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Abstract

We consider iterative methods for the minimal nonnegative solution of
the matrix equation G =

∑∞
i=0 AiG

i, where the matrices Ai are nonnegative
and

∑∞
i=0 Ai is stochastic. Convergence theory for an inversion free algorithm

is established. The convergence rate of this algorithm is shown to be com-
parable with that of the fastest iteration among three fixed point iterations.
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1 Introduction

Consider the infinite block matrix

P =



B0 B1 B2 B3 · · ·
A0 A1 A2 A3 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 , (1)

where Ai, Bi ∈ Rm×m(i = 0, 1, . . .) are (elementwise) nonnegative,
∑∞

i=0 Ai

and
∑∞

i=0 Bi are stochastic matrices. A nonnegative matrix A is called

1Current address: Department of Computer Science, University of California, Davis,
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stochastic if Ae = e, with e being the column vector with all components
equal to one. Matrices of the structure (1) are known in the literature as
stochastic matrices of M/G/1 type and arise in a wide variety of queueing
problems modelled by an irreducible Markov chain, where P is the transition
matrix associated with the Markov chain.

The matrix equation

G =
∞∑
i=0

AiG
i (2)

plays an important role in the study of the Markov chain. It is known that
(2) has at least one solution in the matrix set {G ≥ 0 | Ge ≤ e}. The desired
solution G is the minimal nonnegative solution.

Assume that A =
∑∞

i=0 Ai is irreducible. Then, by the Perron-Frobenius
Theorem (see [14]), there exists a unique vector α > 0 with αT e = 1 and
αT A = αT . A natural assumption for the Markov chain is that

∑∞
i=1 iAi < ∞.

The Markov chain is called transient if σ = αT β > 1, where β =
∑∞

i=1 iAie.
In this case, the matrix G is substochastic (i.e., Ge ≤ e) and its spectral
radius ρ(G) is strictly less than one. The Markov chain is called positive
recurrent if σ < 1, and null recurrent if σ = 1. In both cases, G is stochastic
and ρ(G) = 1. For more details, see [11].

In [2] and [8], the equation (2) was considered in a transposed form, i.e.,
they considered the equation G =

∑∞
i=0 GiAi with Ai ≥ 0 and eT ∑∞

i=0 Ai =
eT . Their results can easily be restated for (2). The equation G =

∑∞
i=0 GiAi

with Ai ≥ 0 and
∑∞

i=0 Aie = e is called the dual equation of (2) (see [12]).
We will consider equation (2) only. The discussion of its dual equation is
similar.

Several algorithms have been proposed in the literature for the numerical
solution of (2). For example, the minimal nonnegative solution of (2) can be
found by any of the following three fixed point iterations (see [9], [6] and [7]):

Gn+1 =
∞∑
i=0

AiG
i
n, G0 = 0, (3)

Gn+1 = (I − A1)
−1(A0 +

∞∑
i=2

AiG
i
n), G0 = 0, (4)

or

Gn+1 = (I −
∞∑
i=1

AiG
i−1
n )−1A0, G0 = 0. (5)
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The infinite series in these iterations will be truncated in numerical compu-
tations. Among the three iterations, the iteration (5) is the fastest and also
the most expensive. A new linear system (with multiple right hand sides) has
to be solved in each iteration. The linear system may be solved by Gaussian
elimination with partial pivoting. However, when m is large, there may be
difficulty in maintaining the accuracy of the solution of the linear systems
during a large number of iterations.

In [1], Bai noted that inversion can be avoided by incorporating the Schulz
algorithm for the inverse of a matrix into the iteration (5), as follows:

Algorithm 1 [1] Given a proper nonnegative matrix B0, compute for n ≥ 0

Gn+1 = BnA0, (6)

Bn+1 = 2Bn −BnQn+1Bn, (7)

where for n = 1, 2, . . . ,

Qn = I −
∞∑
i=1

AiG
i−1
n .

Some choices of the matrix B0 will be given later. Algorithm 1 is par-
ticularly useful on a parallel computing system, since matrix-matrix multi-
plication can be carried out in parallel very efficiently (see [4]). The main
purpose of this note is to show that the convergence rate of Algorithm 1 is
competitive with the iteration (5).

In Section 2, we give some convergence results for the iterations (3)–(5).
Convergence results for Algorithm 1 are then established in Section 3. Nu-
merical results for two simple examples are reported in Section 4 to illustrate
the theoretical results established.

2 Convergence results for the fixed point it-

erations

The convergence rate of iterations (3)–(5) has been studied in detail in [8]
when the Markov chain is positive recurrent. The next result is valid no
matter whether the Markov chain is transient, positive recurrent or null re-
current.
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Theorem 2 Let G be the minimal nonnegative solution of the matrix equa-
tion (2) and Āi =

∑∞
j=i AjG

j−i(i = 1, 2, . . .). Then we have the following
convergence rate estimates: For iteration (3),

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ(T1),

where the operator T1 : Rm×m → Rm×m is given by

T1(H) =
∞∑

j=1

ĀjHGj−1. (8)

For iteration (4),

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ(T2),

where the operator T2 : Rm×m → Rm×m is given by

T2(H) = (I − A1)
−1(Ā1 − A1)H +

∞∑
j=2

(I − A1)
−1ĀjHGj−1. (9)

For iteration (5),

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ(T3),

where the operator T3 : Rm×m → Rm×m is given by

T3(H) =
∞∑

j=2

(I − Ā1)
−1ĀjHGj−1. (10)

Proof. The results can be proved using the arguments in the proof of The-
orem 7 of the next section. 2

Using the Kronecker product (for basic properties of the Kronecker prod-
uct, see [5], for example), we have

Proposition 3 For i = 1, 2, 3, ρ(Ti) = ρ(Mi), where

M1 =
∞∑

j=1

(Gj−1)T ⊗ Āj,

M2 = I ⊗ (I − A1)
−1(Ā1 − A1) +

∞∑
j=2

(Gj−1)T ⊗ (I − A1)
−1Āj,
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and

M3 =
∞∑

j=2

(Gj−1)T ⊗ (I − Ā1)
−1Āj.

To compare the spectral radii of the matrices M1, M2 and M3, we need
the following lemma.

Lemma 4 [9] Let

T ∗ =
∞∑
i=1

i−1∑
j=0

(I ⊗ Ai)((G
i−1−j)T ⊗Gj).

If the Markov chain is transient or positive recurrent, then ρ(T ∗) < 1. If the
Markov chain is null recurrent, then ρ(T ∗) = 1.

It is easy to see that the matrix M1 in Proposition 3 is precisely the
matrix T ∗ in the above lemma.

Theorem 5 If the Markov chain is transient or positive recurrent, then
ρ(M3) ≤ ρ(M2) ≤ ρ(M1) < 1. If the Markov chain is null recurrent, then
ρ(M3) = ρ(M2) = ρ(M1) = 1.

Proof. If the Markov chain is transient or positive recurrent, then ρ(M1) =
ρ(T ∗) < 1 by Lemma 4. Thus C = I ⊗ I −M1 is an M -matrix (see [14]).
Let N2 = I ⊗ (I − A1) − C and N3 = I ⊗ (I − Ā1) − C. We then have two
regular splittings of C: C = I ⊗ (I − A1)−N2 and C = I ⊗ (I − Ā1)−N3.
Note that (I ⊗ (I − A1))

−1N2 = M2 and (I ⊗ (I − Ā1))
−1N3 = M3. Since

M1 ≥ N2 ≥ N3 ≥ 0, we get ρ(M3) ≤ ρ(M2) ≤ ρ(M1) < 1 (see [14]). If the
Markov chain is null recurrent, then ρ(M1) = 1 by Lemma 4. Thus M1v = v
for some v 6= 0. Therefore, Cv = 0, which implies M2v = v and M3v = v.
Hence ρ(M3) = ρ(M2) = ρ(M1) = 1. 2

From the above results we know that the convergence of the iterations
(3)–(5) is linear when the Markov chain is transient or positive recurrent.
If the Markov chain is null recurrent, the convergence of these iterations is
typically sublinear.
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3 Convergence results for Algorithm 1

The convergence of Algorithm 1 has been discussed in [1] and includes a
monotone convergence result. There are, however, some inaccuracies in the
statement and proof of that result. We will first give a restatement of the
result and a brief revised proof.

Theorem 6 (cf. [1]) Let G be the minimal nonnegative solution of the matrix
equation (2), and B0 be a given nonnegative matrix such that B0 has no zero
columns and (I − A1)B0 ≤ I. Then for Algorithm 1, G1 ≤ G2 ≤ · · · ,
B0 ≤ B1 ≤ · · · , and limn→∞Gn = G, limn→∞Bn = Q−1 with

Q = I −
∞∑
i=1

AiG
i−1. (11)

Proof. Since (I − A1)B0 ≤ I, we have B0 ≤ (I − A1)
−1 ≤ Q−1. Moreover,

G1 = B0A0 ≤ Q−1A0 = G and Q1B0 ≤ (I −A1)B0 ≤ I. It can be proved by
induction that for all n ≥ 1,

0 ≤ B0 ≤ B1 ≤ · · · ≤ Bn−1 ≤ Q−1,

G1 ≤ G2 ≤ · · · ≤ Gn ≤ G, QnBn−1 ≤ I.

Let limn→∞Gn = G̃, and limn→∞Bn = B. We have limn→∞Qn = Q̃ =
I −∑∞

i=1 AiG̃
i−1 and

G̃ = BA0, B = 2B −BQ̃B. (12)

From the second equality in (12), we get B(I − Q̃B) = 0. Since I − Q̃B ≥ 0
and B ≥ B0 is nonnegative with no zero columns, we conclude that I−Q̃B =
0. Therefore, G̃ = BA0 = Q̃−1A0, which means that G̃ is a nonnegative
solution of (2). Since G̃ ≤ G and G is the minimal nonnegative solution, we
have G̃ = G. 2

Note that any matrix B0 satisfying the conditions in the theorem must
be nonsingular. If B0 were singular, all matrices Bn would be singular by
(7). This contradicts the fact that {Bn} converges to a nonsingular matrix.
Some common choices of B0 have already been given in [1], e.g., B0 = ωI(0 <
ω ≤ 1) or B0 = I + A1 + · · · + Ap

1 (p ≥ 1). Of course, we can also take
B0 = (I − A1)

−1. This latter choice gives the best G1, but requires an
inversion in this initial step.
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A convergence rate result is given in [1] for Algorithm 1. However, the
conditions needed there for the linear convergence of the algorithm are never
satisfied when the solution G is stochastic. When G is stochastic, we have
(A0 +

∑∞
i=1 AiG

i−1)e = (
∑∞

i=0 Ai)e = e. Thus Q−1A0e = e. In [1, Theorem
2], it is required that, among several other conditions, ‖Q−1‖∞‖A0‖∞ < 1.
We have, however, ‖Q−1‖∞‖A0‖∞ ≥ ‖Q−1A0‖∞ = ‖Q−1A0e‖∞ = ‖e‖∞ = 1.
Since the solution G is involved in the conditions of [1, Theorem 2], there
is no easy way to see whether those conditions can be consistent when the
solution G is substochastic. Consequently, the convergence rate of Algorithm
1 has not been determined.

We will now give a fairly complete analysis for the convergence rate of
Algorithm 1.

Theorem 7 Let M = {X ∈ Rm×m | X = PA0 for some P ∈ Rm×m}. If
the conditions in Theorem 6 are satisfied, then for Algorithm 1,

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ(T ),

where the operator T : M→M is given by

T (H) = H −GG+H +
∞∑

j=2

GA+
0 ĀjHGj−1,

where X+ denotes the Moore-Penrose generalized inverse of a matrix X.

Proof. For Algorithm 1, we have for n = 0, 1, . . . ,

Gn+2 = Bn+1A0

= 2BnA0 −BnQn+1BnA0

= 2Gn+1 −Gn+1A
+
0 (I −

∞∑
i=1

AiG
i−1
n+1)Gn+1,

where Bn = Gn+1A
+
0 is obtained from (6) (for basic properties of the Moore-

Penrose inverse, see [5], for example). Therefore, for n = 1, 2, . . ., Gn+1 =
F (Gn) with the map F : D ⊂M→M defined by

F (X) = 2X −XA+
0 (I −

∞∑
i=1

AiX
i−1)X,
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where D is the set of all substochastic matrices. Note that all stochastic
matrices are boundary points of D.

Let H = Gn −G. Using (G + H)i −Gi =
∑i−1

j=0 Gi−1−jHGj (see, e.g., [5,
p. 22]), we have

Gn+1 −G = F (G + H)− F (G)

= 2H −HA+
0 (G + H)−GA+

0 H

+
∞∑
i=1

[HA+
0 Ai(G + H)i + GA+

0 Ai(
i−1∑
j=0

Gi−1−jHGj)]

= H −HA+
0 G +

∞∑
i=1

HA+
0 AiG

i

+H −GA+
0 H + GA+

0

∞∑
i=1

AiG
i−1H

+
∞∑
i=2

i−1∑
j=1

GA+
0 AiG

i−1−jHGj + o(‖H‖),

where o(‖H‖) denotes a term W (H) such that limH→0 ‖W (H)‖/‖H‖ = 0 for
any norm ‖ · ‖. Since

H −HA+
0 G +

∞∑
i=1

HA+
0 AiG

i = H −HA+
0 (G−

∞∑
i=1

AiG
i)

= H −HA+
0 A0

= 0,

H −GA+
0 H + GA+

0

∞∑
i=1

AiG
i−1H = H −GA+

0 (I −
∞∑
i=1

AiG
i−1)H

= H −GA+
0 A0G

+H

= H −GG+H,

and

∞∑
i=2

i−1∑
j=1

GA+
0 AiG

i−1−jHGj =
∞∑

j=1

∞∑
i=j+1

GA+
0 AiG

i−1−jHGj

=
∞∑

j=1

GA+
0 (

∞∑
i=j+1

AiG
i−1−j)HGj
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=
∞∑

j=1

GA+
0 Āj+1HGj,

we have
Gn+1 −G = T (Gn −G) + o(‖Gn −G‖). (13)

Now for any ε > 0, we choose a norm on M such that the induced operator
norm ‖ · ‖ of T satisfies ‖T‖ ≤ ρ(T ) + ε. Note that this can be done even for
an operator from a general Banach space into itself (see [3, p. 77]). By (13),
we have for n ≥ n0

‖Gn+1 −G− T (Gn −G)‖ ≤ ε‖Gn −G‖.

Thus

‖Gn+1 −G‖ ≤ ‖Gn+1 −G− T (Gn −G)‖+ ‖T (Gn −G)‖
≤ (ρ(T ) + 2ε)‖Gn −G‖
≤ (ρ(T ) + 2ε)n−n0+1‖Gn0 −G‖.

This implies lim supn→∞
n

√
‖Gn −G‖ ≤ ρ(T ) + 2ε. The conclusion in the

theorem follows since ε > 0 is arbitrary. 2

The matrix A0 is often nonsingular in applications. For example, for a
class of Markov chains considered in [10], the matrix A0 is an upper triangular
Toeplitz matrix with a positive main diagonal.

Corollary 8 If A0 is nonsingular in Theorem 6, then for Algorithm 1,

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ(T3),

where the operator T3 is defined by (10).

Proof. When A0 is nonsingular, G is also nonsingular. Note also that
GA−1

0 = (I − Ā1)
−1. 2

From the previous discussions, we conclude that the convergence of Al-
gorithm 1 is linear whenever A0 is nonsingular and the Markov chain is not
null recurrent. The convergence rate is comparable with that of iteration (5),
which is faster than iterations (3) and (4).

The next two results further confirm that the convergence of Algorithm
1 is often not slower than that of iteration (5). The first result can be seen
readily from the proof of Theorem 5 in [8].
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Theorem 9 If the matrix G is stochastic, then for iteration (5),

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ((I − Ā1)

−1
∞∑

j=2

Āj). (14)

Equality holds in (14) if the matrix (I − A1)
−1 ∑∞

i=2 Ai has no zero rows.

Proposition 10 If A0 is nonsingular and G is stochastic, then for Algorithm
1,

lim sup
n→∞

n

√
‖Gn −G‖ ≤ ρ((I − Ā1)

−1
∞∑

j=2

Āj).

Proof. In view of Corollary 8, we only need to show ρ(T3) ≤ ρ((I −
Ā1)

−1 ∑∞
j=2 Āj). By a generalized Perron-Frobenius Theorem (see [13]), we

have

ρ(T3)H =
∞∑

j=2

(I − Ā1)
−1ĀjHGj−1

for some nonzero H ≥ 0. Since G is stochastic, we have

ρ(T3)He =
∞∑

j=2

(I − Ā1)
−1ĀjHe

Since He 6= 0, ρ(T3) is an eigenvalue of (I − Ā1)
−1 ∑∞

j=2 Āj. 2

4 Numerical results

We will perform some numerical experiments on two simple examples. The
first one is given in [1]. The second one is a particular case of the Markov
chains considered in [10].
Example 1. Consider the Markov chain of the M/G/1 type for which

A0 =
4

3
(1− p)


0.05 0.1 0.2 0.3 0.1
0.2 0.05 0.1 0.1 0.3
0.1 0.2 0.3 0.05 0.1
0.1 0.05 0.2 0.1 0.3
0.3 0.1 0.1 0.2 0.05


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and
An = pnA0, n = 1, 2, . . . ,

where p ∈ (0, 1). The Markov chain is positive recurrent, null recurrent or
transient according as p < 0.5, p = 0.5 or p > 0.5.

We will use Algorithm 1 and iterations (3), (4) and (5) to find the minimal
nonnegative solution G of the matrix equation (2) for some values of p. For
Algorithm 1, we take B0 = I. All iterations will be stopped as soon as
‖Gn −

∑∞
i=0 AiG

i
n‖∞ ≤ 10−8. In our numerical computations, the matrices

Ai are treated as zero matrix for i > 50 when p ≤ 0.6 and they are treated
as zero matrix for i > 100 when p > 0.6. The numerical results are reported
in Table 1.
Example 2. Consider the Markov chain of the M/G/1 type for which

A0 =


a0 · · · a4

. . .
...
a0

 , Aj =


a5j · · · a5j+4
...

...
a5j−4 · · · a5j

 , j ≥ 1

are all 5 × 5 Toeplitz matrices, where ai = (1 − p)pi with p ∈ (0, 1). The
Markov chain is positive recurrent, null recurrent or transient according as
p < 5/6, p = 5/6 or p > 5/6.

For Algorithm 1, we take B0 = I + A1. For all iterations, we use the
same stopping criterion as in Example 1. In our numerical computations,
the matrices Ai are treated as zero matrix for i > 20 when p ≤ 0.6 and they
are treated as zero matrix for i > 50 when p > 0.6. The numerical results
are reported in Table 2.

From Tables 1 and 2 we can see that the convergence rate of Algorithm
1 is comparable with that of iteration (5), which is in general considerably
faster than iterations (3) and (4). These observations are consistent with
the theory in Sections 2 and 3. We note that all these iterations are very
slow when the Markov chain is null recurrent or “nearly null recurrent”. The
cyclic reduction method proposed in [2] may offer significant improvement in
these situations.
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Table 1: Number of Iterations for Example 1

p Algorithm1 Iteration(5) Iteration(4) Iteration(3)

0.10 6 5 5 9

0.20 8 7 8 13

0.30 12 11 14 21

0.40 22 21 28 41

0.45 39 38 54 75

0.48 85 84 122 167

0.49 151 150 222 299

0.50 5001 5000 7497 9999

0.51 151 149 221 298

0.52 85 83 122 166

0.55 39 37 53 74

0.60 21 20 27 40

0.70 12 10 13 20

0.80 8 6 8 12

0.90 5 4 5 8
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Table 2: Number of Iterations for Example 2

p Algorithm1 Iteration(5) Iteration(4) Iteration(3)

0.10 2 2 2 3

0.20 2 2 2 4

0.30 3 3 3 5

0.40 4 3 3 7

0.50 4 4 4 9

0.60 6 5 6 12

0.70 9 8 11 20

0.80 27 26 39 63

0.83 179 177 290 441

0.83̇ 5470 5468 9046 13607

0.84 98 97 157 241

0.90 12 11 15 27

13



References

[1] Z.-Z. Bai, A class of iteration methods based on the Moser formula for
nonlinear equations in Markov chains, Linear Algebra Appl. 266 (1997)
219–241.

[2] D. Bini, B. Meini, On the solution of a nonlinear matrix equation arising
in queueing problems, SIAM J. Matrix Anal. Appl. 17 (1996) 906–926.

[3] F. Chatelin, Spectral Approximation of Linear Operators, Academic
Press, New York, 1983.

[4] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd ed., Johns
Hopkins Univ. Press, Baltimore, MD, 1996.

[5] P. Lancaster, M. Tismenetsky, The Theory of Matrices, 2nd ed., Aca-
demic Press, Orlando, FL, 1985.

[6] G. Latouche, Newton’s iteration for non-linear equations in Markov
chains, IMA J. Numer. Anal. 14 (1994) 583–598.

[7] G. Latouche, Algorithms for evaluating the matrix G in Markov chains
of PH/G/1 type, Cahiers Centre Études Rech. Opér. 36 (1994) 251–258.

[8] B. Meini, New convergence results on functional iteration techniques for
the numerical solution of M/G/1 type Markov chains, Numer. Math. 78
(1997) 39–58.

[9] M. F. Neuts, Moment formulas for the Markov renewal branching pro-
cess, Adv. in Appl. Probab. 8 (1976) 690–711.

[10] M. F. Neuts, Queues solvable without Rouche’s theorem, Oper. Res. 27
(1979) 767–781.

[11] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their
Applications, Marcel Dekker, New York, 1989.

[12] V. Ramaswami, Nonlinear matrix equations in applied probability—
solution techniques and open problems, SIAM Rev. 30 (1988) 256–263.

14



[13] W. C. Rheinboldt, J. S. Vandergraft, A simple approach to the Perron-
Frobenius theory for positive operators on general partially-ordered
finite-dimensional linear spaces, Math. Comp. 27 (1973) 139–145.

[14] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs,
NJ, 1962.

15


