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We consider iterative methods for finding the maximal Hermitian solution of a matrix

Riccati equation arising in stochastic control. Newton’s method is very expensive when

the size of the problem is large. A much less expensive iteration is introduced and

shown to have several convergence properties similar to those of Newton’s method. In

ordinary situations, the convergence of the new iteration is linear while the convergence

of Newton’s method is quadratic. In extreme cases, the convergence of the new iteration

may be sublinear while the convergence of Newton’s method may be linear. We also

show how the performance of Newton’s method can be improved when its convergence

is not quadratic.

1. Introduction

Let H be the linear space of all n× n Hermitian matrices over the field R. For
any X,Y ∈ H, we write X ≥ Y (or Y ≤ X) if X − Y is positive semidefinite.
For any A ∈ Cn×n, the spectrum of A will be denoted by σ(A). The transpose
and the conjugate transpose of A will be denoted by AT and A∗, respectively.
We denote by C< (resp. C≤) the set of complex numbers with negative (resp.
nonpositive) real parts. A matrix A is said to be stable if σ(A) ⊂ C<. For any
matrices A,B,C ∈ Cn×n, the pair (A,B) is stabilizable if A − BK is stable for
some K ∈ Cn×n. The pair (C,A) is detectable if (A∗, C∗) is stabilizable.

In this paper, we are concerned with the numerical solution of the matrix Riccati
equation

R(X) = A∗X +XA+ Π(X) + C −XDX = 0,(1.1)

where A,C,D ∈ Cn×n, C∗ = C, D∗ = D, D ≥ 0, and Π is a positive linear
operator from H into itself, i.e., Π(X) ≥ 0 whenever X ≥ 0. The Riccati function
R is thus a mapping from H into itself.

Matrix Riccati equations of this type were first studied by W. M. Wonham

[11]. The following result is a slight different presentation of a result in [11]. It
establishes the existence of a positive semidefinite solution to (1.1) under some
additional conditions.
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Theorem 1.1. If C ≥ 0, (A,D) is stabilizable, (C,A) is detectable, and

inf
K∈H

∥∥∥∥∫ ∞
0

et(A−DK)∗Π(I)et(A−DK)dt

∥∥∥∥ < 1,(1.2)

where ‖ · ‖ is the spectral norm, then (1.1) has at least one solution X̂ ≥ 0 such
that A−DX̂ is stable.

The above result was proved in [11] by using an iterative procedure, which is in
fact the Newton iteration. For the Riccati function R, the first Fréchet derivative
of R at a matrix X ∈ H is a linear map R′X : H → H given by

R′X(H) = (A−DX)∗H +H(A−DX) + Π(H).(1.3)

Also the second derivative at X, R′′X : H×H → H, is given by

R′′X(H1,H2) = −H1DH2 −H2DH1.(1.4)

The Newton method for the solution of (1.1) is

Xi+1 = Xi − (R′Xi)
−1R(Xi), i = 0, 1, . . . ,(1.5)

given that the maps R′Xi are all invertible. In view of (1.3), the iteration (1.5) is
equivalent to

(A−DXi)∗Xi+1 +Xi+1(A−DXi) + Π(Xi+1) = −XiDXi − C,(1.6)
i = 0, 1, . . . .

Newton’s method has been studied recently by T. Damm and D. Hinrichsen [2]
for a rational matrix equation which includes (1.1) as a special case. We first give
a definition from [2].

Definition 1.2. A matrix X ∈ H is called stabilizing for R if σ(R′X) ⊂ C< and
almost stabilizing if σ(R′X) ⊂ C≤.

When Π = 0, it is readily seen that σ(R′X) ⊂ C< (resp. C≤) if and only if
σ(A−DX) ⊂ C< (resp. C≤).

A solution X+ of (1.1) is called maximal if X+ ≥ X for any solution X. The
maximal solution is the most desirable solution in applications. When Π = 0,
the maximal solution may be found by subspace methods (see [10], for example).
However, those methods are not applicable when Π 6= 0.

The following result, given in [2], is a generalization of Theorem 9.1.1 of [9]. It
shows that the maximal solution of (1.1) can be found by Newton’s method under
mild conditions.

Theorem 1.3. Assume that there exist a solution X̂ to R(X) ≥ 0 and a stabilizing
matrix X0. Then the Newton sequence is well defined and, moreover, the following
are true:
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1. Xk ≥ Xk+1, Xk ≥ X̂, R(Xk) ≤ 0, k ≥ 1.

2. σ(R′Xk) ⊂ C<, k ≥ 0.

3. limk→∞Xk = X+ is the maximal solution of (1.1).

4. σ(R′X+
) ⊂ C≤.

Remark 1.4. If (1.2) is true, then∥∥∥∥∫ ∞
0

et(A−DX0)∗Π(I)et(A−DX0)dt

∥∥∥∥ < 1

for some X0 ∈ H. It is noted in [2] that this X0 is necessarily stabilizing for R.
The assumption that C ≥ 0 and (C,A) is detectable is not needed for the above
theorem. As a result, the maximal solution is not necessarily positive semidefinite.
It can be seen that Theorem 1.3 is also a generalization of Theorem 3.3 of [4].

Note that the solution of the linear equation (1.6) is required in each step of the
Newton iteration. The presence of the linear operator Π on the left hand side will
make solving this equation very expensive when n is large. For example, if Π is
given by Π(H) = B∗HB, then we will need to solve a linear matrix equation of
the form

A∗X +XA+B∗XB = C

in each step of the Newton iteration. This equation is equivalent to

(I ⊗A∗ +AT ⊗ I +BT ⊗B∗)vecX = vecC,

where ⊗ is the Kronecker product and the vec operator stacks the columns of a
matrix into a long vector (see [9], for example). A direct solution of this equation
would require O(n6) operations. On the other hand, a matrix equation of the form

A∗X +XA = C

can be solved by the Bartels-Stewart algorithm [1] in O(n3) operations when it
has a unique solution.

This observation leads us to consider the iteration

(A−DXi)∗Xi+1 +Xi+1(A−DXi) = −Π(Xi)−XiDXi − C,(1.7)
i = 0, 1, . . . .

Iteration (1.7) is obtained by replacing Π(Xi+1) with Π(Xi) in iteration (1.6). A
new convergence analysis will be needed for iteration (1.7).
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2. Convergence of the iteration (1.7)

In this section, we will show that iteration (1.7) has several convergence prop-
erties similar to those of the Newton iteration. First, we note that iteration (1.7)
can be rewritten as

(A−DXi)∗(Xi+1 −Xi) + (Xi+1 −Xi)(A−DXi) = −R(Xi),(2.1)
i = 0, 1, . . . .

We will also need the following well known result (see [9], for example).

Lemma 2.1. Let A,C ∈ Cn×n with A stable and C Hermitian. Then the Lya-
punov equation A∗X +XA = C has a unique solution X (necessarily Hermitian).
If C ≤ 0, then X ≥ 0.

Theorem 2.2. Assume that there exist a solution X̂ to R(X) ≥ 0 and a Hermitian
matrix X0 such that X0 ≥ X̂, R(X0) ≤ 0, and A − DX0 is stable. Then the
iteration (1.7) defines a sequence {Xk} such that

1. Xk ≥ Xk+1, Xk ≥ X̂, R(Xk) ≤ 0, k ≥ 0.

2. σ(A−DXk) ⊂ C<, k ≥ 0.

3. limk→∞Xk = X̃ is a solution of (1.1) and X̃ ≥ X̂.

4. σ(A−DX̃) ⊂ C≤.

Proof. We prove by induction that for each i ≥ 0, Xi+1 is uniquely determined
and

Xi ≥ Xi+1, Xi ≥ X̂, R(Xi) ≤ 0, σ(A−DXi) ⊂ C<.(2.2)

For i = 0, we already have X0 ≥ X̂, R(X0) ≤ 0, and σ(A−DX0) ⊂ C<. By (2.1)
with i = 0 and Lemma 2.1, X1 is uniquely determined and X0 ≥ X1. We now
assume that Xk+1 is uniquely determined and (2.2) is true for i = k (k ≥ 0). By
(1.7) with i = k,

(A−DXk)∗(Xk+1 − X̂) + (Xk+1 − X̂)(A−DXk)
= −Π(Xk)−XkDXk − C −A∗X̂ − X̂A+XkDX̂ + X̂DXk

≤ −Π(Xk)−XkDXk + Π(X̂)− X̂DX̂ +XkDX̂ + X̂DXk

= −Π(Xk − X̂)− (Xk − X̂)D(Xk − X̂) ≤ 0.

Therefore, Xk+1 ≥ X̂ by Lemma 2.1. To show that A−DXk+1 is stable, we will
use an argument in [5]. Note first that, by writing A − DXk+1 = A − DXk +
D(Xk −Xk+1),

(A−DXk+1)∗(Xk+1 − X̂) + (Xk+1 − X̂)(A−DXk+1)
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≤ −Π(Xk − X̂)− (Xk − X̂)D(Xk − X̂)
+(Xk −Xk+1)D(Xk+1 − X̂) + (Xk+1 − X̂)D(Xk −Xk+1)

= −Π(Xk − X̂)− (Xk+1 − X̂)D(Xk+1 − X̂)(2.3)
−(Xk −Xk+1)D(Xk −Xk+1)

≤ −(Xk −Xk+1)D(Xk −Xk+1).

If A−DXk+1 is not stable, we let λ be an eigenvalue of A−DXk+1 with Re(λ) ≥ 0
and (A−DXk+1)x = λx for some x 6= 0. Now, by (2.3),

2Re(λ)x∗(Xk+1 − X̂)x ≤ −x∗(Xk −Xk+1)D(Xk −Xk+1)x.

Therefore, x∗(Xk − Xk+1)D(Xk − Xk+1)x = 0 and thus D(Xk − Xk+1)x = 0.
Now, (A−DXk)x = (A−DXk+1)x = λx, which is contradictory to the stability
of A−DXk. We have thus proved that A−DXk+1 is stable. So, Xk+2 is uniquely
determined and

(A−DXk+1)∗(Xk+1 −Xk+2) + (Xk+1 −Xk+2)(A−DXk+1)
=

(
A−DXk +D(Xk −Xk+1)

)∗
Xk+1 +Xk+1

(
A−DXk +D(Xk −Xk+1)

)
+Π(Xk+1) +Xk+1DXk+1 + C

= −Π(Xk −Xk+1)−XkDXk +Xk+1DXk+1

+(Xk −Xk+1)DXk+1 +Xk+1D(Xk −Xk+1)
= −Π(Xk −Xk+1)− (Xk −Xk+1)D(Xk −Xk+1) ≤ 0.

Therefore, Xk+1 ≥ Xk+2. Since

(A−DXk+1)∗(Xk+1 −Xk+2) + (Xk+1 −Xk+2)(A−DXk+1) = R(Xk+1),

we also get R(Xk+1) ≤ 0. The induction process is now complete. Thus, the
sequence {Xk} is well defined, monotonically decreasing, and bounded below by
X̂. Let limk→∞Xk = X̃. We have X̃ ≥ X̂. By taking limits in (1.7), we see that
X̃ is a solution of (1.1). Since σ(A−DXk) ⊂ C< for each k, σ(A−DX̃) ⊂ C≤. 2

Remark 2.3. If, in addition, X0 is an upper bound for the solution set of (1.1)
(i.e., X0 ≥ X for all solutions of (1.1)), then X̃ is the maximal solution of (1.1).

To further study the convergence behaviour of iteration (1.7), we need some
results from [2].

We first note thatH is a Hilbert space with the Frobenius inner product 〈X,Y 〉 =
trace(XY ). For a linear operator L on H, let ρ(L) = max{|λ| : λ ∈ σ(L)} denote
the spectral radius, and β(L) = max{Re(λ) : λ ∈ σ(L)} the spectral abscissa. The
identity map is denoted by I. As for matrices, L is called stable if σ(L) ⊂ C<.

Definition 2.4. A linear operator L on H is called positive if L(H) ≥ 0 whenever
H ≥ 0. L is called inverse positive if L−1 exists and is positive. L is called
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resolvent positive if the operator αI −L is inverse positive for all sufficiently large
α > 0.

Theorem 2.5. (cf. [2]) Let L : H → H be resolvent positive and Π : H → H
be positive. Then L + Π is also resolvent positive. Moreover, the following are
equivalent.

1. L+ Π is stable.

2. −(L+ Π) is inverse positive.

3. L is stable and ρ(L−1Π) < 1.

Theorem 2.6. (cf. [2]) If L : H → H is resolvent positive, then β(L) ∈ σ(L) and
there exists a nonzero matrix V ≥ 0 such that L(V ) = β(L)V .

As noted in [2], if L is resolvent positive, then the adjoint operator L∗ is also
resolvent positive and β(L∗) = β(L).

Lemma 2.7. For any A ∈ Cn×n, the linear operator L : H → H defined by

L(H) = A∗H +HA

is resolvent positive. The adjoint operator of L is given by

L∗(H) = AH +HA∗.

Proof. The first part of the lemma is proved in [2]. For any U, V ∈ H, 〈LU, V 〉 =
trace(LUV ) = trace(A∗UV ) + trace(UAV ) = trace(UV A∗) + trace(UAV ) =
〈U,AV + V A∗〉. This proves the second part of the lemma. 2

We are now ready to prove the following convergence result for iteration (1.7).

Theorem 2.8. Assume that there exist a solution X̂ to R(X) ≥ 0 and a Hermitian
matrix X0 such that R(X0) ≤ 0 and R′X0

is stable. Then the iteration (1.7) defines
a sequence {Xk} such that

1. Xk ≥ Xk+1, Xk ≥ X̂, R(Xk) ≤ 0, k ≥ 0.

2. σ(R′Xk) ⊂ C<, k ≥ 0.

3. limk→∞Xk = X+, the maximal solution of (1.1).

4. σ(R′X+
) ⊂ C≤.

Proof. By Theorem 1.3, XN
1 = X0 − (R′X0

)−1R(X0) ≥ X̂. Since R(X0) ≤ 0 and
−R′X0

is inverse positive by Theorem 2.5 and Lemma 2.7, we also have X0 ≥ XN
1 .
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Thus, X0 ≥ X̂ is necessarily true. Since R′X0
is stable, we know from Theorem

2.5 that the operator L given by

L(H) = (A−DX0)∗H +H(A−DX0)

is also stable. Thus, A − DX0 is a stable matrix. Therefore, all the conclusions
of Theorem 2.2 are true. Since limk→∞Xk = X̃ ≥ X̂ and X̂ can be taken to be
any solution of (1.1), we have X̃ = X+. We have thus proved items 1 and 3 of the
theorem. Since item 4 follows from item 2, we need only to prove item 2. Assume
that R′Xk is stable for some k ≥ 0. We need to prove that R′Xk+1

is also stable. If
R′Xk+1

is not stable, we know from Theorem 2.6 and the note that follows it that
(R′Xk+1

)∗(V ) = βV for some nonzero V ≥ 0 and some number β ≥ 0. Therefore,

〈V,R′Xk+1
(Xk+1 − X̂)〉 = 〈βV,Xk+1 − X̂〉 ≥ 0.

On the other hand, we have by (2.3) that

R′Xk+1
(Xk+1 − X̂)

= (A−DXk+1)∗(Xk+1 − X̂) + (Xk+1 − X̂)(A−DXk+1) + Π(Xk+1 − X̂)
≤ −Π(Xk −Xk+1)− (Xk+1 − X̂)D(Xk+1 − X̂)
−(Xk −Xk+1)D(Xk −Xk+1)

≤ −(Xk −Xk+1)D(Xk −Xk+1).

Therefore,
〈V, (Xk −Xk+1)D(Xk −Xk+1)〉 = 0.

So, trace
(
V 1/2(Xk − Xk+1)D1/2D1/2(Xk − Xk+1)V 1/2

)
= 0. It follows that

D1/2(Xk − Xk+1)V 1/2 = 0 and thus D(Xk − Xk+1)V = 0. Now, by Lemma
2.7,

(R′Xk)∗(V ) = (A−DXk)V + V (A−DXk)∗ + Π∗(V )
= (R′Xk+1

)∗(V ) +D(Xk+1 −Xk)V + V (Xk+1 −Xk)D

= (R′Xk+1
)∗(V ) = βV,

which is contradictory to the stability of R′Xk . 2

We will now make a comparison between Theorem 1.3 and Theorem 2.8. Note
first that we need to assume R(X0) ≤ 0 in Theorem 2.8. The Newton iteration
does not need this assumption and R(X1) ≤ 0 is necessarily true. The conclusions
in Theorem 1.3 and Theorem 2.8 are almost the same. The only difference is that
the first conclusion is generally not true for k = 0 in Theorem 1.3, since R(X0) ≤ 0
is not assumed there. But that conclusion will be true for k = 0 if we also assume
R(X0) ≤ 0 in Theorem 1.3. If it is difficult to choose an X0 with R′X0

stable
and R(X0) ≤ 0, we may get such an X0 by applying one Newton iteration on a
Hermitian matrix Y0 stabilizing for R.

From the above discussions, the following conclusions can be made.
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• Under the conditions of Theorem 2.8, the four conclusions in the theorem
would remain valid if the sequence {Xk}∞k=1 were obtained by using Newton’s
method and iteration (1.7) in an arbitrary combination.

• Under the conditions of Theorem 1.3, the four conclusions in the theorem
would remain valid if, after X1 has been obtained by Newton’s method, the
sequence {Xk}∞k=2 were obtained by using Newton’s method and iteration
(1.7) in an arbitrary combination.

Before we can determine a good combination of the Newton iteration and the
iteration (1.7), we need to have some idea about the convergence rates of these
two iterations.

3. Convergence rates of the two iterations

We start with a result on the convergence rate of the Newton iteration.

Theorem 3.1. If R′X+
is stable in Theorem 1.3, then the convergence of Newton’s

method is quadratic.
The above result was proved in [2]. It also follows directly from Theorem 1.3

and a result on the local quadratic convergence of Newton’s method in general
Banach spaces (see [7], for example).

For iteration (1.7), linear convergence can be guaranteed when R′X+
is stable.

This will be a consequence of the following general result.

Theorem 3.2. (cf. [8, p. 21]) Let T be a (nonlinear) operator from a Banach
space E into itself and x∗ ∈ E be a solution of x = Tx. If T is Fréchet differentiable
at x∗ with ρ(T ′x∗) < 1, then the iterates xn+1 = Txn (n = 0, 1, . . .) converge to x∗,
provided that x0 is sufficiently close to x∗. Moreover, for any ε > 0,

‖xn − x∗‖ ≤ c(x0; ε)
(
ρ(T ′x∗) + ε

)n
,

where ‖ · ‖ is the norm in E and c(x0; ε) is a constant independent of n.

Theorem 3.3. Let the sequence {Xk} be as in Theorem 2.8. If R′X+
is stable,

then
lim sup
k→∞

k
√
‖Xk −X+‖ ≤ ρ

(
(LX+)−1Π

)
< 1,

where ‖ · ‖ is any matrix norm and the operator LX is defined by

LX(H) = (A−DX)∗H +H(A−DX).
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Proof. The iteration (1.7) can be written as Xk+1 = G(Xk) with

G(X) = (LX)−1(−Π(X)−XDX − C).

It can easily be shown that

G(X+ +H)−G(X+) = −(LX+)−1Π(H) + o(H),

where o(H) denotes some matrix W (H) with lim‖H‖→0
‖W (H)‖
‖H‖ = 0. Therefore,

the Fréchet derivative of G at the matrix X+ is G′X+
= −(LX+)−1Π. Since R′X+

is stable, we have ρ
(
(LX+)−1Π

)
< 1 by Theorem 2.5. Therefore,

lim sup
k→∞

k
√
‖Xk −X+‖ ≤ ρ

(
(LX+)−1Π

)
< 1

by Theorems 2.8 and 3.2. 2

Therefore, when R′X+
has no eigenvalues on the imaginary axis, the conver-

gence of iteration(1.7) is linear while the convergence of the Newton iteration is
quadratic. Next we will examine the convergence rates of the two iterations when
R′X+

has some eigenvalues on the imaginary axis.
In the case of Π = 0, the two iterations are identical and R′X+

has eigenvalues
on the imaginary axis if and only if A − DX+ has eigenvalues on the imaginary
axis. A convergence rate analysis has been given in [6] when all the eigenvalues
of A − DX+ on the imaginary axis are semisimple (i.e., all elementary divisors
associated with these eigenvalues are linear). If A − DX+ has non-semisimple
eigenvalues on the imaginary axis, the convergence rate analysis remains an open
problem.

In general, when R′X+
has eigenvalues on the imaginary axis, we know from

Theorem 2.6 that 0 must be one of these eigenvalues. Therefore, R′X+
is not

invertible. The convergence of Newton’s method is typically linear in this case (see
[3], for example). If LX+ is invertible, then ρ

(
(LX+)−1Π

)
= 1 and the convergence

of iteration (1.7) is expected to be sublinear in view of Theorem 3.3. Here is one
example.

Example 3.4. For the Riccati equation (1.1) with n = 1 and

A =
1
2
, C = −1, D = 1, Π(X) = X,

it is clear that X+ = 1 is the unique solution and the conditions in Theorems 1.3
and 2.8 are satisfied for any X0 > 1. The iteration (1.7) is given by

Xk+1 = Xk −
(Xk − 1)2

2Xk − 1
.



10 Guo

So
Xk+1 − 1
Xk − 1

= 1− Xk − 1
2Xk − 1

.

Therefore, limk→∞
Xk+1−1
Xk−1 = 1, i.e., the convergence is sublinear. The Newton

iteration is given by

Xk+1 = Xk −
1
2

(Xk − 1).

So
Xk+1 − 1
Xk − 1

=
1
2
.

Thus, the Newton iteration converges to X+ linearly with rate 1
2 .

If both R′X+
and LX+ are singular (this is not very likely when Π 6= 0), then the

convergence of the iteration (1.7) may be linear. However, the rate of convergence
may be very close to 1, as the following example shows:

Example 3.5. Consider the Riccati equation (1.1) with n = 2 and

A =
(

0 0
0 −1

)
, C = 0, D =

(
1 0
0 0

)
,

Π(X) =
(

0 0
0 ε

)
X

(
0 0
0 ε

)
,

where 0 ≤ ε <
√

2. The conditions in Theorems 1.3 and 2.8 are satisfied for
X0 = I. For iteration (1.7), the iterates are

Xk =

 (
1
2

)k 0

0
(
ε2

2

)k
 , k = 1, 2, . . . .

The convergence to the maximal solution X+ = 0 is thus linear with rate
max{1

2 ,
ε2

2 }. For the Newton iteration, the iterates are

Xk =
( (

1
2

)k 0
0 0

)
, k = 1, 2, . . . .

The convergence to the maximal solution is thus linear with rate 1
2 .

In summary, when R′X+
is invertible, the convergence of iteration (1.7) is linear

and the convergence of Newton’s method is quadratic; when R′X+
is not invertible,

the convergence of iteration (1.7) is typically sublinear and the convergence of
Newton’s method is typically linear. Therefore, we should start with the much less
expensive iteration (1.7) (as long as an initial guess X0 satisfying the conditions
of Theorem 2.8 is available) and switch to the Newton iteration at a later stage
if the convergence of iteration (1.7) is detected to be too slow or if a very high
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precision is required of the approximate maximal solution. Note that one step of
Newton iteration may be needed to find an X0 for use with iteration (1.7), from
a Hermitian matrix Y0 such that R′Y0

is stable. The matrix X0 so obtained may
be far away from the maximal solution X+ and the Newton iteration could take
many steps before fast convergence sets in. This makes the use of the iteration
(1.7) (after one Newton iteration) particularly important.

4. Improvement of Newton’s method in the singular case

From the above discussions, we can see that the Newton iteration is most useful
when the convergence of iteration (1.7) is too slow, particularly when the conver-
gence of iteration (1.7) is sublinear. However, when the convergence of iteration
(1.7) is sublinear, R′X+

is singular and the convergence of Newton’s method is
typically linear. Linear convergence alone is not satisfactory since the method re-
quires a lot of computational work in each iteration. As in [6], we will show that a
simple modification can improve the performance of Newton’s method significantly
in many cases.

We let N be the null space of R′X+
and M be its orthogonal complement in H.

Let PN and PM be the orthogonal projections onto N and M, respectively.

Theorem 4.1. Let the sequence {Xk} be as in Theorem 1.3 and, for any fixed
θ > 0, let

Q = {k : ‖PM(Xk −X+)‖ > θ‖PN (Xk −X+)‖}.
Then there is a constant c > 0 such that ‖Xk − X+‖ ≤ c‖Xk−1 − X+‖2 for all
sufficiently large k ∈ Q.

Proof. Let X̃k = Xk −X+. Using Taylor’s Theorem with (1.4) and the fact that
R′X+

(PN X̃k) = 0,

R(Xk) = R(X+) +R′X+
(X̃k) +

1
2
R′′X+

(X̃k, X̃k) = R′X+
(PMX̃k)− X̃kDX̃k.(4.1)

For k ∈ Q, we have ‖X̃k‖ ≤ ‖PMX̃k‖ + ‖PN X̃k‖ ≤
(
θ−1 + 1

)
‖PMX̃k‖. Since

‖R′X+
(PMX̃k)‖ ≥ c1‖PMX̃k‖ for some constant c1 > 0, we have by (4.1)

‖R(Xk)‖ ≥ c1‖PMX̃k‖ − c2‖X̃k‖2 ≥
(
c1(θ−1 + 1)−1 − c2‖X̃k‖

)
‖X̃k‖.(4.2)

On the other hand, we have by (1.6)

(A−DXk−1)∗Xk +Xk(A−DXk−1) + Π(Xk) = −Xk−1DXk−1 − C,

and obviously,

(A−DX+)∗X+ +X+(A−DX+) + Π(X+) = −X+DX+ − C.
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By subtraction, we obtain after some manipulations

(A−DXk−1)∗X̃k + X̃k(A−DXk−1) + Π(X̃k) = −X̃k−1DX̃k−1.

Writing X+ = Xk−1 − X̃k−1 in (4.1) and using the last equation it is found that

R(Xk) =
(
(A−DXk−1) +DX̃k−1

)∗
X̃k + X̃k

(
(A−DXk−1) +DX̃k−1

)
+Π(X̃k)− X̃kDX̃k

= −X̃k−1DX̃k−1 + X̃k−1DX̃k + X̃kDX̃k−1 − X̃kDX̃k.

Thus,
‖R(Xk)‖ ≤ c3‖X̃k‖2 + c4‖X̃k‖‖X̃k−1‖+ c5‖X̃k−1‖2.(4.3)

In view of (4.2) and the fact that Xk 6= X+ for any k, we have

c1(θ−1 + 1)−1 − c2‖X̃k‖ ≤ c3‖X̃k‖+ c4‖X̃k−1‖+ c5‖X̃k−1‖2/‖X̃k‖.

Since X̃k → 0 by Theorem 1.3, ‖X̃k‖ ≤ c‖X̃k−1‖2 for all sufficiently large k ∈ Q.
2

Corollary 4.2. Assume that, for given θ > 0,

‖PM(Xk −X+)‖ > θ‖PN (Xk −X+)‖

for all k large enough. Then Xk → X+ quadratically.
From the corollary, we see that the error will be dominated by the null space

component at some stage if the convergence of Newton’s method is not quadratic
(no examples of quadratic convergence for Newton’s method in the singular case
have been found for the Riccati equation). We will now examine what will happen
if the error is precisely in the null space.

Theorem 4.3. Let the sequence {Xk} be as in Theorem 1.3. If R′X+
is singular

and Xk −X+ ∈ N , then

1. Xk+1 −X+ = 1
2 (Xk −X+).

2. X+ = Xk − 2(R′Xk)−1R(Xk).

Proof. By Taylor’s Theorem,

R′Xk(Xk −X+) = R′X+
(Xk −X+) +R′′X+

(Xk −X+,Xk −X+).

Since R(X+) = 0 and R′X+
(Xk −X+) = 0, we may also write

R′Xk(Xk −X+)

= 2{R(X+) +R′X+
(Xk −X+) +

1
2
R′′X+

(Xk −X+, Xk −X+)}

= 2R(Xk).
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The second part of the theorem follows immediately. The first part follows easily
from (1.5) and the second part. 2

From this result, we know that it is possible to get a better approximation to the
maximal solution by using a double Newton step when Xk approaches X+ slowly
but the error Xk −X+ is rapidly dominated by its null space component.

The following example illustrates this point.

Example 4.4. Consider the Riccati equation (1.1) with n = 2,

A =
(

1 1
2 −1

)
, C =

(
−2 −4
−4 −3

)
, D =

(
1 1
1 1

)
,

and

Π(X) =
(

1 0
1 2

)
X

(
1 1
0 2

)
.

It can be verified that the maximal solution of the equation is

X+ =
(

2 0
0 1

)
.

The conditions in Theorem 2.8 are satisfied for X0 = 10I. For this example,
ρ
(
(LX+)−1Π

)
= 1 and the convergence of iteration (1.7) is indeed sublinear. After

10000 iterations, we get an approximate maximal solution X10000 with

X10000 −X+ =
(

0 2.9596× 10−16

2.9596× 10−16 4.0049× 10−4

)
.

We could have switched to Newton’s method much earlier. For example, after 40
iterations, we get X40 with

X40 −X+ =
(

5.0493× 10−12 1.4938× 10−8

1.4938× 10−8 1.1968× 10−1

)
.

If we use XN
0 = X40 as the initial guess for the Newton iteration, we get XN

20 after
20 iterations with

XN
20 −X+ =

(
0 0
0 1.1516× 10−7

)
.

However, the double Newton step can be used to great advantage. For example,
we can get XN

2 after only two Newton iterations with

XN
2 −X+ =

(
0 2.2547× 10−11

2.2547× 10−11 2.9921× 10−2

)
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and apply a double Newton step on XN
2 to get XDN

3 with

XDN
3 −X+ =

(
1.7764× 10−15 −2.1889× 10−11

−2.1889× 10−11 6.5890× 10−11

)
.

Note that N = {diag(0, a) : a ∈ R} for this example.
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