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Abstract

The Newton–Noda iteration (NNI) can be used to compute the Perron pair of
a weakly irreducible nonnegative tensor. The method requires the selection of a
positive parameter θk in the kth iteration. A practical procedure for determining
the parameter θk is the halving procedure, starting with θk = 1. The NNI has
been shown to be globally and quadratically convergent if the sequence {θk}
is bounded below by a positive constant. In this note, we prove the global
convergence of NNI (with θk determined by the halving procedure) without
assuming that {θk} is bounded below by a positive constant. We can then see
that θk = 1 for all k sufficiently large and the convergence of NNI is quadratic.
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1. Introduction

A real-valued mth-order n-dimensional tensor A consists of nm entries in R,
and is denoted by

A = (ai1i2...im), ai1i2...im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n.

The set of all such tensors is denoted by R[m,n], and the set of all nonnegative
tensors A ∈ R[m,n], for which ai1i2...im ≥ 0 for all i1, i2, . . . , im, is denoted by

R[m,n]
+ . We use xi or (x)i to represent the ith element of a column vector x,

and use the 2-norm for vectors. For n-vectors u and v, with vi 6= 0 for all i, we
define u

v to be the n-vector whose ith component is ui

vi
. For real vector u, we

define max (u) = max
i
ui and min (u) = min

i
ui.

Definition 1. [1] Let A ∈ R[m,n]. We say that (λ,x) ∈ C × (Cn\{0}) is an
eigenpair (eigenvalue-eigenvector) of A if

Axm−1 = λx[m−1], (1)
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where (Axm−1)i =
∑n
i2,...,im=1 aii2...imxi2 . . . xim for i = 1, . . . , n, and x[m−1] =

[xm−11 , xm−12 , . . . , xm−1n ]T .

The following Perron–Frobenius theorem for weakly irreducible nonnegative
tensors is from [2]. See also [1, Lemma 3.21 and Theorem 3.26].

Theorem 1. Let A ∈ R[m,n]
+ be weakly irreducible. Then there exist λ∗ > 0

and a unit vector x∗ > 0 such that Axm−1∗ = λ∗x
[m−1]
∗ . If λ is an eigenvalue of

A, then |λ| ≤ λ∗. If λ is an eigenvalue with a positive unit eigenvector x, then
λ = λ∗ and x = x∗. Moreover, for any v > 0

min

(
Avm−1

v[m−1]

)
≤ λ∗ ≤ max

(
Avm−1

v[m−1]

)
.

The eigenvalue λ∗ is then the spectral radius ofA, denoted by ρ(A). The cor-
responding eigenvector x∗ is called the Perron vector of A. The pair (ρ(A),x∗)
is called the Perron pair of A.

The NQZ algorithm [3] is the first algorithm for computing the Perron pair
for a nonnegative tensor. Its convergence is proved in [4] for primitive tensors,
and linear convergence of the algorithm is proved in [2] for weakly primitive
tensors. WhenA is weakly irreducible, the tensor B = A+sI is weakly primitive
[1, Corollary 3.78], where s > 0 is any scalar and I is the identity tensor.
Therefore, the NQZ algorithm can be applied to B to get the Perron pair of
A, as in [5]. The performance of the algorithm will then be dependent on the
choice of s.

The Newton–Noda iteration (NNI) [6] is directly applicable to weakly irre-
ducible nonnegative tensors, and is a generalization of the Noda iteration [7]
for nonnegative matrices. The method requires the selection of a parameter θk
in the kth iteration. A practical procedure for determining the parameter θk is
the halving procedure, starting with θk = 1. The NNI has been shown in [6] to
be globally and quadratically convergent if the sequence {θk} is bounded below
(which always means “bounded below by a positive constant” in this note). In
this note, we prove the global convergence of NNI (with θk determined by the
halving procedure) without assuming that {θk} is bounded below.

2. The Newton–Noda iteration

The NNI in [6] is reproduced here. In line 3, Jxr(x,λ) is the derivative of
r(x, λ) = λx[m−1]−Axm−1 with respect to x. It is known [6] that Jxr(xk, λk) is
an irreducible nonsingular M -matrix if (xk, λk) 6= (x∗, ρ(A)) and Jxr(x∗,ρ(A))
is an irreducible singular M -matrix. We assume that xk 6= x∗ for each k.
Otherwise, NNI will terminate with the exact Perron pair in a finite number of
iterations. When (xk, λk) 6= (x∗, ρ(A)), the linear system in line 3 can be solved
accurately using the GTH algorithm [8].

A number of properties of NNI have been proved in [6]. Here we recall the
following result.
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Algorithm 1 Newton–Noda iteration (NNI)

1. Given x0 > 0 with ‖x0‖ = 1, λ0 = max

(
Axm−1

0

x
[m−1]
0

)
, and tol > 0.

2. for k = 0, 1, 2, . . .

3. Solve the linear system Jxr(xk, λk)wk = x
[m−1]
k .

4. Normalize the vector wk: yk = wk/‖wk‖.
5. Choose a scalar θk > 0.

6. Compute the vector x̃k+1 = (m− 2)xk + θkyk.

7. Normalize the vector x̃k+1: xk+1 = x̃k+1/‖x̃k+1‖.

8. Compute λk+1 = max

(
Axm−1

k+1

x
[m−1]
k+1

)
and λk+1 = min

(
Axm−1

k+1

x
[m−1]
k+1

)
.

9. until convergence: |λk+1 − λk+1|/λk+1 < tol.

Lemma 2. [6] Let A ∈ R[m,n]
+ be weakly irreducible and assume that the se-

quence
{
λk,xk

}
is generated by Algorithm 1, with {λk} bounded. Let

{
xkj
}
be

any subsequence of {xk}. If xkj → v as j →∞, then v > 0.

In NNI, we would like to choose θk > 0 such that the sequence {λk} is
strictly decreasing (and hence bounded). Note that

λk − λk+1 = λk −max

(
Ax̃m−1k+1

x̃
[m−1]
k+1

)
= min

(
hk(θk)

x̃
[m−1]
k+1

)
, (2)

where hk(θ) = r((m−2)xk + θyk, λk). The strategy in [6] is to find θk > 0 such
that

hk(θk) ≥
θkx

[m−1]
k

(1 + η) ‖wk‖
, (3)

for any given constant η > 0. It has been explained in [6] that θk = 1 is desirable
if condition (3) is satisfied and a smaller θk is used only when it is necessary for
(3) to hold.

For m = 2, (3) holds for θk = 1 [6]. So we assume m ≥ 3 and let

gk(θ) = hk(θ)−
θx

[m−1]
k

(1 + η) ‖wk‖
. (4)

Then [6] gk(0) = r((m− 2)xk , λk) ≥ 0 and

g′k(0) =

[
(m− 2)(m−2) − 1

(1 + η)

]
x
[m−1]
k

‖wk‖
> 0. (5)

So we can indeed choose θk ∈ (0, 1] in NNI such that (3) holds (so the sequence
{λk} is strictly decreasing and bounded below by ρ(A)).
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Global convergence of NNI is proved in [6] under the assumption that {θk}
is bounded below. One way for obtaining such a sequence has been given in [6].
Indeed, one can define a sequence {θk} by

θk =

{
1 if hk(1) ≥ x

[m−1]
k

(1+η)‖wk‖ ,

ηk otherwise,
(6)

where ηk = sup{ξk : g′k(θ) ≥ 0 on [0, ξk]} with gk(θ) given by (4). It is clear
that 0 < ηk < 1 in (6) and the condition (3) holds for {θk} defined by (6). It is
shown in [6] that this sequence {θk} is bounded below. However, this sequence
is very difficult to obtain and is thus not used in actual computation.

In practice, for each k we can take θk = 1 first and check whether (3) holds.
If not, then we update θk using θk ← 1

2θk and check again, until we get a θk
for which (3) holds. This process is the so-called halving procedure proposed in
[6]. Of course, we could also have used the update θk ← rθk for any r ∈ (0, 1).
The analysis for this more general strategy is similar to that for the special case
r = 1

2 and using r 6= 1
2 does not yield any particular advantage. So we will stick

with the halving procedure.
It is important to recognize that we cannot conclude that the sequence {θk}

from the halving procedure is bounded below, from the fact that the sequence
{θk} defined by (6) is bounded below. Whether the sequence {θk} from the
halving procedure is always bounded below was left as an open problem in [6].
The global convergence of NNI with a practical procedure for choosing θk has
been proved only for m = 3 in [9], where θk is determined by a different practical
procedure.

In the next section, we prove the global convergence of the NNI (with θk
determined by the halving procedure) without first proving that θk is bounded
below. After the global convergence is proved, we can then conclude that θk is
actually bounded below.

3. Global convergence

We start with a k-dependent lower bound for θk.

Lemma 3. Let θk in NNI be determined by the halving procedure. Then θk = 1

or 1
2 ≥ θk > ξ

minx
[m−1]
k

‖wk‖ for a positive constant ξ.

Proof. For each k ≥ 0, we have ‖xk‖ = ‖yk‖ = 1 and λk ∈ [ρ(A), λ0]. Then,
for all θ ∈ [0, 1], we have by Taylor’s theorem that

gk(θ) ≥ gk(0) + g′k(0)θ −Mθ2e (7)

for some constant M > 0 (independent of k and θ), where e = [1, 1, . . . , 1]T .
Recall that gk(0) ≥ 0 and g′k(0) is given by (5). If M ≤ min g′k(0), then

gk(1) ≥ 0 by (7). In this case, the halving procedure always returns θk = 1. If
M > min g′k(0), then we see from (7) that gk(θ) ≥ 0 when θ ≤ 1

M min g′k(0).
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In this case, the halving procedure may still return θk = 1 and we always have

θk >
1

2M min g′k(0) = ξ
minx

[m−1]
k

‖wk‖ , where ξ = 1
2M

[
(m− 2)(m−2) − 1

(1+η)

]
. �

Even though the above lower bound for θk is k-dependent, we can still use
it to show that the sequence

{
λk,xk,yk

}
generated by Algorithm 1 always con-

verges to (ρ(A),x∗,x∗). We then know that θk = 1 for k sufficiently large. This
proves in a roundabout way that {θk} is bounded below. Our previous efforts
aim to show {θk} is bounded below before we set out to show the convergence
of
{
λk,xk

}
. Those efforts all failed unfortunately.

Theorem 4. Let A ∈ R[m,n]
+ be weakly irreducible and assume that the sequence

{θk} in Algorithm 1 is determined by the halving procedure. Then the monoton-
ically decreasing sequence

{
λk
}
converges to ρ(A), and {xk} from Algorithm 1

converges to x∗. Moreover, {yk} from Algorithm 1 converges to x∗ as well.

Proof. By (2) and (3) we have

λk − λk+1 = min

(
hk(θk)

x̃
[m−1]
k+1

)
≥ min

(
θkx

[m−1]
k

(1 + η)‖wk‖x̃[m−1]
k+1

)

≥ 1

(1 + η)(m− 1)m−1
θk

min x
[m−1]
k

‖wk‖
,

since ‖x̃k+1‖ = ‖(m − 2)xk + θkyk‖ ≤ m − 1 and
(
x̃
[m−1]
k+1

)
i
≤ ‖x̃k+1‖m−1 for

each i. Let γ = (1 + η)(m− 1)m−1.

By Lemma 3 we have θk = 1 or 1
2 ≥ θk ≥ ξ

minx
[m−1]
k

‖wk‖ . In the first case, we

have
minx

[m−1]
k

‖wk‖ ≤ γ(λk − λk+1). In the second case, we have

λk − λk+1 ≥
ξ

γ

(
min x

[m−1]
k

‖wk‖

)2

.

Therefore, for all k ≥ 0,

min x
[m−1]
k

‖wk‖
≤ max

{
γ(λk − λk+1),

(
(γ/ξ)(λk − λk+1)

)1/2}
. (8)

Since the sequence
{
λk
}

converges, we obtain from (8) that

lim
k→∞

‖wk‖−1 min(x
[m−1]
k ) = 0.

As in the proof of [6, Theorem 3], Lemma 2 implies that min(x
[m−1]
k ) is

bounded below by a positive constant. Therefore, limk→∞ ‖wk‖−1 = 0. Then,
as in the proof of [6, Theorem 3], we have limk→∞ xk = x∗, limk→∞ yk = x∗,
and limk→∞ λk = ρ(A). �
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From the proof, we see that limk→∞ ‖wk‖−1 = 0. Therefore, the inequality

θk ≥ ξ
minx

[m−1]
k

‖wk‖ by itself does not show {θk} is bounded below (by a positive

constant). However, after Theorem 4 has been proved, we know from [6] that
θk = 1 for all k sufficiently large. This means that {θk} is indeed bounded
below. We also know from [6] that the convergence of NNI is quadratic.

Our approach here can also be used to improve a convergence result in [10],
where a generalizedM-tensor pair (A,B) is considered. It is shown in [10] that
there exists a unique positive eigenpair (s, x∗) for the tensor pair (A,B − A),
up to a multiplicative constant for x∗. This eigenpair can be computed by the
generalized Newton–Noda iteration (GNNI) in [10]. The GNNI is analyzed in
[10] in the same way as NNI is analyzed in [6]. In particular, the parameters θk in
GNNI can also be determined by a halving procedure. The global convergence of
GNNI is proved in [10, Theorem 4.5] under the assumption that {θk} is bounded
below, as in [6]. With the approach in this note, that assumption can also be
removed.

4. Conclusion

We have re-examined NNI with the practical halving procedure for choosing
the parameters θk, for computing the Perron pair of a weakly irreducible non-
negative tensor. We have found a simple way to prove the global convergence
of NNI without any further assumptions. We then know that θk = 1 for all
k sufficiently large and the convergence of NNI is quadratic. The convergence
theory of NNI is now complete.
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