, 40 we consider the activation energy to be the
energy needed for an ion to hop from counter-ion to counter-
ion, e.g., Cl− to hop from one Bi3+ to another, or Bi3+

to hop from one Cl− to another (Fig. 6). Hence, the expo-
nential term corresponds to the probability that a hop will
be successful, and rises with rising density because of the
reduced hopping distances which lower Ea. The frequency
factor A corresponds to the total number of potential hops
available to the set of ions at a given time, but this falls
with rising liquid density because of increased crowding
which restricts hopping opportunities. These competing ef-
fects result in a conductivity maximum versus density at con-
stant temperature; in BiCl3 the optimal density is near ρ

= 3.5 g ml−1. In the orthobaric experiments of Grantham
and Yosim,2–5 density and temperature are linearly correlated,
and the maximum versus temperature observed in their work
is simply the maximum versus density but plotted against
the experimentally controllable parameter, as we demonstrate
below.

The dependence of Ea upon ρ is derived as follows. Sup-
pose an anion (charge q2) is hopping between two cations
(charge q1) located at x = x1 and x = x2, with x2-x1 = R. The
sum of the two attractive interactions is E(x) = q1q2/4πε0(x-
x1) + q1q2/4πε0(x2-x). Then Ea = Emax – Emin = E(x1

+ R/2) – E(x1 + r0), where r0 is the preferred anion-cation
bond length. The result is

Ea (ρ) = |q1q2|
4πε0

(
R

r0(R − r0)
− 4

R

)
, R ≥ 2r0, (19)

which is dependent upon density because R = Pρ−1/3 for
some proportionality constant P. Ea is zero when the anion
is in contact with both cations (R = 2r0), and Ea approaches
its asymptotic maximum Ea,max = |q1q2|/4πε0r0 as R→∞,
i.e., as ρ→0. For BiCl3, q1 = 3e, q2 = -e, r0 = 2.6 Å (Fig. 5),
and Ea,max = 1603 kJ mol−1.
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TABLE IV. Coordination numbers (and derived quantities) from AIMD simulations.

T (◦C) ρ (g cm−3) NBi NCl TNBi TNCl α σ expt a (�−1 cm−1) �expt b (�−1 cm2 mol−1) Ion mobilityc/10−4 (C s kg−1)

260 3.8468 6.79 2.26 2.35 0.78 0.22 0.433 35.5 0.56
340 3.6628 6.54 2.18 2.39 0.80 0.20 0.551 47.4 0.81
420 3.4788 6.32 2.11 2.45 0.82 0.18 0.585 53.0 1.01
500 3.2948 6.11 2.04 2.49 0.83 0.17 0.556 53.2 1.09
580 3.1108 5.88 1.96 2.53 0.84 0.16 0.489 49.5 1.09
660 2.9268 5.66 1.89 2.55 0.85 0.15 0.404 43.6 1.00

aInterpolated from data of Grantham and Yosim Ref. 2.
bDerived from σ expt.
cEstimated as �expt /3αeNAVO, Eq. (4).

FIG. 5. Radial distribution functions from AIMD simulations. Squares:
340 ◦C. X’s (including inset): 500 ◦C. Circles: 660 ◦C.

FIG. 6. Effect of density upon Arrhenius parameters for conductivity.

The dependence of A upon ρ is unknown. To minimize
the number of fitting parameters, we used a simple linear
relationship

A(ρ) = A0 − A1ρ (20)

with A0 and A1 used as fitting parameters.
For commonly one-dimensional experiments in which ρ

= f(T) (see Eq. (6) for BiCl3), Eq. (18) can be reduced to
a one-dimensional temperature-dependent expression by sub-
stituting this f(T) for ρ in Eqs. (19) and (20). We used Eq. (6)
for this purpose, to fit Eq. (18) to the 22 points plotted by
Grantham and Yosim,2 varying only the parameters {A0, A1,
P}. The fit was quite good, with an rms error of less than
2% (0.005 �−1 cm−1) from the following parameter values:
A0 = 4.012 �−1 cm−1, A1 = 0.9306 �−1 cm2 g−1, and P
= 8.18 Å g1/3 cm. The resulting functions Ea(ρ) and A(ρ) in
Eqs. (19) and (20) are plotted in Fig. 7. The A values are near 1
�−1 cm−1 and the Ea values are below 8 kJ mol−1, both com-
fortably commensurate with the relatively high conductivity
of this liquid.

Other Arrhenius-like relations have been used by others
for fitting to various transport properties of liquids (y = vis-
cosity η, conductivity σ , etc.). Below are four examples:40–44

yARR = AeB/RT (Arrhenius), (21)

yLIT = AeB/RT 3
(Litovitz), (22)

FIG. 7. Results for Arrhenius parameters A (�−1 cm−1) and Ea (kJ mol−1)
after least-squares fitting of the new conductivity function to experimental
data of Ref. 2. BP is the Boltzmann probability e−Ea/RT using Eq. (6) for the
relevant orthobaric temperatures.
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yV FT = AeB/R(T −T0) (Vogel − Fulcher − Tammann),

(23)

yDOR = A1e
B1/RT + A2e

B2/RT (Doremus). (24)

All A and B constants are assumed independent of den-
sity. The four-parameter function of Doremus is newest and
arose from his observation43 that the Arrhenius plot (ln η

vs. 1/T) for the viscosity of silica over a large temperature
range exhibits two different linear regions with two differ-
ing slopes, connected by a kink in the plot. Such a situ-
ation is not fit as well by Litovitz or VFT equations, and
Doremus went on to fit viscosities of several molten sili-
cates with his new function.45 Both Doremus43, 45 and Ojo-
van and Lee46 took B1 and B2 in ηDOR to be constant ac-
tivation energies; one for creating defects (breaking bonds),
and the other for motion of defects (or fragmented atoms or
groups of atoms from the network). In fact, the orthobaric
viscosities of BiCl3 also exhibit a Doremus-style kinked lin-
ear plot, as Kellner showed over 40 years ago;47 he used
the two slopes to determine activation energies of 4.8 and
3.4 kcal mol−1.

However, specific conductivity and viscosity can have
quite different temperature dependence, and for BiCl3, al-
though η monotonically decreases with T and has a kinked
linear Arrhenius plot, σ shows a maximum with T and has a
curved Arrhenius plot with no linear regions. Kellner made
the relevant comment that viscosity relates more to the mo-
bility of the largest ion, while conductivity relates more
to the mobility of the smallest ion.47 Thus, the Doremus
equation or extensions48 may not be appropriate for molten
salt conductivity. The LIT and VFT equations are currently
popular for fitting conductivities of room-temperature ionic
liquids.42, 49

FIG. 8. Fits to experimental BiCl3 conductivities of Ref. 2, showing superi-
ority of the ArrD function over others.

We applied these four Eqs. (21)–(24) to σ of BiCl3
(Fig. 8). The ARR, LIT, and VFT functions are incapable
of producing a maximum. The DOR function can produce a
maximum but the fit is visibly poorer than that of the density-
dependent Arrhenius function (“ArrD,” Eq. (18)), despite hav-
ing an extra fitting parameter (4 vs. 3).

Further support for the ArrD function comes from testing
its predictions for other combinations of T and ρ. For (T, ρ)
= (260 ◦C, 3.11 g ml−1) and (580 ◦C, 3.85 g ml−1) the func-
tion predicts 0.29 and 0.43 �−1 cm−1. The AIMD results σ Ein

(Table III) are again 2 to 4 times higher, as expected from the
Table I comparison of σ Ein with σ expt. Most importantly, the
ArrD function correctly predicts the qualitative observation
made from this simulation data: as ρ is jumped from 3.11 to
3.85 g ml−1, σ rises at 260 ◦C but falls at 580 ◦C. If ρ were
varied continuously, a maximum would be observed at both
temperatures: (ρ, σ ) = (3.55, 0.546) at 260 ◦C, and (3.45,
0.617) at 580 ◦C.

IV. CONCLUSIONS

Molten bismuth chloride is composed of atomic ions,
rather than a molecular liquid containing BiCl2+ and BiCl4−

ions as previously assumed by Tödheide.6, 7 A new attempt
to apply degree-of-ionization theory to discrete categoriza-
tions of mobile versus immobile chloride ions did not work.
Instead, the conductivity maximum is concluded to be due
to a maximum in relative ion mobility in the melt, rather
than a balance between rising mobility and decreasing ion-
ization. Diffusion coefficients for Bi and Cl relate to abso-
lute (not relative) ion mobility, mask the strong correlations
of cation/anion motion, and lead to disastrous Nernst-Einstein
predictions for conductivity.

A new theory is presented. It is suggested that Cl and Bi
ions conduct electricity by hopping from counterion to coun-
terion, with frequency factors A and activation energies Ea that
both fall with increasing liquid density. These competing ef-
fects give rise to the conductivity maximum. Least-squares
fitting showed that the ordinary Arrhenius equation, with ρ-
dependent A and Ea, fits experimental results to within 2%,
better than modified Arrhenius relations traditionally used.
The new theory is expected to apply to other molten salts as
well.
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APPENDIX: DERIVATIONS OF EQS. (9) AND (14)

For estimation of specific conductivity, the more common
forms of the Green-Kubo37 and Einstein50 formulae are

σGK = (3V kT )−1
∫ ∞

t=0
〈CJ (t ; t0)〉dt,

CJ (t ; t0) = �j (t) • �j (t0), (A1)

σEin = 1

V kT
lim
t→∞

〈| �M(t) − �M(t0)|2〉
6t

, (A2)

where the brackets indicate averaging over time variable t0.
Normalizing CJ(t; t0),

σGK = 〈�j 2(t0)〉
3V kT

∫ ∞

t=0

〈CJ (t ; t0)〉
〈 �j 2(t0)〉 dt

(A3)

σGK = 〈�j 2〉
3V kT

∫ ∞

t=0
C̃J (t ; t0)dt.

Now, Eq. (A2) → (14) and Eq. (A3) → (9) because

〈 �j 2〉 = 3nkT �, (A4)

which is shown below.

〈 �j 2〉 =
〈(

Nions∑
i

zie�vi(t0)

)
•

(
Nions∑

i

zie�vi(t0)

)〉

(A5)

〈 �j 2〉 = e2
Nions∑

i

z2
i

〈�v2
i

〉 + 2e2
Nions∑

i

Nions∑
j>i

zizj 〈�vi • �vj 〉.

Assuming the double sum of cross terms to be negligi-
ble, we focus on the sum of diagonal terms and separate it by
species

〈 �j 2〉 = e2

(
nA∑
i

z2
A

〈�v2
A,i

〉 + nB∑
i

z2
B

〈�v2
B,i

〉)

〈 �j 2〉 = e2

(
nAz2

A

3kT

mA

+ nBz2
B

3kT

mB

)
,

since 1
2m〈v2〉 = 3

2kT . If n is the number of formula units
AxBy in the sample cell, then nA = −zBn, nB = zAn, and

〈 �j 2〉 = 3nkT e2

(−z2
AzB

mA

+ zAz2
B

mB

)
,

which matches Eq. (A4). Values of 〈 �j 2〉 explicitly computed
from simulations via Eq. (A5) matched the Eq. (A4) predic-
tions within 2.1% (Table V).

TABLE V. Values of 〈j2〉 from AIMD simulations (Eq. (A5)) and predicted
(Eq. (A4)).

T (◦C) 〈j2〉Eq.(A5)/10−31 (C2 m2 s−2) 〈j2〉Eq.(A4)/10−31 (C2 m2 s−2)

260 6.99 6.97
340 7.92 8.02
420 8.98 9.07
500 9.93 10.11
580 11.32 11.16
660 11.95 12.21
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