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Summary The application of the finite difference method to ap-
proximate the solution of an indefinite elliptic problem produces a
linear system whose coefficient matrix is block tridiagonal and sym-
metric indefinite. Such a linear system can be solved efficiently by a
conjugate residual method, particularly when combined with a good
preconditioner. We show that specific incomplete block factorization
exists for the indefinite matrix if the mesh size is reasonably small,
and that this factorization can serve as an efficient preconditioner.
Some efforts are made to estimate the eigenvalues of the precondi-
tioned matrix. Numerical results are also given.
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1 Introduction

In this paper we consider the numerical solution of the elliptic prob-
lem

−∇ · (a(x, y)∇u)− p(x, y)u = f in Ω, (1)

u = g on ∂Ω. (2)

Here Ω is a connected bounded region in IR2, a(x, y) and p(x, y)
are real continuous functions on Ω, while f and g are real contin-
uous functions on Ω and ∂Ω, respectively. We further assume that
a(x, y) ≥ 1. (We may assume this without loss of generality when
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a(x, y) > 0.) The function p(x, y) can take large positive values, so
the problem (1)–(2) is generally indefinite.

When a(x, y) ≡ 1, (1) is the real Helmholtz equation, which ap-
pears in many applications. See, for example, [6], [18] and [23]. Many
types of boundary conditions are possible for the Helmholtz equation.
In this paper we limit our attention to the boundary condition (2).
The problem (1)–(2) (with a(x, y) ≡ 1) is the interior Dirichlet prob-
lem for the Helmholtz equation (see, e.g., [18, p. 267]). The equation
(1) was also considered in [22], where a(x, y) was allowed to be dis-
continuous. When p(x, y) ≤ 0, equation (1) is precisely the equation
(6.27) in [20, p. 182].

We discretize (1)–(2) by using the standard five-point finite dif-
ference method (see [20]) with a constant mesh spacing h in both
directions. (We always assume that h is small enough so that the
discretization makes sense.) The region Ω is replaced by a region
formed by connecting the mesh points near ∂Ω in an obvious way.
The values of the approximate solution at the mesh points on the new
boundary are obtained from the original boundary condition by sim-
ple transformation. Associated with an interior mesh point (ih, jh) is
the difference equation

si,jui,j − ai−1/2,jui−1,j − ai+1/2,jui+1,j

− ai,j+1/2ui,j+1 − ai,j−1/2ui,j−1 = fi,jh
2, (3)

where si,j = ai−1/2,j +ai+1/2,j +ai,j+1/2 +ai,j−1/2−pi,jh
2, and fi,j =

f(ih, jh), ai−1/2,j = a((i − 1/2)h, jh), etc. Arranging the unknowns
in the natural ordering, we get a linear system

Wx = v, (4)

where the matrix W (assumed to be nonsingular) is symmetric but
generally indefinite, and has the block tridiagonal form

W =


W1 F2

E2 W2
. . .

. . . . . . Fm

Em Wm

 . (5)

The matrices Wi are symmetric, (point) tridiagonal, and may have
zero elements on the two diagonals adjacent to the main diagonal
when Ω is not convex. The matrices Ei(= F T

i ) have at most one
nonzero element in each row or column. The reader may wish to form
the matrix W for a fixed region Ω (not necessarily simply connected).
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Our analyses will rely heavily on the formation of the matrix. We
denote by W0 the matrix (5) corresponding to the case p(x, y) ≡ 0.
W0 is a symmetric M -matrix and thus positive definite (see [20]).

The linear system (4) can be solved efficiently by conjugate gra-
dient type methods. In this paper we use the MCR method proposed
in [8] (see [19] for other efficient methods). The rate of convergence
of the MCR method will depend on the distribution of the eigenval-
ues of the matrix W . For conjugate gradient type methods such as
the MCR method, it is desirable that the positive eigenvalues cluster
around 1 and the negative eigenvalues cluster around some appropri-
ate negative number µ. See [11] for further discussions. In our case,
the matrix W has relatively few negative eigenvalues, and the rate
of convergence of the MCR method is largely determined by the dis-
tribution of the positive eigenvalues. An inexpensive preconditioner
can usually be constructed to improve the distribution of the eigen-
values to some extent. Normally we can use a symmetric positive
definite matrix C as a preconditioner even though the matrix W
may be indefinite. The MCR method is then applied to the equiva-
lent linear system W ′x′ = v′ with W ′ = C−

1
2 WC−

1
2 , v′ = C−

1
2 v, and

x′ = C
1
2 x. After rewriting the resulting algorithm we get the precon-

ditioned MCR algorithm. This new algorithm takes the same form
as the original MCR algorithm except that the solution of a linear
system of the type Cy = d is needed in each iterative step. Thus the
preconditioning matrix C should be chosen such that the solution
of Cy = d is inexpensive and the distribution of the eigenvalues of
C−

1
2 WC−

1
2 (or C−1W ) is much more favorable for the MCR method.

When the values of the function p(x, y) are small in magnitude, it
is a good idea to use a good preconditioner for the matrix W0 also as
a preconditioner for the matrix W (cf. [22], [24]). But this strategy
tends to be unsatisfactory as the values of the function p(x, y) get
larger. It is tempting to consider the incomplete factorization of the
matrix W since it is a perturbation of an M -matrix.

The incomplete factorization method has been extensively studied
over the past eighteen years or so. The analyses have been made
mostly for M - or H-matrices (see, e.g., [1], [7], [9], [12], [15], [21]).
In fact, it was shown in [21] that only for H-matrices can incomplete
factorizations be universally carried out. However, for matrices arising
in applications, only specific incomplete factorizations are of practical
interest. And for these incomplete factorizations to be well defined,
the matrices need not necessarily be H-matrices.

In Section 2, we show that specific incomplete block factorization
exists for the matrix W if the mesh size h is reasonably small. In Sec-
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tion 3, we give a result on bounds for eigenvalues of preconditioned
matrices. In particular, we get a specific upper bound for the eigen-
values of C−1W , where C is the preconditioner obtained from the
incomplete block factorization. A lower bound for positive eigenval-
ues of C−1W is also deduced. In Section 4, we present some numerical
results to illustrate the effectiveness of incomplete block factorization
as a preconditioner for indefinite matrices.

2 Existence of incomplete block factorization

We begin with some notation. If A = [aij ] and B = [bij ] are real
matrices, then A ≥ B if aij ≥ bij for all i, j. For square matrix
A = [aij ], we let A(p) denote the matrix [bij ] with

bij =
{

aij , |i− j| ≤ p,
0, |i− j| > p.

Let A be a square matrix in block tridiagonal form

A =


A1 U2

L2 A2
. . .

. . . . . . Um

Lm Am

 = D + L + U,

where the Ai’s are square matrices, not necessarily of the same size;
L and U are strictly lower and upper block triangular matrices, re-
spectively. Consider the recursion (cf. [9])

X1 = A1,

Xr = Ar − Lr(X−1
r−1)

(p)Ur, r = 2, 3, . . . ,m. (6)

If the Xi’s are nonsingular, C = (X + L)X−1(X + U) is called the
incomplete block factorization of A, where X =diag(Xi)m

i=1.

Now let D̂ =diag(D̂i)m
i=1 be any nonsingular (point) diagonal ma-

trix of the same size and partitioning as A, and

Ã = D̂AD̂ =


Ã1 Ũ2

L̃2 Ã2
. . .

. . . . . . Ũm

L̃m Ãm

 = D̃ + L̃ + Ũ .
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We can then consider the recursion

X̃1 = Ã1,

X̃r = Ãr − L̃r(X̃−1
r−1)

(p)Ũr, r = 2, 3, . . . ,m. (7)

If the X̃i’s are nonsingular, C̃ = (X̃+L̃)X̃−1(X̃+Ũ) is the incomplete
block factorization of Ã, where X̃ =diag(X̃i)m

i=1.

It can be easily checked that the matrices X̃i from (7) are nonsin-
gular if and only if the matrices Xi from (6) are nonsingular. More-
over, X̃i = D̂iXiD̂i (i = 1, 2, . . . ,m), C̃ = D̂CD̂, and C̃−1Ã =
D̂−1C−1AD̂. Therefore, when the diagonal elements of D̂ are all pos-
itive, the matrices X̃i are M -matrices if and only if the matrices Xi

are M -matrices. Note also that the matrices C̃−1Ã and C−1A are
similar and thus have the same eigenvalues.

With the above observation in mind, we turn our attention to the
matrix W described in Section 1.

Since a(x, y) is uniformly continuous on Ω, for every ε0 (0 < ε0 <
1) there exists an h0 such that for all (x1, y1) and (x2, y2) in Ω

|a(x2, y2)− a(x1, y1)| ≤ ε0 whenever |x2 − x1|+ |y2 − y1| ≤ h0. (8)

Let D′ be the diagonal matrix whose diagonal elements are the values
of a(x, y) at the mesh points (in natural ordering) and

c1 = max
(x,y)∈Ω

p(x, y)
a(x, y)

, c2 = min
(x,y)∈Ω

p(x, y)
a(x, y)

.

If c1 ≤ 0, the existence of the incomplete block factorization is well
established. Our emphasis is on the case c1 > 0. Let Ŵ = ((1 +
ε0)D′)−

1
2 W ((1+ε0)D′)−

1
2 . In view of (3), the diagonal elements of Ŵ

have the form (ai−1/2,j + ai+1/2,j + ai,j+1/2 + ai,j−1/2 − pi,jh
2)/((1 +

ε0)ai,j), and the nonzero offdiagonal elements of Ŵ have the form
−as,t/((1+ε0)

√
ai1,j1ai2,j2) with |i1−s|+ |j1− t| = |i2−s|+ |j2− t| =

1/2. By (8) and the assumption that a(x, y) ≥ 1, it is not difficult to
see that for h ≤ 2h0 the nonzero elements of the matrix Ŵ are such
that

4(1− ε0)− c1h
2

1 + ε0
≤ (Ŵ )i,i ≤

4(1 + ε0)− c2h
2

1 + ε0
, (9)

and

−1 ≤ (Ŵ )i,j ≤ −1− ε0
1 + ε0

< 0 (i 6= j). (10)
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Let

Ŵ =


Ŵ1 F̂2

Ê2 Ŵ2
. . .

. . . . . . F̂m

Êm Ŵm

 , (11)

and consider the recursion

X̂1 = Ŵ1,

X̂r = Ŵr − Êr(X̂−1
r−1)

(1)F̂r, r = 2, 3, . . . ,m. (12)

We have taken p = 1 in the recursion and will produce M -matrices
X̂i. When Ŵ is indefinite, the complete factorization of Ŵ (in this
case p = ∞), if well defined, will produce at least one X̂i with some
negative eigenvalues. It is very likely that we will produce some ill-
conditioned matrices X̂i for p > 1. The resulting preconditioner would
be very bad—it would increase the number of iterations and the com-
putational work per iteration at the same time, as compared with the
case p = 1. For this reason we restrict ourselves to the case p = 1.
We will show that the symmetric matrices X̂i are all M -matrices if
the mesh size h is reasonably small. The following lemmas will be
needed.

Lemma 1 (cf. [10], [16]) Let A ∈ IRn,n be an M -matrix. If the
elements of B ∈ IRn,n satisfy the relations

bii ≥ aii, aij ≤ bij ≤ 0, i 6= j, 1 ≤ i, j ≤ n,

then B is also an M -matrix. Moreover, B−1 ≤ A−1.

Let

Tp =


p −1

−1 p
. . .

. . . . . . −1
−1 p


n×n

,

we have

Lemma 2 (cf. [17]) For j ≥ i, and p > 2,

(T−1
p )i,j =

(ri
+ − ri

−)(rn−j+1
+ − rn−j+1

− )
(r+ − r−)(rn+1

+ − rn+1
− )

,

where r± are the two solutions of the quadratic equation r2−pr+1 =
0.
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The next lemma provides a Toeplitz matrix upper bound for
(T−1

p )(1), the tridiagonal part of T−1
p . It follows readily from Lemma

2.
Lemma 3

(T−1
p )i,i ≤

1√
p2 − 4

, (T−1
p )i,i+1 = (T−1

p )i+1,i ≤
p−

√
p2 − 4

2
√

p2 − 4
.

Proof

(ri
+ − ri

−)(rn−i+1
+ − rn−i+1

− ) = rn+1
+ + rn+1

− − ri
−rn−i+1

+ − ri
+rn−i+1
−

≤ rn+1
+ + rn+1

− − ri
−rn−i+1
− − ri

−rn−i+1
− = rn+1

+ − rn+1
− ,

so
(T−1

p )i,i ≤
1

r+ − r−
=

1√
p2 − 4

.

Similarly,

(ri
+ − ri

−)(rn−i
+ − rn−i

− ) ≤ rn
+ − rn

− ≤ (rn+1
+ − rn+1

− )r−,

so

(T−1
p )i,i+1 = (T−1

p )i+1,i ≤
r−

r+ − r−
=

p−
√

p2 − 4
2
√

p2 − 4
. ut

We remark that the upper bounds (independent of i and n) in
Lemma 3 are best possible since

lim
n→∞

(T−1
p )[n

2
],[n

2
] =

1√
p2 − 4

, lim
n→∞

(T−1
p )[n

2
],[n

2
]+1 =

p−
√

p2 − 4
2
√

p2 − 4
.

We now return to the recursion (12), and let

b =
4(1− ε0)− c1h

2

1 + ε0
.

By (9) and (10),

X̂1 = Ŵ1 ≥


x1 −y1

−y1 x1
. . .

. . . . . . −y1

−y1 x1

 = Z1

with x1 = b and y1 = 1. If x1 > 2y1, then Z1 is an M -matrix. By
Lemma 1 and (10), X̂1 is also an M -matrix, and X̂−1

1 ≤ Z−1
1 . Thus

X̂2 = Ŵ2 − Ê2(X̂−1
1 )(1)F̂2 ≥ Tb −

1
y1

Ẽ2(T−1
x1
y1

)(1)F̃2,
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where the matrices Ẽ2 and F̃2 are obtained from Ê2 and F̂2 by re-
placing all of their nonzero elements by −1.

Now we have, by Lemma 3,

X̂2 ≥


x2 −y2

−y2 x2
. . .

. . . . . . −y2

−y2 x2

 = Z2,

where

x2 = b− 1√
x2

1 − 4y2
1

, y2 = 1 +
x1 −

√
x2

1 − 4y2
1

2y1

√
x2

1 − 4y2
1

.

If x2 > 2y2, then Z2 is an M -matrix. So X̂2 is also an M -matrix, and
X̂−1

2 ≤ Z−1
2 .

Continuing with the recursion (12), we have the following result.

Proposition 1 The symmetric matrices X̂i in the recursion (12) are
all M -matrices if the recursion

x1 = b (b > 2), y1 = 1;

xn+1 = b− 1√
x2

n − 4y2
n

, yn+1 = 1 +
xn −

√
x2

n − 4y2
n

2yn

√
x2

n − 4y2
n

; (13)

n = 1, 2, . . .

is well defined, i.e., if xn > 2yn for all n.

We record some simple properties of the recursion (13).

Proposition 2 For the recursion (13) we have

1. If {xn}k
n=1 and {yn}k

n=1 can be generated for some b > 2, then
x1 > x2 > · · · > xk and y1 < y2 < · · · < yk.

2. If b′ > b, then {x′n}k
n=1 and {y′n}k

n=1 can also be generated for b′,
moreover, x′n > xn and y′n < yn, n = 1, 2, . . . , k.

3. If b ≥ 3.7, then the sequences {xn}∞n=1 and {yn}∞n=1 can be gener-
ated, i.e., xn > 2yn for all n.

Proof (1) and (2) can be easily checked. In view of (2), we need only
prove (3) for b = 3.7. But when b = 3.7, we can prove by induction
that xn > 3.233, yn < 1.210 for all n. ut
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Consider the matrix W in (5) and the recursion

X1 = W1,

Xr = Wr − Er(X−1
r−1)

(1)Fr, r = 2, 3, . . . ,m. (14)

We have the following result.

Proposition 3 When c1 > 0, the symmetric matrices Xi in (14) are
all M -matrices if

h ≤ min

(
2h0,

√
0.3− 7.7ε0

c1

)
(15)

for some pair (ε0, h0) satisfying (8) with ε0 < 30
77 .

Proof As we observed earlier in this section, the matrices Xi are all
M -matrices if and only if the matrices X̂i in (12) are all M -matrices.
The result now follows from Proposition 1 and Proposition 2(3). ut

The restriction on h in the above proposition is much less stringent
than in an earlier result ([13]). That result was obtained by a careful
application of a more general result therein.

Example 1 If Ω = (0, 1) × (0, 1), a(x, y) = 1, and p(x, y) = 800,
we have c1 = 800 and can take h0 = ∞, ε0 = 0. It follows from
Proposition 3 that the incomplete block factorization exists when
h ≤ 1

52 .

Example 2 If Ω = (0, 1)× (0, 1), a(x, y) = 1 + x2 + y2, and p(x, y) =
400, we have c1 = 400 and can take h0 = 1

104 , ε0 = 1
52 . It follows from

Proposition 3 that the incomplete block factorization exists when
h ≤ 1

52 .

3 Estimates for eigenvalues of preconditioned matrices

In Section 2, we have seen that the recursion (14) for the symmetric
matrix W in (5) is well defined if condition (15) is satisfied (or c1 ≤ 0).
We denote by C the corresponding incomplete block factorization of
W . Clearly C is symmetric positive definite. The matrix C will then
be used as a preconditioner for the linear system (4). Although C−1W
has the same number of negative eigenvalues as W , the distribution
of the eigenvalues will hopefully be more favorable for the iterative
method.
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When a matrix A ∈ IRn,n is symmetric or similar to a symmetric
matrix, we arrange its eigenvalues in an increasing order:

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).

The following general result gives some information about the eigen-
values of the matrix C−1W .

Theorem 1 ([14]) Let A ∈ IRn,n be a symmetric matrix, S ∈ IRn,n

be a symmetric positive definite matrix. Then

1. If λi(A) > 0 and λn(µS −A) ≥ 0 with µ > 0, then

λi(S−1A) ≥ µλi(A)
λi(A) + λn(µS −A)

;

2. If λi(A) > 0 and λ1(µS −A) ≥ 0 with µ > 0 then

λi(S−1A) ≤ µλi(A)
λi(A) + λ1(µS −A)

;

3. If λi(A) < 0 and λn(µS −A) ≤ 0 with µ < 0, then

λi(S−1A) ≥ µλi(A)
λi(A) + λn(µS −A)

;

4. If λi(A) < 0 and λ1(µS −A) ≤ 0 with µ < 0, then

λi(S−1A) ≤ µλi(A)
λi(A) + λ1(µS −A)

.

Next we will apply part (2) of the theorem to get a more specific
upper bound for the eigenvalues of C−1W .

We express the matrix Ŵ in (11) as Ŵ = D̂+ L̂+ Û , where L̂ and
Û are strictly lower and upper block triangular matrices, respectively.
When condition (15) is satisfied (or c1 ≤ 0), we let Ĉ be the incom-
plete block factorization of Ŵ obtained from the recursion (12). So
Ĉ = (X̂ + L̂)X̂−1(X̂ + Û) with X̂ = diag (X̂i)m

i=1. The matrix Ĉ is
again symmetric positive definite. Since Ĉ−1Ŵ is similar to C−1W ,
we will apply Theorem 1(2) to the pair of matrices Ŵ and Ĉ.

As in [2], we let V = (1− 1/µ)X̂ + L̂ and find

µĈ − Ŵ = µV X̂−1V T + (2− 1
µ

)X̂ − D̂.

Since µV X̂−1V T is positive semidefinite for any µ > 0, it follows that

λ1(µĈ − Ŵ ) ≥ λ1((2−
1
µ

)X̂ − D̂).
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We will find µ ≥ 1 such that

λ1((2−
1
µ

)X̂ − D̂) ≥ 0. (16)

This µ will then be an upper bound for the eigenvalues of C−1W .
(16) is clearly equivalent to

λ1((2−
1
µ

)X̂i − Ŵi) ≥ 0, 1 ≤ i ≤ m. (17)

Consider the recursion (13) with b ≥ 3.7; let x∗ = limn→∞ xn, y∗ =
limn→∞ yn (the limits exist by Proposition 2). From Proposition 2
and its proof, it is readily seen that x∗ ≥ 3.233, y∗ ≤ 1.210. If Ŵi has
no zero elements on the two diagonals adjacent to the main diagonal,
we have by (9) and (10)

Ŵi ≤


a1 −b1

−b1 a1
. . .

. . . . . . −b1

−b1 a1

 , (18)

with

a1 =
4(1 + ε0)− c2h

2

1 + ε0
, b1 =

1− ε0
1 + ε0

.

By the argument leading to Proposition 1 and in view of Proposition
2, we have

X̂i ≥


x∗ −y∗

−y∗ x∗
. . .

. . . . . . −y∗

−y∗ x∗

 . (19)

Thus

(2− 1
µ

)X̂i − Ŵi ≥


a2 −b2

−b2 a2
. . .

. . . . . . −b2

−b2 a2

 ,

with
a2 = (2− 1

µ
)x∗ − a1, b2 = (2− 1

µ
)y∗ − b1.

Since µ ≥ 1, the offdiagonal elements of (2 − 1/µ)X̂i − Ŵi are non-
positive. Therefore, (17) is satisfied for the given i if a2 ≥ 2b2, or
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(2x∗ − 4y∗ − a1 + 2b1)µ ≥ x∗ − 2y∗. If Ŵi has zero elements at
some places on the two diagonals adjacent to the main diagonal,
the corresponding elements in the upper bound for Ŵi (see (18))
should be replaced by zero. By examining the procedure leading to
Proposition 1, we can see that the corresponding elements in the
lower bound for X̂i (see (19)) can also be changed to zero. The above
analysis can then be made on proper submatrices of X̂i and Ŵi.

We have thus reached the following conclusion.

Proposition 4 With the previous notation and assume that

h ≤ 2h0, and c1h
2 ≤ 0.3− 7.7ε0.

If

µ =
x∗ − 2y∗

2x∗ − 4y∗ − a1 + 2b1
≥ 1,

then µ is an upper bound for the eigenvalues of C−1W .

We can also apply Theorem 1(1) to obtain a more specific lower
bound for each positive eigenvalue of C−1W .

Since

C −W =
0

E2(X−1
1 − (X−1

1 )(1))F2

. . .
Em(X−1

m−1 − (X−1
m−1)

(1))Fm

 ,

we have λmax(C −W ) ≥ 0. Thus for each i with λi(W ) > 0, we have

λi(C−1W ) ≥ λi(W )
λi(W ) + λmax(C −W )

.

Recall that Ŵ = ((1 + ε0)D′)−
1
2 W ((1 + ε0)D′)−

1
2 , and let ((1 +

ε0)D′)−
1
2 = diag(Di). We have

Êi = DiEiDi−1, F̂i = Di−1FiDi, i = 2, . . . ,m;

X̂i = DiXiDi, i = 1, . . . ,m;

X̂−1
i−1 − (X̂−1

i−1)
(1) = D−1

i−1(X
−1
i−1 − (X−1

i−1)
(1))D−1

i−1, i = 2, . . . ,m.
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Now

λmax(C −W ) = max
2≤i≤m

λmax(Ei(X−1
i−1 − (X−1

i−1)
(1))Fi)

= max
2≤i≤m

λmax(D−1
i Êi(X̂−1

i−1 − (X̂−1
i−1)

(1))F̂iD
−1
i )

≤ max
2≤i≤m

‖D−1
i Êi(X̂−1

i−1 − (X̂−1
i−1)

(1))F̂iD
−1
i ‖∞.

By the definition of the diagonal matrix D′, we have

‖D−1
i ‖2

∞ ≤ (1 + ε0)c3 with c3 = max
(x,y)∈Ω

a(x, y).

In view of (10), we have ‖Êi‖∞ = ‖F̂i‖∞ ≤ 1. Denote the matrix on
the right hand side of (19) by Gni , with ni being its order. We have
by (19) and Lemma 1 that

‖X̂−1
i − (X̂−1

i )(1)‖∞ ≤ ‖G−1
ni
− (G−1

ni
)(1)‖∞.

For any i < j, by applying Lemma 1 to the pair of matrices[
x∗Ij−i

Gi

]
, Gj ,

we can see easily that zi ≤ zj , where zk = ‖G−1
k − (G−1

k )(1)‖∞ for any
integer k ≥ 1. The sequence {zk} is bounded above since x∗ > 2y∗ in
our case. We can then let z∗ = limk→∞ zk and obtain the following
result.

Proposition 5 With the previous notation and assume that

h ≤ 2h0, and c1h
2 ≤ 0.3− 7.7ε0.

We have

λi(C−1W ) ≥ λi(W )
λi(W ) + (1 + ε0)c3z∗

for all i such that λi(W ) > 0.

The numbers x∗, y∗, and z∗ in Propositions 4 and 5 are deter-
mined by b ≥ 3.7. While x∗ and y∗ are readily found from recur-
sion (13), the first 8 digits of z∗ are obtained in z50. Note that
zk = max1≤i≤k(G−1

k e− (G−1
k )(1)e)i, where e = (1, 1, . . . , 1)T . By [13,

Proposition 3.2], zk = (G−1
k e−(G−1

k )(1)e)[ k+1
2

] for k > 5 and x∗ ≥ 3y∗

(this is true if b ≥ 3.836). The number zk can thus be found easily for
reasonably large k. In Table 1 we list the (truncated) values of x∗, y∗

and z∗ for some values of b.
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Table 1.

b x∗ y∗ z∗

4.2 3.888646 1.096130 0.085874
4.1 3.772814 1.105974 0.101536
4.0 3.653908 1.118299 0.122871
3.9 3.530219 1.134588 0.154037
3.8 3.397577 1.158506 0.206006
3.7 3.234338 1.209262 0.341584

Table 2.

b 4.2 4.1 4.0 3.9 3.8

µ 1.422221 1.527665 1.698150 2.027124 2.992170

Now we will examine some consequences of Propositions 4 and 5.
In the h → 0 limit, we have ε0 = h0 = 0, b = a1 = 4, b1 = 1. We

find by Proposition 4 that µ = 1.699 is an upper bound for the eigen-
values of C−1W . We also find by Proposition 5 that, asymptotically,

λi(C−1W ) ≥ λi(W )
0.122872c3

for all i such that λi(W ) > 0 and limh→0 λi(W ) = 0. Since the
upper bound is independent of a(x, y), it is not surprising that c3

is inversely related in the lower bound. For the special case that
a(x, y) ≡ 1, p(x, y) ≡ 0 and Ω = (0, 1) × (0, 1), a previously known
asymptotic lower bound is λ1(C−1W ) ≥ λ1(W )/0.12288 (see [3, p.
441] and [5, p. 12]).

For the Helmholtz equation (i.e. a(x, y) ≡ 1) with p(x, y) ≡ σ, we
have h0 = ∞, ε0 = 0, b = a1 = 4 − σh2, b1 = 1. We list in Table
2 the upper bounds obtained from Proposition 4, for some values of
b. Note that the upper bounds are well under control for b ≥ 3.8. If
σ ≤ 0, µ = 1.699 is an upper bound for the eigenvalues of C−1W
for any h. A previously known upper bound is simply µ = 2 (see [3,
p. 441]). If σ > 0 is large, h has to be small to ensure a good upper
bound.

When a(x, y) ≡ 1 and b ≥ 3.7, the lower bound for each positive
eigenvalue is of course

λi(C−1W ) ≥ λi(W )
λi(W ) + z∗

,

where z∗ can be found in Table 1 for some values of b.
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Let λ+
min(·) be the smallest positive eigenvalue of a matrix. For

the MCR method, a better distribution of the positive eigenvalues is
usually reflected by a smaller ratio λmax/λ+

min.
For problem (1)–(2) with a(x, y) ≡ 1, we have asymptotically

λmax(C−1W ) ≤ 1.699
8

λmax(W ),

λ+
min(C

−1W ) ≥ 1
0.123

λ+
min(W ).

This means
λmax(C−1W )
λ+

min(C−1W )
≤ 1

38.28
λmax(W )
λ+

min(W )
.

For all i such that λi(W ) < 0, we have by letting µ → −∞ in Theorem
1(4),

λi(C−1W ) ≤ λi(W )
λmax(C)

≤ λi(W )
λmax(W ) + λmax(C −W )

.

Thus we have asymptotically

λi(C−1W ) ≤ λi(W )
8.123

,

and
λmax(C−1W )
|λi(C−1W )|

≤ 1.726
λmax(W )
|λi(W )|

.

In view of the estimate for the convergence rate of the MCR method
(see, e.g., [8, Theorem 3.1]), we would like to have a smaller ratio
λmax/λ+

min as well as smaller ratios λmax/|λi| for λi < 0. We have
shown above that, asymptotically, the preconditioner C will decrease
the ratio λmax/λ+

min by at least a multiple of 38.28 and will at worst
increase each ratio λmax/|λi| ( λi < 0) by a multiple of 1.726. Note
that for the matrix W the number of negative eigenvalues n− is es-
sentially independent of the mesh size h. If n− is small, we could
predict a reduction in the number of MCR iterations by a multiple
of 6 (or any other number close to

√
38.28) for sufficiently small h.

As n− gets large, however, the efficiency of the preconditioner would
be degraded for realistic values of h.

For more general problems and fixed mesh size h, useful upper
and lower bounds for the positive eigenvalues can be easily obtained
from Propositions 4 and 5. We give here only one example for the
upper bound.
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Example 3 If Ω = (0, 1)× (0, 1), a(x, y) = 1+x2 +y2, p(x, y) = 400,
and h = 1

100 , we can take h0 = 1
200 , and ε0 = 1

100 . We find by
application of Proposition 4 that µ = 2.842 is an upper bound for
the eigenvalues of C−1W .

We have required in our main results that the mesh size h be
sufficiently small. This should not be seen as a drawback. For the
Helmholtz equation we mentioned above (with σ > 0), it was noted
in [6] that σ3/2h2 should be kept small so that the solution of the
linear system can reasonably approximate the solution of the original
physical problem. This means that h and σh2 have to be small for
large σ.

4 Numerical results

For test purposes we consider the following special case of problem
(1)–(2):

−∆u− σu = 1 in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

where σ is a real constant.
The corresponding linear system Wx = b will be solved by the

MCR method, with or without preconditioning. The matrices W and
W0 are now related by W = W0 − σh2I.

For preconditioning, we use the following two preconditioners:

– Method 1: Preconditioner C is the incomplete block factorization
of W . Its existence will be guaranteed by Proposition 3 (cf. Ex-
ample 1).

– Method 2: Preconditioner C0 is the modified incomplete block
factorization of W0. C0 is a very good preconditioner for W0 (see
[3, p. 346]).

We note that (for variable coefficient problems) the computational
work per iteration for the preconditioned MCR method is less than
twice that for the unpreconditioned MCR method. Let N be the num-
ber of unknowns. The solution of a linear system of the type Cy = d
(or C0y = d) needs 8N multiplications (see [4]). The unprecoditioned
MCR method needs 12N ∼ 14N multiplications per iteration (see
[8]). The preconditioners C and C0 are formed once and for all. They
need 15N and 21N multiplications, respectively (see [4]).

When h = 1/96, the incomplete block factorization C is well de-
fined for σ ≤ 236 by [13, Corollary 3.6]. Now we know from Proposi-
tion 3 that C is well defined for σ ≤ 2764. Of course, according to the
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Table 3. The number of MCR iterations for h = 1
96

σ No preconditioning Method 1 Method 2

0 148 29 (1.70) 19
50 158 30 (1.72) 28

100 188 49 (1.73) 41
150 182 46 (1.74) 44
200 191 48 (1.76) 46
250 201 72 (1.77) 79
300 200 71 (1.78) 70
350 207 73 (1.80) 85
400 207 78 (1.82) 109
450 226 84 (1.83) 119
500 257 103 (1.85) 156
550 250 101 (1.87) 157
600 248 95 (1.89) 174
650 248 98 (1.91) 198
700 255 111 (1.93) 208
750 262 117 (1.95) 220
800 291 147 (1.97) 298

analysis in Section 3, the preconditioner is efficient only for a smaller
range of σ.

In our numerical experiments we use double precision and use the
zero vector as initial guess. The algorithm is terminated as soon as
‖rk‖2/‖r0‖2 ≤ 10−6, where r0 and rk are the residuals at the initial
step and the kth iterative step, respectively. We give the number
of MCR iterations in Tables 3 and 4. The numbers in parentheses
for Method 1 are the upper bounds for the eigenvalues of C−1W ,
obtained by application of Proposition 4.

From the test results we observe that Method 2 works well only
when σ is relatively small. When σ gets larger, Method 1 gives much
better performance than Method 2. Compared with the unprecondi-
tioned MCR method, Method 1 becomes less effective as σ gets larger.
But it still gives improvement when σ is as large as 800. When the
mesh size is halved, the number of MCR iterations increases nor-
mally by a multiple of 2 if no preconditioner is used. But the increase
is generally much slower for both Method 1 and Method 2.

Acknowledgements The author would like to thank Dr. Peter Lancaster for read-
ing the manuscript and providing useful suggestions.
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Table 4. The number of MCR iterations for h = 1
192

σ No preconditioning Method 1 Method 2

0 297 49 (1.70) 28
50 316 55 (1.71) 43

100 375 92 (1.71) 64
150 354 71 (1.71) 66
200 382 87 (1.72) 78
250 428 106 (1.72) 122
300 425 107 (1.72) 116
350 436 133 (1.73) 164
400 436 115 (1.73) 176
450 471 128 (1.73) 196
500 516 183 (1.73) 250
550 495 149 (1.74) 244
600 491 141 (1.74) 364
650 489 159 (1.74) 353
700 510 158 (1.75) 338
750 523 187 (1.75) 384
800 572 210 (1.76) 452
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