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Abstract. We consider the nonsymmetric algebraic Riccati equation for which the four coef-
ficient matrices form an M -matrix. Nonsymmetric algebraic Riccati equations of this type appear
in applied probability and transport theory. The minimal nonnegative solution of these equations
can be found by Newton’s method and basic fixed-point iterations. The study of these equations is
also closely related to the so-called Wiener-Hopf factorization for M -matrices. We explain how the
minimal nonnegative solution can be found by the Schur method and compare the Schur method
with Newton’s method and some basic fixed-point iterations. The development in this paper parallels
that for symmetric algebraic Riccati equations arising in linear quadratic control.
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1. Introduction. Symmetric algebraic Riccati equations have been the topic of
extensive research. The theory, applications, and numerical solution of these equations
are the subject of the monographs [20] and [24]. The algebraic Riccati equation that
has received most attention comes from linear quadratic control. It has the form

XDX −XA−ATX − C = 0,(1.1)

where A,C,D ∈ Rn×n; C,D are symmetric positive semidefinite; the pair (A,D)
is stabilizable, i.e., there is a K ∈ Rn×n such that A − BK is stable (a square
matrix is stable if all its eigenvalues are in the open left half-plane); and the pair
(C,A) is detectable, i.e., (AT , CT ) is stabilizable. It is well known that (1.1) has a
unique symmetric positive semidefinite solution X and the matrix A−DX is stable
(see [20], for example). This solution is the one required in applications and can be
found numerically by iterative methods [3, 7, 10, 12, 13, 19] and subspace methods
[4, 6, 22, 27, 32, 33].

In this paper, we consider the nonsymmetric algebraic Riccati equation

R(X) = XCX −XD −AX +B = 0,(1.2)

where A,B,C,D are real matrices of sizes m ×m,m × n, n ×m,n × n, respectively.
Equation (1.2) in its general form has been studied in [8, 26, 30], for example. All
the solutions of (1.2) can be found, in theory, by finding all the Jordan chains of the
matrix

H =
(
D −C
B −A

)
(1.3)

(see Theorem 7.1.2 of [20]). However, as pointed out in [22], it would be more appro-
priate to use Schur vectors instead of Jordan vectors.
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To get a nice theory for the equation (1.2), we need to add some conditions on the
matrices A,B,C, and D, much the same as done for the symmetric equation (1.1).

For any matrices A,B ∈ Rm×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)
for all i, j. We can then define positive matrices, nonnegative matrices, etc. A real
square matrix A is called a Z-matrix if all its off-diagonal elements are nonpositive.
It is clear that any Z-matrix A can be written as sI − B with B ≥ 0. A Z-matrix
A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the spectral radius. It is called a
singular M -matrix if s = ρ(B); it is called a nonsingular M -matrix if s > ρ(B). Note
that only nonsingular M -matrices defined here are called M -matrices in [14]. The
slight change of definitions is made here for future convenience. The spectrum of a
square matrix A will be denoted by σ(A). The open left half-plane, the open right
half-plane, the closed left half-plane and the closed right half-plane will be denoted
by C<, C>, C≤ and C≥, respectively.

In [14], iterative methods are studied for the numerical solution of (1.2) with the
condition

B > 0, C > 0, I ⊗A+DT ⊗ I is a nonsingular M -matrix,(1.4)

where ⊗ is the Kronecker product (for basic properties of the Kronecker product,
see [21], for example). It is shown there that Newton’s method and a class of basic
fixed-point iterations can be used to find its minimal positive solution whenever it has
a positive solution.

The condition (1.4) is motivated by a nonsymmetric algebraic Riccati equation
arising in transport theory. That equation has the form (1.2) with m = n and the
matrices A,B,C,D ∈ Rn×n have the following structures:

A =
1

β(1 + α)
W−1 − eqT , B = eeT , C = qqT , D =

1
β(1− α)

W−1 − qeT .(1.5)

In the above, 0 ≤ α < 1, 0 < β ≤ 1, and

e = (1, 1, . . . , 1)T , q =
1
2
W−1c,

where W = diag(w1, w2, . . . , wn), c = (c1, c2, . . . , cn)T > 0 with

0 < wn < · · · < w2 < w1 < 1, cT e = 1.

It is shown in [14] that I ⊗A+DT ⊗ I is a nonsingular M -matrix for this equation.
For descriptions on how the equation arises in transport theory, see [17] and references
cited therein. The existence of positive solutions of this equation has been shown in
[16] and [17]. However, only the minimal positive solution is physically meaningful.
Numerical methods for finding the minimal solution have also been discussed in [16]
and [17].

A more interesting equation of the form (1.2) has recently come to our atten-
tion. The equation arises from the Wiener-Hopf factorization of Markov chains
[1, 23, 28, 29, 35]. Let Q be the Q-matrix associated with an irreducible continuous-
time finite Markov chain (Xt)t≥0 (a Q-matrix has nonnegative off-diagonal elements
and nonpositive row sums; exp(tQ) is the transition matrix function of the Markov
chain). We need to find a quadruple (Π1, Q1,Π2, Q2) such that(

A B
−C −D

)(
I Π2

Π1 I

)
=
(

I Π2

Π1 I

)(
Q1 0
0 −Q2

)
,(1.6)
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where

Q =
(
A B
C D

)
is a partitioning of Q with A,D being square matrices, and Q1, Q2 are Q-matrices. It
turns out that the matrices Π1 and Π2 of practical interest are the minimal nonnega-
tive solutions of the nonsymmetric algebraic Riccati equations ZBZ+ZA+DZ+C =
0 and ZCZ+ZD+AZ+B = 0, respectively (see [35]). The relation in (1.6) has been
called a Wiener-Hopf factorization of the leftmost matrix in (1.6). The factorization
(1.6) makes perfect sense for any Q-matrix, with or without probabilistic significance.
Barlow, Rogers, and Williams [1] noted that they did not know how to establish the
factorization without appealing to probability theory (and ultimately to martingale
theory). Rogers [28] studied the factorization in more detail, using again probabilistic
results and interpretations.

Note that −Q is an M -matrix for any Q-matrix Q. Thus, the Riccati equations
arising from the study of Markov chains are essentially special cases of the Riccati
equation (1.2) with condition (1.4). However, the strict positiveness of B and C could
be restrictive. We will thus relax the condition (1.4) to conditions

B,C ≥ 0, I ⊗A+DT ⊗ I is a nonsingular M -matrix,(1.7)

and

B,C 6= 0, (I ⊗A+DT ⊗ I)−1vecB > 0,(1.8)

where the vec operator stacks the columns of a matrix into one long vector. For some
of our discussions, condition (1.7) alone will be sufficient.

The theory of M -matrices will play an important role in our discussions. The
following result is well known (see [5] and [9], for example).

Theorem 1.1. For a Z-matrix A, the following are equivalent:
(1) A is a nonsingular M -matrix.
(2) A−1 ≥ 0.
(3) Av > 0 for some vector v > 0.
(4) σ(A) ⊂ C>.
The next result follows from the equivalence of (1) and (3) in Theorem 1.1 and

can be found in [25], for example.
Theorem 1.2. Let A ∈ Rn×n be a nonsingular M -matrix. If the elements of

B ∈ Rn×n satisfy the relations

bii ≥ aii, aij ≤ bij ≤ 0, i 6= j, 1 ≤ i, j ≤ n,

then B is also a nonsingular M -matrix.
It is clear that I ⊗ A + DT ⊗ I is a Z-matrix if and only if both A and D are

Z-matrices. Since any eigenvalue of I ⊗A+DT ⊗ I is the sum of an eigenvalue of A
and an eigenvalue of D (see [21], for example), it follows from the equivalence of (1)
and (4) in Theorem 1.1 that I ⊗ A + DT ⊗ I is a nonsingular M -matrix when A,D
are both nonsingular M -matrices.

2. Iterative methods. Newton’s method and a class of basic fixed-point iter-
ations are studied in [14] for the numerical solution of (1.2) under condition (1.4).
In this section, we represent the main results in [14] under weaker conditions. These
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results will be needed in later discussions. For Newton’s method, we need (1.7) and
(1.8). For basic fixed-point iterations, condition (1.8) is not necessary.

We first consider the application of Newton’s method to (1.2). For any matrix
norm R

m×n is a Banach space, and the Riccati function R is a mapping from R
m×n

into itself. The first Fréchet derivative of R at a matrix X is a linear map R′X :
R
m×n → R

m×n given by

R′X(Z) = −
(
(A−XC)Z + Z(D − CX)

)
.(2.1)

The Newton method for the solution of (1.2) is

Xi+1 = Xi − (R′Xi)
−1R(Xi), i = 0, 1, . . . ,(2.2)

given that the maps R′Xi are all invertible. In view of (2.1), the iteration (2.2) is
equivalent to

(A−XiC)Xi+1 +Xi+1(D − CXi) = B −XiCXi, i = 0, 1, . . . .(2.3)

Theorem 2.1. Consider the equation (1.2) with conditions (1.7) and (1.8). If
there is a positive matrix X such that R(X) ≤ 0, then (1.2) has a positive solution S
such that S ≤ X for every positive matrix X for which R(X) ≤ 0. In particular, S
is the minimal positive solution of (1.2). For the Newton iteration (2.3) with X0 = 0,
the sequence {Xi} is well defined, X0 < X1 < · · ·, and limXi = S. Furthermore, the
matrix S is such that

I ⊗ (A− SC) + (D − CS)T ⊗ I(2.4)

is an M -matrix.
The proof of the above theorem is exactly the same as that of [14, Theorem 2.1].

We do not have an analogous result for nonnegative solutions if the condition (1.8)
is dropped. Note that, under the conditions of Theorem 2.1, any nonnegative matrix
satisfying R(X) ≤ 0 must be positive (see the remark following Theorem 2.3).

Concerning the convergence rate of Newton’s method, we have the following re-
sult. The proof is again the same as in [14].

Theorem 2.2. Let the sequence {Xi} be as in Theorem 2.1. If the matrix
(2.4) is a nonsingular M -matrix, then {Xi} converges to S quadratically. If (2.4) is
an irreducible singular M -matrix, then {Xi} converges to S either quadratically or
linearly with rate 1/2.

We believe that quadratic convergence is impossible in the singular case, but we
have no proof for this.

We now consider a class of fixed-point iterations for (1.2) under condition (1.7)
only. If we write A = A1 −A2, D = D1 −D2, then (1.2) becomes

A1X +XD1 = XCX +XD2 +A2X +B.

We use only those splittings of A and D such that A2, D2 ≥ 0, and A1 and D1 are
Z-matrices. In these situations, the matrix I⊗A1 +DT

1 ⊗I is a nonsingular M -matrix
by Theorem 1.2. We then have a class of fixed-point iterations

Xk+1 = L−1(XkCXk +XkD2 +A2Xk +B),(2.5)

where the linear operator L is given by L(X) = A1X +XD1. Since I ⊗A1 +DT
1 ⊗ I

is a nonsingular M -matrix, the operator L is invertible and L−1(X) ≥ 0 for X ≥ 0.
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Theorem 2.3. Consider the equation (1.2) with condition (1.7). For the fixed-
point iterations (2.5) and X0 = 0, we have Xk ≤ Xk+1 for any k ≥ 0. If R(X) ≤ 0
for some nonnegative matrix X, then we also have Xk ≤ X for any k ≥ 0. Moreover,
{Xk} converges to the minimal nonnegative solution of (1.2).

Proof. It is easy to prove by induction that Xk ≤ Xk+1 for any k ≥ 0. When
R(X) ≤ 0 for some nonnegative matrix X, we can prove by induction that Xk ≤ X
for any k ≥ 0. The limit X∗ of {Xk} is then a solution of R(X) = 0 and must be the
minimal nonnegative solution, since X∗ ≤ X for any nonnegative matrix such that
R(X) ≤ 0.

Remark 2.1. If condition (1.8) is also satisfied, then the matrix X1 produced
by (2.5) with A1 = A and D1 = D is positive. This is because vecX1 = (I ⊗ A +
DT ⊗ I)−1vecB. Thus, for any nonnegative matrix X such that R(X) ≤ 0, we have
X ≥ X1 > 0.

The next comparison result follows easily from Theorem 2.3.
Theorem 2.4. Consider the equation (1.2) with condition (1.7) and let S be

the minimal nonnegative solution of (1.2). If any element of B or C decreases but
remains nonnegative, or if any diagonal element of I ⊗ A + DT ⊗ I increases, or if
any off-diagonal elment of I⊗A+DT ⊗ I increases but remains nonpositive, then the
equation so obtained also has a minimal nonnegative solution S̃. Moreover, S̃ ≤ S.

Proof. Let the new equation be

R̃(X) = XC̃X −XD̃ − ÃX + B̃ = 0.

It is clear that R̃(S) ≤ 0. Since I ⊗ Ã + D̃T ⊗ I is still a nonsingular M -matrix by
Theorem 1.2, the conclusions follow from Theorem 2.3.

The following result is concerned with the convergence rates of the fixed-point
iterations. It is a slight modification of Theorem 3.2 in [14]. The proof given there is
valid without change.

Theorem 2.5. Consider the equation (1.2) with condition (1.7) and let S be
the minimal nonnegative solution of (1.2). For the fixed-point iterations (2.5) with
X0 = 0, we have

lim sup
k→∞

k
√
‖Xk − S‖ ≤ ρ

(
(I ⊗A1 +DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
.

Equality holds if S is positive.
Corollary 2.6. For the equation (1.2) with condition (1.7), if the minimal

nonnegative solution S of (1.2) is positive, then the matrix (2.4) is an M -matrix.
Proof. Let A1 and D1 be the diagonal part of A and D, respectively. By Theorem

2.5, we have ρ
(
(I⊗A1+DT

1 ⊗I)−1(I⊗(A2+SC)+(D2+CS)T⊗I)
)
≤ 1. Therefore, for

any ε > 0, ρ
(
(I⊗(A1+εA1)+(D1+εD1)T⊗I)−1(I⊗(A2+SC)+(D2+CS)T⊗I)

)
< 1.

Thus, ε(I ⊗A1 +DT
1 ⊗ I) + I ⊗ (A−SC) + (D−CS)T ⊗ I is a nonsingular M -matrix

(see [5], for example). It follows that (2.4) is an M -matrix.
As in [14], we have the following result about the spectral radius in Theorem 2.5.
Theorem 2.7. Consider the equation (1.2) with condition (1.7) and let S be the

minimal nonnegative solution of (1.2). If (2.4) is a singular M -matrix, then

ρ
(
(I ⊗A1 +DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)

= 1.

If (2.4) is a nonsingular M -matrix, and A = Ã1 − Ã2, D = D̃1 − D̃2 are such that
0 ≤ Ã2 ≤ A2 and 0 ≤ D̃2 ≤ D2, then

ρ
(
(I ⊗ Ã1 + D̃T

1 ⊗ I)−1(I ⊗ (Ã2 + SC) + (D̃2 + CS)T ⊗ I)
)
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≤ ρ
(
(I ⊗A1 +DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
< 1.

Therefore, the convergence of these iterations is linear if (2.4) is a nonsingular
M -matrix. When (2.4) is a singular M -matrix, the convergence is sublinear. Within
this class of iterative methods, three iterations deserve special attention. The first one
is obtained when we take A1 and D1 to be the diagonal part of A and D, respectively.
This is the simplest iteration in the class and will be called FP1. The second one is
obtained when we take A1 to be the lower triangular part of A and take D1 to be
the upper triangular part of D. This iteration will be called FP2. The last one is
obtained when we take A1 = A and D1 = D. It will be called FP3.

3. A sufficient condition for the existence of nonnegative solutions.
In the last section, the existence of a nonnegative solution of (1.2) is guaranteed
under the assumption that there is a nonnegative matrix X such that R(X) ≤ 0.
The usefulness of this kind of assumption was evident in the ease we had in proving
Theorem 2.4. However, if the equation (1.2) does not have a nonnegative solution, the
search for a nonnegative matrix X such that R(X) ≤ 0 will necessarily be fruitless.
In this section, we will give a sufficient condition of a different kind for the existence
of nonnegative solutions of the equation (1.2). This condition is suggested by the
Wiener-Hopf factorization of Markov chains.

Theorem 3.1. If the matrix

K =
(

D −C
−B A

)
(3.1)

is a nonsingular M -matrix, then the equation (1.2) has a nonnegative solution S such
that D−CS is a nonsingular M -matrix. If (3.1) is an irreducible singular M -matrix,
then (1.2) has a nonnegative solution S such that D − CS is an M -matrix.

Proof. If (3.1) is a nonsingular M -matrix, then T = diag (D,A) is also a nonsin-
gular M -matrix by Theorem 1.2. If (3.1) is an irreducible singular M -matrix, then
T is a nonsingular M -matrix by the Perron-Frobenius theory (see [5] or [34]). Thus,
in either case, A and D are nonsingular M -matrices. Therefore, condition (1.7) is
satisfied. We take X0 = 0 and use FP1:

A1Xi+1 +Xi+1D1 = XiCXi +XiD2 +A2Xi +B, i = 0, 1, . . . .(3.2)

By Theorem 2.3, Xi ≤ Xi+1 for any i ≥ 0.
If (3.1) is a nonsingular M -matrix, we can find v1, v2 > 0 such that

D1v1 −D2v1 − Cv2 = u1 > 0, A1v2 −A2v2 −Bv1 = u2 > 0.(3.3)

We will show that Xkv1 ≤ v2 − A−1
1 u2 for all k ≥ 0. The inequality is true for k = 0

since v2 − A−1
1 u2 = A−1

1 (A2v2 + Bv1) ≥ 0 by the second equation in (3.3). Assume
that Xiv1 ≤ v2 −A−1

1 u2 (i ≥ 0). Then, by (3.2) and (3.3),

A1Xi+1v1 +Xi+1D1v1 = XiCXiv1 +XiD2v1 +A2Xiv1 +Bv1

≤ XiCv2 +XiD2v1 +A2v2 +Bv1

≤ XiD1v1 +A1v2 − u2.

Since Xi+1D1v1 ≥ XiD1v1, we have A1Xi+1v1 ≤ A1v2 − u2. Therefore, Xi+1v1 ≤
v2−A−1

1 u2. Thus, we have proved by induction that Xkv1 ≤ v2−A−1
1 u2 for all k ≥ 0.

Now, the sequence {Xi} is monotonically increasing and bounded above, and hence
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has a limit. Let S = limi→∞Xi. It is clear that S is a nonnegative solution of (1.2)
and Sv1 ≤ v2 − A−1

1 u2 < v2. Thus, (D − CS)v1 ≥ Dv1 − Cv2 = u1 > 0. Therefore,
D−CS is a nonsingular M -matrix by Theorem 1.1. If (3.1) is an irreducible singular
M -matrix, there are v1, v2 > 0 (by the Perron-Frobenius theory) such that

D1v1 −D2v1 − Cv2 = 0, A1v2 −A2v2 −Bv1 = 0.

We can prove as before that the sequence {Xi} produced by FP1 is such that Xiv1 ≤
v2 for all i ≥ 0. The limit S of the sequence is a nonnegative solution of (1.2) with
Sv1 ≤ v2. Therefore, (D − CS)v1 ≥ Dv1 − Cv2 = 0. Thus, D − CS + εI is a
nonsingular M -matrix for any ε > 0. So, D − CS is an M -matrix.

Remark 3.1. We know from Theorem 2.3 that the matrix S in the proof is the
minimal nonnegative solution of (1.2). Note also that we have obtained in the proof
some additional information about the minimal solution. It will be seen later (from
Theorem 4.2) that the minimal solution S is the only solution X that makes D−CX
an M -matrix when the matrix (3.1) is a nonsingular M -matrix. If the matrix (3.1)
is an irreducible singular M -matrix, then (1.2) may have more than one nonnegative
solutions X such that D − CX is an M -matrix. For example, for A = B = 1
and C = D = 2, the scalar equation (1.2) has two positive solutions X = 1 and
X = 1/2. The first makes D−CX a singular M -matrix. The second makes D−CX
a nonsingular M -matrix.

We have seen in the proof of Theorem 3.1 that condition (1.7) is satisfied when
the matrix (3.1) is a nonsingular M -matrix or an irreducible singular M -matrix. It is
clear that (1.8) is not necessarily true when (3.1) is a nonsingular M -matrix. If (3.1)
is an irreducible singular M -matrix, we have B,C 6= 0. However,

(I ⊗A+DT ⊗ I)−1vecB > 0(3.4)

is not necessarily true.
Assume that (3.1) is an irreducible M -matrix. If (3.4) is true, then the minimal

nonnegative solution S of (1.2) must be positive. However, a more practical method
to verify the positivity of S is to apply FP1 with X0 = 0 to equation (1.2).

Example 3.1. For equation (1.2) with

A = C = D =
(

1 0
0 1

)
, B =

(
0 1
1 0

)
,

the matrix (3.1) is an irreducible singular M -matrix, but (3.4) is not true. However,
the minimal nonnegative solution S is still positive. In fact, if we apply FP1 with
X0 = 0 to the equation (1.2), we get X2 > 0. Thus, S ≥ X2 > 0.

We also have the following sufficient condition for the positivity of S.
Proposition 3.2. If (3.1) is an M -matrix such that B,C 6= 0 and A,D are

irreducible, then (3.1) is irreducible, (3.4) is true, and S > 0.
Proof. The matrix (3.1) is irreducible by a graph argument (see Theorem 2.2.7 of

[5]). As shown in the proof of Theorem 3.1, the matrices A and D are now irreducible
nonsingular M -matrices. Thus, I⊗A+DT ⊗I is an irreducible nonsingular M -matrix
(the irreducibility is shown by a graph argument). Therefore, by Theorem 6.2.7 of
[5], (I ⊗A+DT ⊗ I)−1 > 0. Thus, (3.4) is true and S > 0.

More can be said about the matrix D−CS when the minimal nonnegative solution
S of (1.2) is positive.
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Theorem 3.3. If (3.1) is an irreducible M -matrix and the minimal nonnegative
solution S of (1.2) is positive, then D − CS is an irreducible M -matrix (we use the
convention that a 1× 1 zero matrix is irreducible).

Proof. We only need to prove that D − CS is irreducible for n ≥ 2. Write
D = (dij). Let V1 = {i | 1 ≤ i ≤ n, the ith row of C is zero} and V2 = {i | 1 ≤ i ≤
n, the ith row of C is not zero}. Since (3.1) is irreducible, its graph is strongly con-
nected (see Theorem 2.2.7 of [5]). Therefore, for any i ∈ V1 we can find i1, . . . , ik−1 ∈
V1 (void if k = 1) and ik ∈ V2 such that dii1 , di1i2 , . . . , dik−1ik are nonzero. Now, take
any i : 1 ≤ i ≤ n. If i ∈ V2, then the off-diagonal elements of D − CS in the ith row
are negative since S is positive; the diagonal element of D − CS in the ith row must
be positive since it is shown in the proof of Theorem 3.1 that (D − CS)v1 ≥ 0 for
some v1 > 0. If i ∈ V1, then the ith row of D − CS is the same as the ith row of
D. It follows readily that the graph of D −CS is strongly connected. So, D −CS is
irreducible.

The equation (1.2) with no prescribed sign structure for the matrices A,B,C,
and D has been considered in [8] and [30]. It is shown that the solution of (1.2)
with minimal Frobenius norm can be found by FP3 and Newton’s method starting
with X0 = 0, if κ < 1/4 for FP3 and κ < 1/12 for Newton’s method, where κ =
‖B‖F ‖C‖F /s2 and s is the smallest singular value of I ⊗ A+DT ⊗ I. If the matrix
(3.1) is a singular M -matrix with no zero elements, for example, then the minimal
positive solution can be found by FP3 and Newton’s method with X0 = 0. It is
interesting to see how often the condition κ < 1/4 is satisfied when (3.1) is a singular
M -matrix with no zero elements. We use MATLAB to obtain a 4×4 positive matrix R
using rand(4,4), so W = diag(Re)−R is a singular M -matrix with no zero elements.
We let the matrix W be in the form (3.1), so the 2 × 2 matrices A,B,C,D are
determined. We find that κ < 1/4 is satisfied 198 times for 10000 random matrices R
(κ < 1/5 is satisfied 35 times). When we use rand(6,6) to get 3×3 matrices A,B,C,D
in the same way, we find that κ < 1/4 is satisfied 2 times for 10000 random matrices.

It is interesting to note that the equation (1.2) from transport theory also satisfies
the conditions in Theorem 3.1.

Proposition 3.4. Let the matrices A,B,C,D be defined by (1.5). Then the
matrix K given by (3.1) is irreducible. The matrix K is a nonsingular M -matrix for
0 < β < 1 and is a singular M -matrix for β = 1.

Proof. By definition,

K =

(
1

β(1−α)W
−1 − qeT −qqT

−eeT 1
β(1+α)W

−1 − eqT

)
.

It is clear that K is irreducible. Since K is a singular (nonsingular) M -matrix if and
only if(

(1− α)W 0
0 (1 + α)W

)
K =

( 1
β I − (1− α)WqeT −(1− α)WqqT

−(1 + α)WeeT 1
β I − (1 + α)WeqT

)
is a singular (nonsingular) M -matrix, we only need to find a positive vector v such
that Qv = v for the positive matrix

Q =
(

(1− α)WqeT (1− α)WqqT

(1 + α)WeeT (1 + α)WeqT

)
=
(

1
2 (1− α)ceT 1

4 (1− α)ccTW−1

(1 + α)WeeT 1
2 (1 + α)WecTW−1

)
,
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where we have used q = 1
2W

−1c. Now, since eT c = cT e = 1, direct computation
shows that Qv = v for

v =
(

(1− α)c
2(1 + α)We

)
> 0.

This completes the proof.
Therefore, with Remark 2.1 in mind, the existence of positive solutions of (1.2)

with A,B,C,D given by (1.5) is established as a special case of Theorem 3.1. The
existence in this special case was proved in [16] using the degree theory and was proved
in [17] using the secular equation and other tools.

4. Wiener-Hopf factorization for M-matrices. The Wiener-Hopf factoriza-
tion for Q-matrices associated with finite Markov chains has been studied in [1, 23,
28, 29, 35]. The factorization was obtained by using probabilistic results and interpre-
tations. In this section, we will establish Wiener-Hopf factorization for M -matrices.
Our results include Wiener-Hopf factorization for Q-matrices as a special case. The
proof will be purely algebraic.

Theorem 4.1. If the matrix (3.1) is a nonsingular M -matrix or an irreducible
singular M -matrix, then there exist nonnegative matrices S1 and S2 such that(

D −C
B −A

)(
I S2

S1 I

)
=
(

I S2

S1 I

)(
G1 0
0 −G2

)
,(4.1)

where G1 and G2 are M -matrices.
Proof. By Theorem 3.1, the equation (1.2) has a nonnegative solution S1 such

that D − CS1 is an M -matrix. By taking G1 = D − CS1, we get(
D −C
B −A

)(
I
S1

)
=
(

I
S1

)
G1.(4.2)

Since (
A −B
−C D

)
is also a nonsingular M -matrix or an irreducible singular M -matrix, Theorem 3.1
implies that the equation

XBX −XA−DX + C = 0(4.3)

has a nonnegative solution S2 such that A − BS2 is an M -matrix. Letting G2 =
A−BS2, we have (

D −C
B −A

)(
S2

I

)
=
(
S2

I

)
(−G2).(4.4)

The factorization (4.1) is obtained by combining (4.2) and (4.4).
We can make stronger statements when the matrix (3.1) is a nonsingular M -

matrix.
Theorem 4.2. If the matrix (3.1) is a nonsingular M -matrix, then the only ma-

trices S1 and S2 satisfying (4.1) with G1 and G2 being M -matrices are the minimal
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nonnegative solution of (1.2) and the minimal nonnegative solution of (4.3), respec-
tively. In this case, G1 and G2 are nonsingular M -matrices and the matrix(

I S2

S1 I

)
(4.5)

is nonsingular.
Proof. Let S1 and S2 be the minimal nonnegative solutions of (1.2) and (4.3),

respectively. Let G1 = D − CS1 and G2 = A − BS2. Then (4.1) holds and G1, G2

are nonsingular M -matrices (see Theorem 3.1). Let v1, v2 > 0 be as in the proof of
Theorem 3.1. Then, S1v1 < v2 and S2v2 < v1. Since(

I −S2

−S1 I

)(
v1

v2

)
> 0,

the matrix (4.5) is a generalized strictly diagonally dominant matrix and hence non-
singular. Thus, (4.1) gives a similarity transformation and, as a result, the matrix
(1.3) has n eigenvalues in C> and m eigenvalues in C<. Now, if S̃1 ∈ Rm×n and
S̃2 ∈ Rn×m satisfy (4.1) with G̃1 and G̃2 being M -matrices, then(

D −C
B −A

)(
I

S̃1

)
=
(

I

S̃1

)
G̃1.

Therefore, the eigenvalues of G̃1 are precisely the n eigenvalues of (1.3) in C>. Since
the column spaces of (I S̃T1 )T and (I ST1 )T are the same invariant subspace associated
with these eigenvalues, we conclude that S̃1 = S1. Similarly, S̃2 = S2.

From the above theorem and its proof, it is already clear that we can find the
minimal solution using an appropriate invariant subspace (details will be provided in
the next section).

The rest of this section is devoted to the case where (3.1) is an irreducible singular
M -matrix. The minimal nonnegative solutions of (1.2) and (4.3) will be denoted by
S1 and S2, respectively.

Let v1, v2, u1, u2 be positive vectors such that(
D −C
−B A

)(
v1

v2

)
= 0,

(
uT1 uT2

)( D −C
−B A

)
= 0.(4.6)

Multiplying (4.1) by
(
uT1 − uT2

)
from the left gives

(uT1 − uT2 S1)G1 = 0, (uT1 S2 − uT2 )G2 = 0.

If G1 is nonsingular, then uT1 −uT2 S1 = 0. Moreover, we see from the proof of Theorem
3.1 that S1v1 ≤ v2 and S1v1 6= v2 (if S1v1 = v2, we would have G1v1 = (D−CS1)v1 =
Dv1−Cv2 = 0, which is contradictory to the nonsingularity of G1). So uT1 v1 < uT2 v2.
Similarly, uT1 v1 > uT2 v2 when G2 is nonsingular. Therefore, the following result is
true.

Lemma 4.3. When (3.1) is an irreducible singular M -matrix, G1 is singular
if uT1 v1 > uT2 v2; G2 is singular if uT1 v1 < uT2 v2; both G1 and G2 are singular if
uT1 v1 = uT2 v2.

Further discussions will be dependent on the positivity of S1 and S2.
Lemma 4.4. Assume that (3.1) is an irreducible singular M -matrix and S1, S2 >

0. Then the matrix (1.3) has n − 1 eigenvalues in C>, m − 1 eigenvalues in C<,
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one zero eigenvalue, and one more eigenvalue which is either zero or has nonzero real
part.

Proof. By Theorem 3.3, G1 and G2 are irreducible M -matrices. Therefore,
G1(G2) has n(m) eigenvalues in C> when it is nonsingular; G1(G2) has a zero eigen-
value and n−1(m−1) eigenvalues in C> when it is singular. By (4.1), the eigenvalues
of G1(resp., −G2) are precisely the eigenvalues of the matrix (1.3) restricted to the
column space of (I ST1 )T (resp., (ST2 I)T ). The result follows immediately.

Lemma 4.5. Under the assumptions of Lemma 4.4, zero is a double eigenvalue
of (1.3) if and only if uT1 v1 = uT2 v2.

Proof. If zero is a double eigenvalue of (1.3), then the Jordan canonical form for
(1.3) is

P−1

(
D −C
B −A

)
P =

(
J1 0
0 J2

)
,

where J1 =
(

0
0

1
0

)
and J2 consists of Jordan blocks associated with nonzero eigenvalues

(note that the null space of (1.3) is one-dimensional since (3.1) is an irreducible M -
matrix). By (4.6), we get

(uT1 − uT2 )P = k1e
T
2 , P−1

(
v1

v2

)
= k2e1,(4.7)

where e1, e2 are the first two standard unit vectors and k1, k2 are nonzero constants.
Multiplying the two equations in (4.7) gives uT1 v1 = uT2 v2. If zero is a simple eigenvalue
of (1.3), then we have J1 = (0) instead and we have (4.7) with e2 replaced by e1. Thus,
uT1 v1 6= uT2 v2.

We will also need the following general result, which can be found in [26], for
example.

Lemma 4.6. If X is any solution of (1.2), then(
I 0
X I

)−1(
D −C
B −A

)(
I 0
X I

)
=
(
D − CX −C

0 −(A−XC)

)
.

Thus, the eigenvalues of D − CX are eigenvalues of (1.3) and the eigenvalues of
A−XC are the negative of the remaining eigenvalues of (1.3).

The next result determines the signs of the real parts for all eigenvalues of the
matrix (1.3) and it also paves the way for finding S1 and S2 using subspace methods.

Theorem 4.7. Assume that the matrix (3.1) is an irreducible singular M -matrix
and S1, S2 > 0. Let the vectors u1, u2, v1, v2 be as in (4.6). Then

(1) If uT1 v1 = uT2 v2, then (1.3) has n− 1 eigenvalues in C>, m− 1 eigenvalues in
C<, and two zero eigenvalues. Moreover, G1 and G2 are singular M -matrices.

(2) If uT1 v1 > uT2 v2, then (1.3) has n − 1 eigenvalues in C>, m eigenvalues in
C<, and one zero eigenvalue. Moreover, G1 is a singular M -matrix and G2

is a nonsingular M -matrix.
(3) If uT1 v1 < uT2 v2, then (1.3) has n eigenvalues in C>, m − 1 eigenvalues in

C<, and one zero eigenvalue. Moreover, G1 is a nonsingular M -matrix and
G2 is a singular M -matrix.

Proof. Assertion (1) follows from Lemmas 4.5, 4.4, and 4.3. We will prove as-
sertion (2) only since the proof of assertion (3) is very similar. When uT1 v1 > uT2 v2,
G1 = D − CS1 is singular by Lemma 4.3. The last-mentioned eigenvalue in Lemma
4.4 cannot be zero by Lemma 4.5 and we need to show that it is in C<. If this
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eigenvalue were in C>, the matrix A − S1C would have m − 1 eigenvalues in C>
and one eigenvalue in C<, in view of Lemma 4.6. Since the eigenvalues of G =
I ⊗ (A− S1C) + (D − CS1)T ⊗ I are the sums of eigenvalues of A− S1C and eigen-
values of D − CS1, the matrix G would then have an eigenvalue in C<. This is a
contradiction since G is an M -matrix by Corollary 2.6. A similar argument then shows
that the eigenvalues of G2 = A − BS2 must be the negative of the m eigenvalues of
(1.3) in C<. Therefore, G2 is a nonsingular M -matrix by Theorem 1.1.

Remark 4.1. Case (1) of Theorem 4.7 poses a great challenge to basic fixed-point
iterations. Since the matrix (2.4) is a singular M -matrix in this case, the convergence
of the fixed-point iterations for (1.2) is sublinear (see Theorems 2.5 and 2.7). The
convergence of Newton’s method for (1.2) is typically linear with rate 1/2 in this case
if condition (3.4) is also satisfied, but the performance of Newton’s method can be
improved by using a double Newton step (see discussions in [14]).

When the matrix (3.1) is an irreducible singular M -matrix, we know from the
proof of Theorem 3.1 that S1v1 ≤ v2 and S2v2 ≤ v1. With the additional assumption
that S1, S2 > 0, we can say something more about S1 and S2.

Theorem 4.8. Under the conditions of Theorem 4.7, we have
(1) If uT1 v1 = uT2 v2, then CS1v1 = Cv2 and BS2v2 = Bv1. Consequently, S1v1 =

v2 and S2v2 = v1 if C and B have no zero columns.
(2) If uT1 v1 > uT2 v2, then S2v2 6= v1 and CS1v1 = Cv2. Consequently, S1v1 = v2

if C has no zero columns.
(3) If uT1 v1 < uT2 v2, then S1v1 6= v2 and BS2v2 = Bv1. Consequently, S2v2 = v1

if B has no zero columns.
Moreover, the matrix (4.5) is singular if and only if S1v1 = v2 and S2v2 = v1.

Proof. We will prove (3). The proof of (1) and (2) is similar. If uT1 v1 < uT2 v2,
then G1 is a nonsingular M -matrix and G2 is a singular M -matrix by Theorem 4.7.
That S1v1 6= v2 has been proved in the discussions leading to Lemma 4.3. Note that
G2 is irreducible and G2v2 = (A − BS2)v2 ≥ Av2 − Bv1 = 0. If BS2v2 6= Bv1, then
G2v2 would be nonnegative and nonzero. Therefore, G2 would be a nonsingular M -
matrix by Theorem 6.2.7 of [5]. The contradiction shows that BS2v2 = Bv1. Thus,
B(v1 − S2v2) = 0. It follows that v1 − S2v2 = 0 if B has no zero columns. The proof
of (3) is completed.

If S1v1 = v2 and S2v2 = v1, then(
I S2

S1 I

)(
v1

−v2

)
= 0.

Thus, the matrix (4.5) is singular. If S1v1 = v2 and S2v2 = v1 are not both true, then(
I −S2

−S1 I

)(
v1

v2

)
(4.8)

is nonnegative and nonzero. Since S1 and S2 are positive, the matrix on the left side
of (4.8) is irreducible. Therefore, it is a nonsingular M -matrix by Theorem 6.2.7 of
[5] and hence the matrix (4.5) is nonsingular.

For the equation (1.2) from transport theory, the matrix (3.1) is an irreducible
singular M -matrix if β = 1 (see Proposition 3.4). The next result shows that, for this
special equation, only cases (1) and (3) are possible in Theorems 4.7 and 4.8.

Proposition 4.9. For the equation (1.2) with A,B,C,D given by (1.5) with
β = 1, we have uT1 v1 = uT2 v2 for α = 0 and uT1 v1 < uT2 v2 for 0 < α < 1.
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Proof. By the proof of Proposition 3.4, we can take v1 = (1 − α)c and v2 =
2(1 + α)We. Similarly, we can take u1 = 2(1 − α)We and u2 = (1 + α)c. The
conclusions follow immediately.

5. The Schur method. In this section, we will explain how to use the Schur
method to find the minimal nonnegative solution of the equation (1.2).

Theorem 5.1. Assume that (3.1) is a nonsingular M -matrix or an irreducible
singular M -matrix such that the minimal nonnegative solutions of (1.2) and (4.3) are
positive. Let H be the matrix given by (1.3). Let U be an orthogonal matrix such that

UTHU = F

is a real Schur form of H, where the 1×1 or 2×2 diagonal blocks of F are arranged in
the order for which the real parts of the corresponding eigenvalues are nonincreasing.
If U is partitioned as (

U11 U12

U21 U22

)
,

where U11 ∈ Rn×n, then U11 is nonsingular and U21U
−1
11 is the minimal nonnegative

solution of (1.2).
Proof. From the discussions in Sections 3 and 4, we know that the minimal

nonnegative solution S exists and the n-dimensional column space of (I ST )T is either
the n-dimensional invariant subspace of H corresponding to the eigenvalues in C> or,
when the largest invariant subspace V of H corresponding to the eigenvalues in C> is
only (n− 1)-dimensional, the direct sum of V and the one-dimensional eigenspace of
H corresponding to the zero eigenvalue. From HU = UF and the specified ordering
of the diagonal blocks of F , we can see that the column space of (UT11 UT21)T is the
same n-dimensional invariant subspace (no difficulties will arise when H has a double
zero eigenvalue, since there is only one eigenvector (up to a factor) associated with
the zero eigenvalue). So, (

I
S

)
=
(
U11

U21

)
W

for some nonsingular W ∈ Rn×n. Thus, U11 is nonsingular and S = U21U
−1
11 .

Remark 5.1. A Wiener-Hopf factorization for (3.1) can be obtained by solving
also the dual equation (4.3).

We now consider (1.2) with conditions (1.7) and (1.8). In this case, any nonneg-
ative solution of (1.2) must be positive (see Remark 2.1).

Theorem 5.2. Consider (1.2) with conditions (1.7) and (1.8). Let H be the
matrix given by (1.3). Let U be an orthogonal matrix such that

UTHU = F

is a real Schur form of F , where the 1 × 1 or 2 × 2 diagonal blocks of F are ar-
ranged in the order for which the real parts of the corresponding n + m eigenvalues
are nonincreasing.

(1) Assume that λn and λn+1 are a conjugate pair corresponding to a 2 × 2
diagonal block, Re(λn−1) > Re(λn) (if n > 1 ), and Re(λn+1) > Re(λn+2) (if
m > 1). Then (1.2) has no positive solutions.
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(2) Assume that Re(λn) > Re(λn+1) and U is partitioned as(
U11 U12

U21 U22

)
,

where U11 ∈ Rn×n. If U11 is nonsingular and S = U21U
−1
11 is positive, then

S is the minimal positive solution of (1.2). Otherwise, (1.2) has no positive
solutions.

(3) Assume that λn = λn+1 are real, Re(λn−1) > λn (if n > 1 ), and λn+1 >
Re(λn+2) (if m > 1). Assume further that there is only one eigenvector (up
to a factor) associated with λn = λn+1 and let U be partitioned as in part
(2). If U11 is nonsingular and S = U21U

−1
11 is positive, then S is the minimal

positive solution of (1.2). Otherwise, (1.2) has no positive solutions.
Proof. If (1.2) has a positive solution, then it has a minimal positive solution S

by Theorem 2.1. Since I ⊗ (A− SC) + (D − CS)T ⊗ I is an M -matrix by Theorem
2.1, the real part of each eigenvalue of D − CS must be greater than or equal to the
negative of the real part of each eigenvalue of A − SC. In other words, in view of
Lemma 4.6, the real part of each eigenvalue of D−CS must be greater than or equal
to the real part of each of the remaining m eigenvalues of H. Under the assumptions
of part (1), the eigenvalues of the real matrix D − CS must be λ1, . . . , λn−1 and one
of the eigenvalues λn and λn+1. This is impossible since λn and λn+1 are a conjugate
pair with nonzero imaginary parts. Part (1) is thus proved. Under the assumptions
of part (2), if (1.2) has a positive solution, then the column space of (I ST )T for
the minimal positive solution S must be the n-dimensional invariant subspace of H
corresponding to the eigenvalues λ1, . . . , λn. The proof can thus be completed as in
the proof of Theorem 5.1. Under the assumptions of part (3), if (1.2) has a positive
solution, then the column space of (I ST )T for the minimal positive solution S must
be the direct sum of the (n−1)-dimensional invariant subspace of H corresponding to
the eigenvalues λ1, . . . , λn−1 and the one-dimensional eigenspace of H corresponding
to λn = λn+1. The proof can again be completed as in the proof of Theorem 5.1.

Remark 5.2. If the minimal positive solution found by the Schur method in
Theorem 5.2 (2) is not accurate enough, we can use Newton’s method as a correction
method. Local quadratic convergence of Newton’s method is guaranteed since the
Fréchet derivative at the solution is nonsingular in this case.

Remark 5.3. In Theorem 5.2 (3), the additional assumption that there is only
one eigenvector associated with λn = λn+1 is essential. Without this assumption, no
definitive information can be obtained about positive solutions of (1.2) from the real
Schur form. Newton’s method can find the minimal positive solution of (1.2) if it has
a positive solution, with or without the additional assumption. However, we cannot
expect Newton’s method to have quadratic convergence since the Fréchet derivative
at the minimal solution is singular in this case.

As we can see from Theorems 5.1 and 5.2, the real Schur form with the prescribed
ordering of the diagonal blocks is essential for finding the minimal nonnegative solution
using the Schur method. This real Schur form can be obtained by using orthogonal
transformations to reduce H to upper Hessenberg form and then using a slight mod-
ification of Stewart’s algorithm HQR3 [31]. In Stewart’s HQR3, the 1 × 1 or 2 × 2
diagonal blocks of the real Schur form are arranged in the order for which the moduli
(not the real parts) of the corresponding eigenvalues are nonincreasing.

In Theorems 5.1 and 5.2, the minimal nonnegative solution S is found by solving
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SU11 = U21. The accuracy of S is thus dependent on κ(U11), the condition number
of the matrix U11.

Proposition 5.3. Let S = U21U
−1
11 be the minimal nonnegative solution of (1.2),

where U11 and U21 are as in Theorems 5.1 and 5.2. Then

κ2(U11) ≤ 1 + ‖S‖22.

Proof. The proof is omitted here since it is very similar to that of corresponding
results in [15] and [18].

6. Comparison of solution methods. For the equation (1.2) with conditions
(1.7) and (1.8), the minimal positive solution can be found by FP1, FP2, FP3, New-
ton’s method, or the Schur method, whenever (1.2) has a positive solution. In this
section, we will compare these methods on a few test examples.

For the Newton iteration (2.2), the equation −R′Xk(H) = R(Xk), i.e., (A −
XkC)H + H(D − CXk) = R(Xk), can be solved by the algorithms described in [2]
and [11]. If we use the Bartels-Stewart algorithm [2] to solve the Sylvester equation,
the computational work for each Newton iteration is about 62n3 flops when m = n.
By comparison, FP1 and FP2 need about 8n3 flops for each iteration. For FP3 we can
use the Bartels-Stewart algorithm for the first iteration. It needs about 54n3 flops.
For each subsequent iteration, it needs about 14n3 flops. The Schur method needs
roughly 200n3 flops to get an approximate solution.

Example 6.1. We generate (and save) a random 100× 100 matrix R with no zero
elements using rand(100,100) in MATLAB. Let W = diag(Re)−R. So W is a singular
M -matrix with no zero elements. We introduce a real parameter α and let

αI +W =
(

D −C
−B A

)
,

where the matrices A,B,C,D are all 50× 50. The existence of a positive solution of
(1.2) is guaranteed for α ≥ 0. In tables 6.1–6.3, we have recorded, for three values
of α, the number of iterations needed to have ‖R(Xk)‖∞ < ε for Newton’s method
(NM) and the three basic fixed-point iterations. For all four methods, we use X0 = 0.
The initial residual error is ‖R(X0)‖∞ = ‖B‖∞ = 0.2978 × 102. As predicted by
Theorem 2.7, FP2 has faster convergence than FP1 while FP3 has faster convergence
than FP2. With the required computational work per iteration in mind, we find
that, for this example, FP2 is the best among the three basic fixed-point iterations.
When α = 10, the fixed-point iterations are quite good. However, Newton’s method
is much better for α = 0. As shown in [14], we can also use Newton’s method
after any number of fixed-point iterations and still have the monotone convergence.
We now apply the Schur method (SM) to find the minimal solution. The method
turns out to be very successful. The residual norm for the approximate solution
obtained from the Schur method is listed in Table 6.4, along with the residual norm
for the approximate solution obtained by Newton’s method after 12, 6, 5 iterations
for α = 0, 1, 10, respectively. The accuracy achieved by the Schur method is very
impressive, although not as high as that achieved by Newton’s method. The good
performance of the Schur method is partly due to the small condition number of the
matrix U11. For α = 0, for example, we find that κ2(U11) = 1.4114 and ‖S‖2 =
0.9960. A rough estimate can actually be obtained beforehand for any α ≥ 0. Since
Se ≤ e by the proof of Theorem 3.1, we have ‖S‖∞ ≤ 1. So, by Proposition 5.3,
κ2(U11) ≤ 1 + (

√
50‖S‖∞)2 ≤ 51. When α = 0, the Schur method is much better
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than the basic fixed-point iterations. It is also considerably cheaper than Newton’s
method, although Newton’s method produces a more accurate approximation. When
α = −10−4, the equation also has a positive solution by Theorem 5.2 (2). The residual
norm for the approximate solution obtained from the Schur method is 0.7463× 10−12

while the residual norm for the approximate solution obtained by Newton’s method
after 13 iterations is 0.1955 × 10−13. By Theorem 2.4, equation (1.2) has a positive
solution for all α ≥ −10−4. When α = −10−3, the equation does not have a positive
solution. In this case, Newton’s method exhibits no convergence and the Schur method
produces a 2 × 2 block in the middle of the real Schur form (see Theorem 5.2 (1)).
When α = 0, the matrix (1.3) has 50 eigenvalues in C>, 49 eigenvalues in C<, and
one zero eigenvalue. The eigenvalue with the smallest positive real part is the real
eigenvalue λ50 = 0.1790. Thus, for all α ≥ 0, the convergence of Newton’s method is
quadratic and the convergence of basic fixed-point iterations is linear.

Table 6.1

Iteration counts for Example 6.1, α = 0

ε 10−2 10−4 10−6 10−8 10−10

NM 6 9 10 11 12
FP1 196 1515 4003 6564 9125
FP2 154 1173 3050 4977 6904
FP3 96 758 2017 3313 4609

Table 6.2

Iteration counts for Example 6.1, α = 1

ε 10−2 10−4 10−6 10−8 10−10

NM 4 5 5 6 6
FP1 40 71 101 131 161
FP2 30 52 75 97 119
FP3 19 33 47 62 76

Table 6.3

Iteration counts for Example 6.1, α = 10

ε 10−2 10−4 10−6 10−8 10−10

NM 3 4 4 4 5
FP1 14 23 32 41 49
FP2 11 17 23 29 35
FP3 6 10 14 18 22

Example 6.1 is not particularly tough for the basic fixed-point iterations since
λ50 = 0.1790 is not too close to zero. The next example is.

Example 6.2. Let

R =
(
R11 R12

R21 R22

)
be a doubly stochastic matrix (i.e., R ≥ 0, Re = e,RT e = e), where R11, R22 ∈ Rm×m
are irreducible and R21, R12 6= 0. Let W = a(I − R), where a is a given positive
number. So W is a singular M -matrix satisfying the assumptions in Proposition 3.2
and the situation in Theorem 4.7 (1) happens. Let

W =
(

D −C
−B A

)
,
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Table 6.4

Residual errors for Example 6.1

α 0 1 10
NM 0.1999× 10−13 0.1570× 10−13 0.1149× 10−13

SM 0.6419× 10−12 0.5715× 10−12 0.6984× 10−12

where A,B,C,D ∈ Rm×m. We will find the minimal positive solution of the equation
(1.2). As noted in Remark 4.1, the convergence of basic fixed-point iterations will be
sublinear and the convergence of Newton’s method will typically be linear with rate
1/2. However, the minimal positive solution can be found easily by the Schur method
described in Theorem 5.1. Since We = 0, we have Se ≤ e by the proof of Theorem
3.1. Since WT e = 0, we can also get ST e ≤ e by taking transpose for (1.2) and
applying the proof of Theorem 3.1 to the new equation. Therefore, STSe ≤ ST e ≤ e.
Thus, ρ(STS) ≤ 1. Now, by Proposition 5.3, κ2(U11) ≤ 1 + ρ(STS) ≤ 2. We apply
the Schur method to a special example with m = 100, B = C = I, and

A = D =


2 −1

2
. . .
. . . −1

−1 2

 .

For this example, the minimal solution S must be doubly stochastic. In fact, Se = e
follows directly from Theorem 4.8 (1) and ST e = e is obtained by taking transpose for
(1.2) and applying Theorem 4.8 (1) to the new equation. The approximate minimal
solution is found by the Schur method with residual error 0.9896 × 10−13. We also
apply Newton’s method to this equation. The residual error is 0.5683 × 10−13 after
22 iterations. The performance of Newton’s method can be improved significantly by
using the double Newton strategy as described in [14]. After 6 Newton iterations and
one double Newton step, the residual error is 0.4649 × 10−14. The basic fixed-point
iterations are indeed extremely slow. We apply FP1 to the special example with
m = 5 instead. It needs 399985 iterations to make the residual error less than 10−10.
For this example, if an approximate solution has more digits than needed, chopping
is recommended. By using chopping instead of rounding, we will have a much better
chance to secure σ(D − CS) ⊂ C≥, by the theory of nonnegative matrices.

Acknowledgments. The author thanks the referees for their very helpful com-
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