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Abstract

We consider the tensor equation whose coefficient tensor is a nonsingular M -
tensor and whose right-side vector is nonnegative. Such a tensor equation may
have a large number of nonnegative solutions. It is already known that the
tensor equation has a maximal nonnegative solution and a minimal nonnegative
solution (called extremal solutions collectively). However, the existing proofs do
not show how the extremal solutions can be computed. The existing numerical
methods can find one of the nonnegative solutions, without knowing whether
the computed solution is an extremal solution. In this paper, we present new
proofs for the existence of extremal solutions. Our proofs are much shorter
than existing ones and more importantly they give numerical methods that can
compute the extremal solutions. Linear convergence of these numerical methods
is also proved under mild assumptions. Some of our discussions also allow the
coefficient tensor to be a Z-tensor or allow the right-side vector to have some
negative elements.
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1. Introduction

We consider the tensor equation

Axm−1 = b, (1)

where x, b ∈ Rn and A is a real-valued mth-order n-dimensional tensor that has
the form

A = (ai1i2...im), ai1i2...im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n,
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and Axm−1 ∈ Rn has elements

(Axm−1)i =

n∑
i2,...,im=1

aii2...imxi2 · · ·xim , i = 1, 2, . . . , n.

Later on, we will also use {xk} to denote a sequence of vectors. The ith ele-
ment of a vector x will then be denoted by (x)i (instead of xi) to avoid con-
fusion. The element ai1i2...im of the tensor A will also be denoted by Ai1i2...im

or A(i1, i2, . . . , im). The tensor equation (1) is also called a multilinear system
of equations. It appears in many applications including data mining, numeri-
cal partial differential equations, and tensor complementarity problems; see [11]
and the references cited therein.

We denote the set of all real-valued mth-order n-dimensional tensors by
R[m,n]. A tensor A = (ai1i2...im) ∈ R[m,n] is called semi-symmetric [16] if
aij2...jm = aii2...im , 1 ≤ i ≤ n, j2 . . . jm is any permutation of i2 . . . im, 1 ≤
i2, . . . , im ≤ n. For any tensor A = (ai1i2...im), we have a semi-symmetric
tensor Ā = (āi1i2...im) defined by

āi1i2...im =
1

(m− 1)!

∑
j2...jm

ai1j2...jm ,

where j2 . . . jm is any permutation of i2 . . . im. Then Axm−1 = Āxm−1 for all
x ∈ Rn, and (Axm−1)′ = (m−1)Āxm−2 (see [12, 16]), where for any A ∈ R[m,n],
the (i, j) element of Axm−2 ∈ Rn×n is defined by

(Axm−2)ij =

n∑
i3,...,im=1

aiji3...imxi3 · · ·xim .

We call λ ∈ R an eigenvalue and x ∈ Rn \ {0} a corresponding eigenvector
of A if [18]

Axm−1 = λx[m−1],

where for any positive real number r, x[r] ∈ Rn is given by (x[r])i = (xi)
r, i =

1, 2, . . . , n. The spectral radius of A is the maximum modulus of its eigenvalues,
and is denoted by ρ(A).

Let [n] = {1, 2, . . . , n}. For x, y ∈ Rn, we write x ≥ y if xi ≥ yi for all i ∈ [n],
and write x > y if xi > yi for all i ∈ [n]. If x ≥ 0, we say x is nonnegative;
if x > 0 we say x is positive. The set Rn

+ = {x ∈ Rn | x ≥ 0} will be used
frequently. A solution x of (1) is said to be a maximal nonnegative solution
if x ≥ y for every solution y ≥ 0; a solution x of (1) is said to be a minimal
nonnegative solution if 0 ≤ x ≤ y for every solution y ≥ 0. A tensor A is said
to be nonnegative, denoted by A ≥ 0, if all its elements are nonnegative. The
identity tensor I ∈ R[m,n] is such that its diagonal elements are all ones and its
off-diagonal elements are all zeros, i.e., Iii...i = 1 for i ∈ [n] and Ii1i2...im = 0
elsewhere.
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Definition 1. [3] A tensor A ∈ R[m,n] is called a Z-tensor if its off-diagonal
elements are nonpositive. If A can be written as A = sI − B with B ≥ 0 and
s > ρ(B), then the tensor A is called a nonsingular M -tensor.

For B ≥ 0, ρ(B) can be found by the power method in [15], the Newton–
Noda iteration in [12], and the iterative method in [20]. Thus, one can determine
whether a Z-tensor is a nonsingular M -tensor using the definition. It is known
[3, 19] that a Z-tensor A is a nonsingular M -tensor if and only if Axm−1 > 0
for some x > 0. It follows that the diagonal elements of a nonsingular M -tensor
are all positive.

Suppose A is a nonsingular M -tensor. When b is positive, equation (1)
has a unique positive solution [4]. When b is nonnegative, equation (1) has
nonnegative solutions and moreover it has a minimal nonnegative solution [14]
and has a maximal nonnegative solution [9].

The following simple example is an extension of Example 1.1 in [1]. It shows
that the number of nonnegative solutions could be huge when b ≥ 0.

Example 1. Let k ≥ 1 be an integer and let A = (ai1i2i3i4) ∈ R[4,2k], where
aiiii = 1 for i ∈ [2k], a2i−1,2i−1,2i−1,2i = −2 for i ∈ [k], and all other elements
are zero. It is clear that A is a Z-tensor with Ax3 > 0 for x = [3, 1, . . . , 3, 1]T .
So A is a nonsingular M -tensor. For b = [0, 1, . . . , 0, 1]T , we find that the equa-
tion Ax3 = b has 2k solutions x = [x1, x2, . . . , x2k−1, x2k]T , where for i ∈ [k],
[x2i−1, x2i] = [0, 1] or [2, 1]. The minimal nonnegative solution is [0, 1, . . . , 0, 1]T

and the maximal nonnegative solution is [2, 1, . . . , 2, 1]T .

Since equation (1) may have a large number of nonnegative solutions, it
is unlikely that each of these solutions is of practical interest. Intuitively, the
extremal nonnegative solutions are of particular interest. By computing the
maximal nonnegative solution, we can answer the question whether the equation
has a positive solution. By computing the extremal nonnegative solutions, we
get bounds for all other nonnegative solutions.

In [14], the tensor complementarity problem (TCP):

x ≥ 0, Axm−1 − b ≥ 0, xT (Axm−1 − b) = 0

is considered. When A is a Z-tensor and b ∈ Rn
+, it is shown in [14] that the

solution set of the TCP is the same as the set of all nonnegative solutions of
equation (1). So a sparsest solution to the TCP is the minimal nonnegative
solution of equation (1). The problem of finding a sparsest solution to the TCP
is of practical interest [14]. Note that, for this application, the case b ≥ 0
with some zero elements is much more interesting than the case b > 0 (where
the equation has a unique positive solution and there are no other nonnegative
solutions).

When A is a nonsingular M -tensor and b > 0, the unique positive solution
x(A, b) of Axm−1 = b is the solution of particular interest. But some elements
of b may be very tiny. What happens to x(A, b) if b decreases monotonically
towards a vector b(0) with some zero elements? We will see in the next section
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that x(A, b) converges to the maximal nonnegative solution of the equation
Axm−1 = b(0).

In [9], the authors state in the introduction that their purpose is to find
the largest (maximal) nonnegative solution. But their algorithms there only
find a nonnegative solution, which is usually not maximal. Numerical methods
have also been presented in [1, 10, 11]. Those methods can find a nonnegative
solution, but the solution is usually not maximal and cannot be guaranteed to
be minimal.

While our main interest is on equation (1) with A being a nonsingular M -
tensor and b ≥ 0, some of our discussions also allow A to be a Z-tensor or
allow b to have some negative elements. In Section 2, we present new proofs
for the existence of extremal nonnegative solutions by using simple iterative
methods. These iterative methods can actually compute the extremal solutions.
Some other results also follow directly from the existence theorems and their
proofs. In Section 3, we show how the simple iterations used in Section 2 can
be generalized to have faster convergence. Linear convergence of these iterative
methods is also proved under mild assumptions. Numerical experiments are
performed in Section 4 to illustrate our theoretical results. Some concluding
remarks are given in Section 5.

2. Existence of extremal nonnegative solutions

The following theorem is a main result in [14] (stated differently in [14]; see
[14, Theorem 3] and its proof). The proof there is based on several other results
and does not show how the minimal nonnegative solution can be computed.
Our new proof here is very short and it provides a way to compute the minimal
solution. The approach we take here is similar to the approach we used many
years ago for determining the existence of the minimal nonnegative solution of
M -matrix algebraic Riccati equations [5, 6].

Theorem 1. Let A be a Z-tensor and b ∈ Rn
+. Suppose that Sg = {x ∈

Rn
+ | Axm−1 ≥ b} 6= ∅. Then Sg has a minimal element that is also the minimal

nonnegative solution of Axm−1 = b.

Proof. We write A = D − B, where D is a diagonal tensor with positive
diagonal elements and B ≥ 0. Equation (1) becomes Dxm−1 = Bxm−1 + b.
Then we have the fixed-point iteration, given implicitly as follows:

Dxm−1k+1 = Bxm−1k + b. (2)

(This is the Jacobi iteration when the diagonal elements of A are positive and

D is the diagonal part of A.) Note that Dxm−1k+1 = Dx
[m−1]
k+1 , where D is the

diagonal matrix having the diagonal elements of the tensor D on the diagonal.
When Bxm−1k + b ≥ 0, iteration (2) can be given explicitly as

xk+1 =
(
D−1(Bxm−1k + b)

)[1/(m−1)]
,
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but the implicit form will be more convenient for our discussions.
Let x be any element in Sg. Then x ≥ 0 and Bxm−1+b ≤ Dxm−1. Take x0 =

0. We can generate a nonnegative sequence {xk} by iteration (2). It is clear that
x0 ≤ x1. Suppose xk−1 ≤ xk (k ≥ 1). Then Dxm−1k = Bxm−1k−1 +b ≤ Bxm−1k +b =

Dxm−1k+1 . Thus xk ≤ xk+1. Therefore, xk ≤ xk+1 for all k ≥ 0. Also, x0 ≤ x.

Suppose xk ≤ x (k ≥ 0). Then Dxm−1k+1 = Bxm−1k + b ≤ Bxm−1 + b ≤ Dxm−1.
Thus xk+1 ≤ x. Therefore, xk ≤ x for all k ≥ 0. Now, {xk} is monotonically
increasing and bounded above by x. Thus, limk→∞ xk = x∗ exists and x∗ ≤ x.
Letting k →∞ in (2), we see that x∗ is a nonnegative solution of (1) and x∗ ≤ x
for every x in Sg. In particular, x∗ ≤ x for every nonnegative solution x of (1),
so x∗ is the minimal nonnegative solution of (1), and also the minimal element
in Sg. �

Corollary 2. Let A be a nonsingular M -tensor and b ≥ 0. Then equation (1)
has a minimal nonnegative solution.

Proof. Since A be a nonsingular M -tensor, we have Ax̂m−1 > 0 for some
x̂ > 0. Then for scalar t > 0 sufficiently large, x̃ = tx̂ > 0 is such that
Ax̃m−1 = tm−1Ax̂m−1 ≥ b, so Sg 6= ∅. �

The next result is already known in [10]. It also follows quickly from our
proof of Theorem 1.

Corollary 3. Let A be a nonsingular M -tensor and b > 0. Then the unique
positive solution of (1) is the only nonnegative solution.

Proof. From our proof of Theorem 1, we see that the minimal nonnegative
solution is positive in this case. �

Corollary 4. Let A be a Z-tensor and b ∈ Rn
+. Suppose that Sg = {x ∈

Rn
+ | Axm−1 ≥ b} 6= ∅ and let xmin(A, b) be the minimal nonnegative solution

of Axm−1 = b. If any element of b decreases but remains nonnegative, or if any
diagonal element of A increases, or if any off-diagonal element of A increases
but remains nonpositive, then the new equation Ãxm−1 = b̃ also has a minimal
nonnegative solution xmin(Ã, b̃). Moreover, xmin(Ã, b̃) ≤ xmin(A, b).

Proof. Under any of those changes, Ã is a Z-tensor and b̃ ∈ Rn
+. Let S̃g =

{x ∈ Rn
+ | Ãxm−1 ≥ b̃}. Then Sg ⊆ S̃g and the conclusions follow immediately.

�

The following theorem has been proved in [9]. The proof there is somewhat
complicated and does not show how the maximal solution can be computed.
Here we present a short proof and also a way to compute the maximal solution.

Theorem 5. Let A be a nonsingular M -tensor and suppose that Sl = {x ∈
Rn

+ | Axm−1 ≤ b} 6= ∅. Then Sl has a maximal element that is also the maximal
nonnegative solution of Axm−1 = b.
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Proof. Let D be the diagonal part of A and write A = D − B. Then the
diagonal elements of D are positive and B ≥ 0. Equation (1) becomes Dxm−1 =
Bxm−1 + b. Then we have the fixed-point iteration (Jacobi iteration), given
implicitly as follows:

Dxm−1k+1 = Bxm−1k + b. (3)

Let x be any element in Sl. Then x ≥ 0 and Bxm−1 + b ≥ Dxm−1. Take
x0 ≥ x such that Axm−10 ≥ b, so Bxm−10 + b ≤ Dxm−10 . Note that

Bxm−10 + b ≥ Bxm−1 + b ≥ Dxm−1 ≥ 0.

Thus x1 is determined by iteration (3) and Dxm−11 ≥ Dxm−1, so x1 ≥ x. Also,
Dxm−11 ≤ Dxm−10 , so x1 ≤ x0. By induction, we can show that xk+1 ≤ xk and
xk ≥ x for all k ≥ 0. Therefore, limk→∞ xk = x∗ exists and x∗ ≥ x. Then x∗ is
a nonnegative solution of (1).

We still need to show that we can choose one fixed x0 such that Axm−10 ≥ b
and x0 ≥ x for all x ∈ Sl. To this end, we take any b̂ > 0 such that b̂ ≥ b,
and apply the above argument to the equation Axm−1 = b̂. We can conclude
that Axm−1 = b̂ has a nonnegative solution x̂∗ (actually the unique positive

solution) with x̂∗ ≥ x for every element x in {x ∈ Rn
+ | Axm−1 ≤ b̂} and thus

for every element x in Sl.
We now return to the equation Axm−1 = b and take x0 ≥ x̂∗ such that

Axm−10 ≥ b. Then the sequence {xk} from the Jacobi iteration converges to a
nonnegative solution x∗ of (1) and x∗ ≥ x for all elements x in Sl. This x∗ is
then the maximal element in Sl and also the maximal nonnegative solution of
(1). �

Remark 1. From the proof, we see that the maximal nonnegative solution
(when exists) can be found by iteration (3) using any x0 such that

x0 > 0, Axm−10 > 0, Axm−10 ≥ b.

In other words, we can take x0 to be the unique positive solution of Axm−10 = b̂,

where b̂ is any vector such that b̂ > 0 and b̂ ≥ b.

Remark 2. If A is a Z-tensor, but not a nonsingular M -tensor, then equation
(1) may not have a maximal nonnegative solution when it has nonnegative
solutions. One example is the equation (1) with A ∈ R[4,3] given by:

a1111 = 0, a2222 = a3333 = 1, a1112 = a3111 = −1, and ai1i2i3i4 = 0 elsewhere,

and b = [0, 0, 1]T . The equation has infinitely many nonnegative solutions,
given by [c, 0, (1 + c3)1/3]T for any c ≥ 0. The minimal nonnegative solution is
[0, 0, 1]T , but the maximal nonnegative solution does not exist.

Corollary 6. Let A be a nonsingular M -tensor and b ≥ 0. Then equation (1)
has a maximal nonnegative solution.
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Remark 3. When A is a nonsingular M -tensor and b ≥ 0, we can use Jacobi
iteration with x0 = 0 to get the minimal solution, and use x0 > 0 with Axm−10 >
0 and Axm−10 ≥ b to get the maximal solution. When b > 0, we can use either
of these two choices to get the unique positive solution. For the case b > 0, the
Jacobi iteration has been studied in [4] with x0 > 0 satisfying 0 < Axm−10 ≤ b.
More general tensor splitting methods have been studied in [13], again with this
requirement on x0 (see [13, Theorem 5.4]). It is interesting to note that both
our choices are excluded by this requirement (unless x0 is already the solution).

Corollary 7. Let A be a nonsingular M -tensor. Suppose that Sl = {x ∈
Rn

+ | Axm−1 ≤ b} 6= ∅ and let xmax(A, b) be the maximal nonnegative so-
lution of Axm−1 = b. If any element of b increases, or if any entry of A
decreases, then the new equation Ãxm−1 = b̃ also has a maximal nonnegative
solution xmax(Ã, b̃) provided that Ã is still a nonsingular M -tensor. Moreover,
xmax(Ã, b̃) ≥ xmax(A, b).

Proof. Let S̃l = {x ∈ Rn
+ | Ãxm−1 ≤ b̃}. Then Sg ⊆ S̃g and the conclusions

follow immediately. �

The next result partially explain why the maximal nonnegative solution is
of particular interest for equation (1) with b ≥ 0.

Corollary 8. Let A be a nonsingular M -tensor and b ≥ 0. Suppose x(k) is the
unique positive solution of Axm−1 = b(k), where b(k) > 0 (k = 1, 2, . . .) and b(k)

is monotonically decreasing and converges to b as k → ∞. Then, as k → ∞,
x(k) converges to the maximal nonnegative solution xmax(A, b) of Axm−1 = b.

Proof. By Corollary 7, we have x(k) ≥ x(k+1) ≥ xmax(A, b) for all k ≥ 0.
Thus limk→∞ x(k) = x∗ exists. Letting k → ∞ in A(x(k))m−1 = b(k), we get
Axm−1∗ = b and x∗ ≥ xmax(A, b). Thus x∗ = xmax(A, b). �

3. Iterative methods for extremal nonnegative solutions

In the previous section, we have presented new proofs for the existence of
extremal nonnegative solutions of the tensor equation Axm−1 = b, where A
is a nonsingular M -tensor and b is a nonnegative vector, by using the Jacobi
iteration with suitable initial guesses. We have also presented some results when
A is a Z-tensor or b is a general real vector. Now, we would like to present
some iterative methods that may be more efficient than the Jacobi iteration for
actual computation of the extremal solutions, determine and compare the rates
of convergence of these methods.

The Jacobi iteration is just a very simple fixed-point iteration. In the Jacobi
iteration, we keep the term involving xm−1i in the ith equation (i ∈ [n]) on the
left and move all other terms to the right. But in the ith equation, we may
also have terms xm−1j with j 6= i. We may consider keeping all unmixed terms

(xm−11 , . . . , xm−1n ) on the left, regardless which equation they are from. In other
words, we have a splitting of the tensor A: A =M−N , whereM = (mi1i2...im)
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with mij...j = aij...j for i, j ∈ [n] and mi1i2...im = 0 elsewhere. We may call this
splitting a level-1 splitting. If we keep all unmixed terms on the left, we then
have the equation

Mxm−1 = Nxm−1 + b.

Note that Mxm−1 = Mx[m−1], where the n × n matrix M has (i, j) element
aij...j for i, j ∈ [n], and is called [17] the majorization matrix associated with A.
It is easy to see [13] that M is a nonsingular M -matrix when A is a nonsingular
M -tensor. When A is a Z-tensor, M is obviously a Z-matrix.

We then have a splitting of the matrix M : M = P − Q, where P is a
nonsingular M -matrix and Q ≥ 0. This may be called a level-2 splitting. For
example, the following splitting of a Z-matrix is permitted, although not a good
one.  −1 0 0

−3 2 −2
0 −3 4

 =

 2 0 0
−1 3 −1
0 −2 5

−
 3 0 0

2 1 1
0 1 1

 .
We can now rewrite Axm−1 = b as

Px[m−1] = Qx[m−1] +Nxm−1 + b

and get fixed-point iteration in implicit form

Px
[m−1]
k+1 = Qx

[m−1]
k +Nxm−1k + b (4)

or in explicit form

xk+1 =
(
P−1

(
Qx

[m−1]
k +Nxm−1k + b

))[1/(m−1)]
,

assuming P−1
(
Qx

[m−1]
k +Nxm−1k + b

)
≥ 0 for each k. In [13], fixed-point

iterations like this are called tensor splitting iterative methods and studied for
finding the unique positive solution of the tensor equation Axm−1 = b with A
being a nonsingular M -tensor and b a positive vector.

We first study iteration (4) for finding the minimal nonnegative solution.

Theorem 9. Let A be a Z-tensor and b ∈ Rn
+. Suppose that Sg = {x ∈

Rn
+ | Axm−1 ≥ b} 6= ∅. Then for x0 = 0, the sequence {xk} from iteration (4)

is monotonically increasing and converges to the minimal nonnegative solution
of Axm−1 = b.

Proof. The proof is almost the same as the proof of Theorem 1. In that proof,
we use the obvious fact that Dxm−1 ≥ Dym−1 (with x, y ≥ 0) implies x ≥ y.
We now need Px[m−1] ≥ Py[m−1] implies x ≥ y, which is true since P−1 ≥ 0
for the nonsingular M -matrix P . �

Remark 4. When A is a Z-tensor but not a nonsingular M -tensor, it may not
be easy to determine whether Sg 6= ∅. We may apply iteration (4) without
checking this condition. In this case, the sequence {xk} is still well-defined and
monotonically increasing. The sequence is bounded above if and only if Sg 6= ∅.
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In iteration (4), N is uniquely determined by A, but we have the freedom to
choose Q (P is uniquely determined by Q). The next result gives a comparison
of convergence rate by examining the iterates right from the beginning (so we
are not talking about asymptotic rate of convergence here).

Theorem 10. Under the conditions of Theorem 9, let {xk} and {x̂k} be the
sequences generated by iteration (4) with two splittings of M : M = P −Q and
M = P̂ − Q̂, respectively, and with x0 = x̂0 = 0. If Q̂ ≤ Q, then xk ≤ x̂k for all
k ≥ 0. In other words, a smaller matrix Q gives faster termwise convergence
for finding the minimal nonnegative solution.

Proof. We need to show that xk ≤ x̂k implies xk+1 ≤ x̂k+1 for each k ≥ 0.
We have (4) and

P̂ x̂
[m−1]
k+1 = Q̂x̂

[m−1]
k +N x̂m−1k + b. (5)

From P −Q = P̂ − Q̂, we get P̂ = P − (Q− Q̂) and get from (5) that

Px̂
[m−1]
k+1 = (Q− Q̂)x̂

[m−1]
k+1 + Q̂x̂

[m−1]
k +N x̂m−1k + b

≥ (Q− Q̂)x̂
[m−1]
k + Q̂x̂

[m−1]
k +N x̂m−1k + b

= Qx̂
[m−1]
k +N x̂m−1k + b

≥ Qx
[m−1]
k +Nxm−1k + b

= Px
[m−1]
k+1 .

Thus xk+1 ≤ x̂k+1. �

We now show that iteration (4) has linear convergence under suitable as-
sumptions. By linear convergence we actually mean at least linear convergence.
For example, x0 = 0 is already a solution when b = 0. Let L be the nonnegative
tensor such that Lxm−1 = Qx[m−1] +Nxm−1. Then iteration (4) becomes

Px
[m−1]
k+1 = Lxm−1k + b. (6)

For x ∈ Rn and index set I ⊆ [n], we denote by xI the subvector of x, whose
elements are xi, i ∈ I. For tensor A = (ai1...im) ∈ R[m,n], we denote by AI the
subtensor of A with elements ai1...im , i1, . . . , im ∈ I.

Theorem 11. Let A be a Z-tensor and b ∈ Rn
+ be nonzero. Let I0 = {i | bi = 0}

and suppose that Sg = {x ∈ Rn
+ | Axm−1 ≥ b} 6= ∅. Let {xk} be the sequence

from iteration (6) with x0 = 0. If k0 is the smallest integer such that xk0
and

xk0+1 have the same zero pattern, then 1 ≤ k0 ≤ n and xk have the same zero
pattern for all k ≥ k0, which is also the zero pattern of the minimal nonnegative
solution xmin. Let I = {i | (xk0

)i = 0}. Then I ⊆ I0. Let Ic = [n] \ I. Then
the iteration (6) for k ≥ k0 is reduced to an iteration for the lower-dimensional
tensor equation:

AIc x̂
m−1 = bIc . (7)
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For k ≥ k0, x̂k from the reduced iteration is the same as (xk)Ic . The minimal
nonnegative solution x̂min of (7) is positive and is the same as (xmin)Ic . Thus xk
converges to xmin linearly if and only if x̂k converges to x̂min linearly. Assume
Axm−1 = b is already the reduced equation for notation convenience (all diagonal
elements of A are now positive). Then xk converges to xmin linearly under any
of the following four conditions:

(a) P−1b > 0.

(b) P−1L̄em−2 is irreducible, where e is the vector of ones and L̄ is the semi-
symmetric tensor from L.

(c) With all diagonal elements of A included entirely in P and B = D − A
(D is the diagonal part of A), the matrix B̄em−2 is strictly upper or lower
triangular.

(d) For each i ∈ I0, there is an element aii2...im 6= 0, where ij /∈ I0 for at least
one j (2 ≤ j ≤ m).

Proof. With x0 = 0 for iteration (6), we have xk ≤ xk+1 for each k ≥ 0. Let k0
be the smallest integer such that xk0

and xk0+1 have the same zero pattern. It is
clear that 1 ≤ k0 ≤ n and that the zero pattern will not change afterwards and
the minimal solution xmin has the same zero pattern. Let I = {i | (xk0)i = 0}.
Since bi > 0 implies (xk0)i ≥ (x1)i > 0, we have I ⊆ I0. For k ≥ k0, we have
(xk)I = 0. Let Ic = [n] \ I. Since (xk)i2(xk)i3 · · · (xk)im = 0 for all k ≥ k0
when ij ∈ I for at least one j (j = 2, . . . ,m), we only need the elements in AIc

to continue the iteration (6) for k ≥ k0. In other words, the iteration (6) for
k ≥ k0 is reduced to an iteration for the lower-dimensional tensor equation with
indices running through Ic only:

AIc x̂
m−1 = bIc , (8)

with x̂k0
obtained from xk0

by deleting all zero elements. Note that the level-1
and level-2 splittings ofAIc are the ones inherited from those forA. The minimal
nonnegative solution x̂min of (8) is positive (obtained from xmin by deleting all
zero elements), but bIc will have some zero elements when I 6= I0. For k ≥ k0,
x̂k from the reduced iteration can also be obtained from xk by deleting all zero
elements. Thus xk converges to xmin linearly if and only if x̂k converges to x̂min

linearly. We now assume that Axm−1 = b is already the reduced equation for
notation convenience, and denote its positive minimal solution by x̄ for short.
Note that all diagonal elements of the reduced tensor are positive.

By Theorem 10, we may assume P is a diagonal matrix (where slower con-
vergence happens). So we will assume P is diagonal when needed.

The iteration (6) can be written explicitly as xk+1 = φ(xk), with

φ(x) =
(
P−1(Lxm−1 + b)

)[1/(m−1)]
.

From
Pφ(x)[m−1] = Lxm−1 + b = L̄xm−1 + b,
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where L̄ is the semi-symmetric tensor obtained from L, we take derivative on
both sides to obtain

P (m− 1)diag(φ(x)[m−2])φ′(x) = (m− 1)L̄xm−2,

where for x ∈ Rn, diag(x) is the diagonal matrix with the elements of x on the
diagonal. We need to show ρ(φ′(x̄)) < 1 for

φ′(x̄) = diag(x̄[−(m−2)])P−1L̄x̄m−2. (9)

Note that the nonnegative matrix φ′(x̄) is such that

φ′(x̄)x̄ = diag(x̄[−(m−2)])P−1L̄x̄m−2x̄
= diag(x̄[−(m−2)])P−1L̄x̄m−1

= diag(x̄[−(m−2)])P−1Lx̄m−1

= diag(x̄[−(m−2)])P−1(Px̄[m−1] −Ax̄m−1)

= x̄− diag(x̄[−(m−2)])P−1b.

If P−1b > 0, then we have φ′(x̄)x̄ < x̄ and thus [2] ρ(φ′(x̄)) < 1. This shows
that condition (a) is sufficient for linear convergence. Conditions (b), (c) and
(d) are needed only when I0 6= ∅ for the reduced equation.

Since P−1b ≥ 0 and P−1b 6= 0, we have φ′(x̄)x̄ ≤ x̄ and φ′(x̄)x̄ 6= x̄. Thus
we still have [2] ρ(φ′(x̄)) < 1 if φ′(x̄) is irreducible. From (9), we see that φ′(x̄)
is irreducible if and only if P−1L̄em−2 is irreducible. Thus, condition (b) is also
sufficient for linear convergence.

Under condition (c), we just need to show linear convergence for the Jacobi
iteration. Now,

φ′(x̄) = diag(x̄[−(m−2)])D−1B̄x̄m−2.
Since B̄em−2 is strictly upper or lower triangular, so is φ′(x̄). Thus ρ(φ′(x̄)) = 0
and linear convergence follows.

Finally, we show that condition (d) is also sufficient for linear convergence.
We now assume P is diagonal. We modify x̄ to x̂ by changing (x̄)i to (x̄)i−ε > 0

for each i /∈ I0, where 0 < ε < mini/∈I0(x̄)
−(m−2)
i (P−1b)i. Now for i /∈ I0,

(φ′(x̄)x̂)i ≤ (φ′(x̄)x̄)i = (x̄)i − (x̄)
−(m−2)
i (P−1b)i < (x̂)i.

For i ∈ I0,
(φ′(x̄)x̂)i ≤ (φ′(x̄)x̄)i = (x̄)i = (x̂)i.

Since P is diagonal, (φ′(x̄)x̂)i = (φ′(x̄)x̄)i if and only if (L̄x̄m−2x̂)i = (L̄x̄m−2x̄)i,
i.e.,

n∑
j=1

 n∑
i3,...,im=1

L̄iji3...im x̄i3 · · · x̄im

 x̂j

=

n∑
j=1

 n∑
i3,...,im=1

L̄iji3...im x̄i3 · · · x̄im

 x̄j .
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This holds if and only if L̄iji3...im = 0 for all j /∈ I0 and for all i3, . . . , im ∈ [n],
i.e., Lii2i3...im = 0 for all i2, . . . , im ∈ [n] such that ij /∈ I0 for at least one j
(2 ≤ j ≤ m). Therefore, when condition (d) holds, (φ′(x̄)x̂)i < (φ′(x̄)x̄)i = (x̂)i
for each i ∈ I0. Linear convergence follows since we again have ρ(φ′(x̄)) < 1. �

We now study iteration (4) for finding the maximal nonnegative solution.

Theorem 12. Let A be a nonsingular M -tensor and suppose that Sl = {x ∈
Rn

+ | Axm−1 ≤ b} 6= ∅. Then for any x0 > 0 such that Axm−10 > 0 and

Axm−10 ≥ b. The sequence from iteration (4) is monotonically decreasing and
converges to the maximal nonnegative solution of Axm−1 = b.

Proof. The proof is almost the same as the proof of Theorem 5. In that proof,
we use the fact that Dxm−1 ≥ Dym−1 (with x, y ≥ 0) implies x ≥ y. We now
use the fact Px[m−1] ≥ Py[m−1] implies x ≥ y. �

Remark 5. When b /∈ Rn
+, it may not be easy to determine whether Sl 6= ∅. We

may apply iteration (4) without checking this condition. In this case, Sl 6= ∅
if and only if P−1

(
Qx

[m−1]
k +Nxm−1k + b

)
≥ 0 for each k ≥ 0. Indeed, if

P−1
(
Qx

[m−1]
k +Nxm−1k + b

)
≥ 0 for each k ≥ 0, then we see from a proof

similar to that of Theorem 5 that xk ≥ xk+1 ≥ 0 for all k ≥ 0. In this case,
limk→∞ xk = x∗ exists and x∗ is a solution of Axm−1 = b and thus Sl 6= ∅.

Remark 6. To obtain a suitable x0 in Theorem 12, we can always take a vector
b̂ > 0 with b̂ ≥ b, and use the methods in [7, 8] to get the unique positive solution

x∗ of the equation Axm−1 = b̂ and then take x0 = x∗. The Jacobi iteration that
we have discussed here will also work very well for this purpose. Specifically,
we can take b̂ with b̂i = bi + 1 if bi ≥ 0 and b̂i = 1 if bi < 0 (we assume that
the vector b has been scaled so that its largest element is around 1), and apply

Jacobi iteration with x0 = 0 to the equation Axm−1 = b̂. We can determine the
smallest k ≥ 1 such that have Axm−1k > 0 and Axm−1k ≥ b (we have xk > 0 for
all k ≥ 1). Then this xk can be used as x0 in Theorem 12. Note that the exact

solution of Axm−1 = b̂ will be a worse x0 for Theorem 12.

Theorem 13. Under the conditions of Theorem 12, let {xk} and {x̂k} be the
sequences generated by iteration (4) with two splittings of M : M = P −Q and
M = P̂ − Q̂, respectively, and with x0 ≥ x̂0 > 0 satisfying

Axm−10 > 0, Axm−10 ≥ b, Ax̂m−10 > 0, Ax̂m−10 ≥ b.

If Q̂ ≤ Q, then xk ≥ x̂k for all k ≥ 0. In other words, a smaller matrix Q gives
faster termwise convergence for finding the maximal solution.

Proof. We need to show that xk ≥ x̂k implies xk+1 ≥ x̂k+1 for each k ≥ 0.
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We have (4) and (5). Since P̂ = P − (Q− Q̂), we get from (5) that

Px̂
[m−1]
k+1 = (Q− Q̂)x̂

[m−1]
k+1 + Q̂x̂

[m−1]
k +N x̂m−1k + b

≤ (Q− Q̂)x̂
[m−1]
k + Q̂x̂

[m−1]
k +N x̂m−1k + b

= Qx̂
[m−1]
k +N x̂m−1k + b

≤ Qx
[m−1]
k +Nxm−1k + b

= Px
[m−1]
k+1 .

Thus xk+1 ≥ x̂k+1. �

We now study the convergence rate of iteration (4) for finding the maximal
nonnegative solution of (1), under the conditions of Theorem 12. In our first
result we assume that the maximal nonnegative solution is positive. We know
from [10, Theorem 2.4] that every nonnegative solution of (1) is positive if A
is irreducible and b ≥ 0 is nonzero. We also know from Corollary 7 that if
the maximal nonnegative solution of Axm−1 = b is positive, then the maximal
nonnegative solution of Ãxm−1 = b̃ will also be positive if Ã and b̃ are obtained
from A and b in ways described there.

Theorem 14. Let A be a nonsingular M -tensor and suppose that Sl = {x ∈
Rn

+ | Axm−1 ≤ b} 6= ∅. Let xmax be the maximal nonnegative solution of
Axm−1 = b and assume that xmax > 0. Let I0 = {i | bi = 0}. Then for any
x0 > 0 such that Axm−10 > 0 and Axm−10 ≥ b, the sequence {xk} from iteration
(4) converges to xmax linearly under any of the following four conditions:

(a) P−1b > 0.

(b) P−1L̄em−2 is irreducible, where e is the vector of ones and L̄ is the semi-
symmetric tensor from L.

(c) With all diagonal elements of A included entirely in P and B = D − A,
the matrix B̄em−2 is strictly upper or lower triangular.

(d) For each i ∈ I0, there is an element aii2...im 6= 0, where ij /∈ I0 for at least
one j (2 ≤ j ≤ m).

Proof. When b = 0, Axm−1 = b has a unique solution x = 0. Thus b 6= 0 when
xmax > 0. Exactly as in the proof of Theorem 11 (we do not need the reduction
process there since we assume xmax > 0), we can show that the iteration map
φ is such that ρ(φ′(xmax)) < 1 under any of the four conditions in the theorem.
In proving linear convergence under condition (c) or (d), we may assume that
P is diagonal. �

We now assume b ≥ 0, but allow xmax to have some zero elements.

Theorem 15. Let A be a nonsingular M -tensor and b ∈ Rn
+ be nonzero. Let

xmax be the maximal nonnegative solution of Axm−1 = b. Let I0 = {i | bi = 0}.
Then for iteration (4) with any x0 > 0 such that Axm−10 > 0 and Axm−10 ≥ b,
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there is a smallest integer k0 (0 ≤ k0 ≤ n − 1) such that xk0 and xk0+1 have
the same zero pattern (including the case with no zero elements), and xk have
the same zero pattern for all k ≥ k0. Let I = {i | (xk0

)i = 0} (which may be
empty). Then I ⊆ I0. Let Ic = [n] \ I. Then the iteration (4) for k ≥ k0 is
reduced to an iteration for the lower-dimensional tensor equation:

AIc x̂
m−1 = bIc . (10)

For k ≥ k0, x̂k from the reduced iteration is the same as (xk)Ic . The maximal
nonnegative solution x̂max of (10) is the same as (xmax)Ic (which is not neces-
sarily positive). Thus xk converges to xmax linearly if and only if x̂k converges to
x̂max linearly. Assume Axm−1 = b is already the reduced equation and assume
that its maximal solution xmax is positive. Then xk converges to xmax linearly
under any of the following four conditions:

(a) P−1b > 0.

(b) P−1L̄em−2 is irreducible, where e is the vector of ones and L̄ is the semi-
symmetric tensor from L.

(c) With all diagonal elements of A included entirely in P and B = D − A,
the matrix B̄em−2 is strictly upper or lower triangular.

(d) For each i ∈ I0, there is an element aii2...im 6= 0, where ij /∈ I0 for at least
one j (2 ≤ j ≤ m).

Proof. We have x0 > 0 and xk ≥ xk+1 for all k ≥ 0. Each xk has at least
one nonzero element since xmax 6= 0. Thus, there is a smallest integer k0 (0 ≤
k0 ≤ n − 1) such that xk0 and xk0+1 have the same zero pattern. Since b ≥ 0,
xk have the same zero pattern for all k ≥ k0. It is clear that I ⊆ I0. The
reduced equation (10) is then obtained as in the proof of Theorem 11. However,
its maximal solution xmax (as the limit of a positive sequence) may have some
zero elements. With the additional assumption that xmax > 0 for the reduced
equation, the proof of linear convergence is exactly the same as in the proof of
Theorem 11. �

Remark 7. The reduction in Theorem 11 is obtained from the iteration for
finding the minimal solution and the reduction in Theorem 15 is obtained from
the iteration for finding the maximal solution. A reduction process has also
been described in [10], without mentioning maximal and minimal solutions. We
will explain that one can only find a nonnegative solution with the same number
of nonzero elements as the minimal solution by finding a positive solution of the
reduced equation in [10].

To describe the approach in [10], we recall the following definition.

Definition 2. A tensor A ∈ R[m,n] is called reducible with respect to I ⊂ [n]
if its elements satisfy

ai1i2...im = 0,∀i1 ∈ I, ∀i2, . . . , im /∈ I.
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The next result has been presented in [10] (see Corollary 2.8 there).

Theorem 16. Suppose that A is a nonsingular M -tensor and b ∈ Rn
+ is nonzero.

Then there is an index set I ⊆ I0 (which could be empty) such that every nonneg-
ative solution to the following lower dimensional tensor equation with Ic = [n]\I

AIcx
m−1
Ic

= bIc

is positive. Moreover, every positive solution xIc of the last equation together
with xI = 0 forms a nonnegative solution to equation (1).

By comparing the discussions in [10] and in this paper, we can see that the
index set I ⊆ I0 in Theorem 16 is the largest set such that A is reducible with
respect to I. We also see that the index set I can be determined automatically
by iteration (4) for computing the minimal nonnegative solution, with x0 = 0.
Indeed, I = {i | (xk)i = 0}, where k is the smallest integer such that the vectors
xk and xk+1 from iteration (4) have the same zero pattern (see Theorem 11;
I = ∅ when b > 0). This is a very easy way to determine the set I. It would
be much more expensive to determine I by using the definition of reducibility
to find the largest index set I ⊆ I0 such that A is reducible with respect to I.

The numerical methods in [10, 11] for computing a nonnegative solution of
(1) are based on Theorem 16. They have quadratic convergence under suitable
assumptions. For example, assuming equation (1) has already been reduced, the
assumption needed for a Newton method in [11] is that for each i ∈ I0, there
is an element aii2...im 6= 0 with all ij /∈ I0 (j = 2, . . . ,m). So the assumption
is stronger than our condition (d) in Theorem 11 for the linear convergence
of our simple iteration for finding the minimal solution. From our comments
on Theorem 16, we know that the methods in [10, 11] can only find one of
the nonnegative solutions that has the same number of zero elements as the
minimal solution. In particular, they will never find the maximal solution if
it have more nonzero elements than the minimal solution. Moreover, to use
the methods in [10, 11], the tensor A should be semi-symmetrized first, which
increases computational work and makes the tensor much less sparse.

Example 2. We consider Example 1 with k = 1. Then equation (1) has two
solutions: [0, 1]T and [2, 1]T . Note that I0 = {1}. We have I = {1} for Theorem
16 since A is reducible with respect to {1}. The reduced equation is x32 = 1
with nonnegative solution x2 = 1, which is positive. A nonnegative solution of
the original equation is then [0, 1]T by Theorem 16, but the other solution is
lost in the reduction. We now apply Theorem 11. With x0 = [0, 0]T , we get
x1 = [0, 1]T and x2 = [0, 1]T . So k0 = 1 and I = {1} in Theorem 11. The
reduced equation is x32 = 1 with minimal nonnegative solution x2 = 1, which is
positive, and the minimal nonnegative solution of the original equation is then
[0, 1]T by Theorem 11 (we got this solution after just one iteration). We then
apply Theorem 15. With x0 = [3, 1]T , we get x1 = [181/3, 1]T . So k0 = 0 and
I = ∅ in Theorem 15. The equation is thus not reduced. We have xk = [tk, 1]T ,
where tk is determined by the iteration: t0 = 3, tk+1 = (2t2k)1/3. So tk converges
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to 2 linearly with rate 2/3, and xk converges to [2, 1]T at the same rate. The
linear convergence of {xk} is also guaranteed by Theorem 14 since condition (d)
there is satisfied (a1112 6= 0).

There are examples for which iteration (4) converges linearly with a rate
very close to 1. We consider another extension of Example 1.1 in [1].

Example 3. We consider equation (1) with A ∈ R[m,2] given by a11...1 =
a22...2 = 1 and a11...12 = −2 and with b = [0, 1]T . Then equation (1) has
two solutions: [0, 1]T and [2, 1]T . Note that I0 = {1}. With x0 = [3, 1]T , we
get x1 = [(2 · 3m−2)1/(m−1), 1]T . So k0 = 0 and I = ∅ in Theorem 15. The
equation is thus not reduced. We have xk = [tk, 1]T , where tk is determined
by the iteration: t0 = 3, tk+1 = (2tm−2k )1/(m−1). So tk converges to 2 linearly
with rate (m − 2)/(m − 1), and xk converges to [2, 1]T at the same rate. The
linear convergence of {xk} is also guaranteed by Theorem 14 since a11...12 6= 0.
However, when m is large, the rate is very close to 1, so xk converges to [2, 1]T

very slowly.

Remark 8. We have the freedom to choose the splitting M = P −Q for itera-
tion (4), when A is a nonsingular M -tensor. Recall that a smaller Q is going to
give faster termwise convergence (see Theorems 10 and 13). For a dense tensor
with order m ≥ 4, computing Nxm−1 will require O(nm) flops (for large n and
fixed m) and solving the linear system My = c requires O(n3) flops. So it is
advisable to use P = M and Q = 0 in the splitting M = P − Q for a dense
tensor with order m ≥ 4. For a dense tensor with order 3, it is advisable to take
P to be the lower triangular part of M or the upper triangular part of M , since
solving the linear system Py = c requires O(n2) flops in this case. If the tensor
is very sparse, then the Jacobi iteration is often the most efficient one among
the iterative methods we have discussed since it can utilize the sparsity very
well and the computational work each iteration is lower than other methods.

4. Numerical experiments

In this section, we perform some numerical experiments to illustrate our
theoretical results. In each example of equation (1), the tensor A is a very sparse
Z-tensor and the vector b has many zero elements, so the minimal nonnegative
solution (if exists) of equation (1) may have some zero elements. Our first
example is obtained from Example 1 by introducing a parameter.

Example 4. We consider A ∈ R4,2k, where k ≥ 2 is an integer. The nonzero
elements of A are given by

A(i, i, i, i) = 1, i = 1, . . . , 2k,

A(2i− 1, 2i− 1, 2i− 1, 2i) = −2, i = 1, . . . , k,

A(2i, 2i+ 1, 2i+ 1, 2i+ 1) = −ε, i = 1, . . . , k − 1,

A(2k, 2, 2, 2) = −ε,

where ε ≥ 0 is a parameter. We take b = [0, 1, . . . , 0, 1]T ∈ R2k.
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Table 1: Number of iterations for finding the extremal solutions using Jacobi iteration for
Example 4

k 5 50 500 5000 50000
min, ε = 0.05 2 2 2 2 2
min, ε = 0.005 2 2 2 2 2
max, ε = 0.05 95 135 143 149 155
max, ε = 0.005 67 71 74 77 80

The example is reduced to Example 1 when ε = 0. For all ε ≤ 0.06, Ax3 > b
for x = [3, 1.4, . . . , 3, 1.4]T , so A is a nonsingular M -tensor. For small ε, the
equation Ax3 = b is expected to have 2k nonnegative solutions that are per-
turbations of the 2k solutions given in Example 1. We will use Jacobi iteration
to find the two extremal solutions. If we wish (and time permits), we can also
try to find 2k − 2 non-extremal nonnegative solutions in the following way. Let
I be any proper subset of I0 = {1, 3, . . . , 2k − 1}. Then A is reducible with
respect to I. We can then find the maximal nonnegative solution of the reduced
equation corresponding to the index set Ic = [2k] \ I, and then insert 0 at each
position i ∈ I to get a nonnegative solution of the original tensor equation. For
k = 3 and ε = 0.05, we actually followed through the above procedure to find
23 nonnegative solutions (including the two extremal solutions).

In Table 1, we report the number of iterations of Jacobi iteration for finding
the two extremal solutions for ε = 0.05, 0.005 and k = 5, 50, 500, 5000, 50000.
For the minimal solution, we use x0 = 0 in Jacobi iteration. For the maximal
solution, we use x0 = [3, 1.4, . . . , 3, 1.4]T in Jacobi iteration. The stopping
criterion is ‖A(xk)3 − b‖2 ≤ 10−10. For this example, the minimal nonnegative
solution is [0, 1, . . . , 0, 1, 0, (1 + ε)1/3]T and can be found by Jacobi iteration in
two iterations. For finding the maximal solution, the Jacobi iteration requires
more iterations for larger ε. The change in the number of iterations is small
as k increases, and is largely due to the use of 2-norm (instead of ∞-norm)
in the stopping criterion. For the maximal solution, the convergence of Jacobi
iteration is linear since condition (d) in Theorem 14 is satisfied.

In our second example, both A and b are very sparse, but the minimal
nonnegative solution of equation (1) is still positive. By computing the extremal
nonnegative solutions, we can get a strong indication as to whether there is a
unique positive solution for the equation.

Example 5. We consider A ∈ R3,n, where n ≥ 4 is even. The nonzero elements
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Table 2: Number of iterations for finding the extremal solutions using Jacobi iteration for
Example 5 with n = 64

ε 0.1 0.15 0.2 0.25 0.252 0.254 0.256 0.258
min, tol = 10−8 96 141 265 1908 2524 3719 7039 61018
min, tol = 10−10 122 182 346 2518 3330 4908 9283 80297
max, initial guess 1 2 2 12 39 66 129 1177
max, tol = 10−8 106 164 311 2307 3192 4733 8957 77565
max, tol = 10−10 132 205 392 2916 3998 5921 11202 96844

of A are given by

A(i, i, i) = 1, i = 1, . . . , n,

A(i, i+ 1, i+ 1) = −0.25, i = 1, . . . , n− 1,

A(i, i+ 1, i+ 2) = −ε, i = 1, . . . , n− 2,

A(i, i− 1, i− 1) = −0.25, i = 2, . . . , n/2,

A(i, i− 1, i− 2) = −0.25, i = 3, . . . , n,

where ε > 0 is a parameter. We take b = [1, 0, . . . , 0]T ∈ Rn.

The tensor A is irreducible and thus every nonnegative solution of Ax2 = b
must be positive (see [10, Theorem 2.4]). The majorization matrix M associated
with A is block upper triangular and M−1b > 0 does not hold. The uniqueness
of positive solutions is then unknown (see [13, Theorem 4.5]). For this example,
A = I − B, where B ≥ 0. We take n = 64. When ε = 0.258, we find ρ(B) ≈
0.9998. When ε = 0.259, we find ρ(B) ≈ 1.0007. Since ρ(B) increases as ε
increases, A is a nonsingular M -tensor for ε ≤ 0.258, and is not a nonsingular
M -tensor for ε ≥ 0.259.

We now use the Jacobi iteration to find the extremal nonnegative solutions
of Ax2 = b for some values of ε ≤ 0.258. For the minimal solution, we use Jacobi
iteration with x0 = 0 and stop the iteration when ‖A(xk)2 − b‖2 ≤ tol. For the

maximal solution, we first take b̂ = [2, 1, . . . , 1]T ∈ R64 and apply the Jacobi

iteration with x̂0 = 0 to the equation Ax̂2 = b̂ and stop the iteration as soon as
A(x̂k)2 > b is satisfied (the number of iterations for each ε is recorded in Table
2 in the row for “max, initial guess”). We then use the Jacobi iteration with
x0 = x̂k to compute the maximal solution of Ax2 = b and stop the iteration
when ‖A(xk)2 − b‖2 ≤ tol. In Table 2, we have given the number of iterations
for finding the minimal and maximal solutions with tol = 10−8 and tol = 10−10.
For each ε value in the table, we also compute ‖xmax−xmin‖2 for the computed
xmax and xmin with tol = 10−10. We find these values to be between 2.08×10−8

and 1.04× 10−7. This strongly suggests that the tensor equation has a unique
positive solution for these ε values. The convergence of the Jacobi iteration is
linear for this example since condition (b) in Theorem 11 (which is the same as
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condition (b) in Theorem 14) is satisfied (we just need to check that Le is an
irreducible matrix). Moreover, the Jacobi iteration for the minimal solution and
for the maximal solution should have (roughly) the same rate of convergence
since the minimal solution and the maximal solution are (roughly) the same.
For fixed ε, we see from Table 2 that the number of iterations for the maximal
solution is significantly larger than that for the minimal solution. This is because
of the difference in the early stage of iterations. For ε = 0.258 for example, to
reduce the residual error from 10−8 to 10−10, we need 19279 iterations for both
the minimal solution and the maximal solution. To have better efficiency, we
can apply Newton’s method as a correction method after the residual has been
sufficiently reduced by Jacobi iteration. For example, to compute the minimal
solution when ε = 0.258, we can reduce the residual to under 10−2 after 2983
iterations of Jacobi iteration (with x0 = 0), and then reduce the residual to
about 1.4× 10−14 after 5 steps of Newton’s method. We also note that for the
computed xmax and xmin, the last element can be very small. For ε = 0.1 for
example, we have (xmin)64 = 6.7550× 10−9 and (xmax)64 = 6.7612× 10−9. But
this does not cause any problems with the Jacobi iteration. For ε = 0.259, the
sequence from the Jacobi iteration (with x0 = 0) increases without bound, so
the tensor equation does not have any nonnegative solutions when ε ≥ 0.259 (see
Remark 4 and Corollary 4). The exact turning point ε∗ is somewhere between
0.258 and 0.259. We see from Table 2 that the Jacobi iteration requires a large
number of iterations when ε approaches ε∗ from the left.

We end this section by one more example, for which linear convergence of
the iterative methods in Section 3 is not always guaranteed by the convergence
results there.

Example 6. We consider A ∈ R3,n, where n = 2p and p is even. The nonzero
elements of A are given by

A(i, i, i) = 1, i = 1, . . . , n,

A(i, p− i+ 1, p− i+ 1) = −0.25, A(i, i, i+ 1) = −ε, i = 1, . . . , p,

A(i, n− i+ 1, n− i+ 1) = −0.25, A(i, i, i− 1) = −0.25, i = p+ 1, . . . , n,

where ε > 0 is a parameter. We take b = [1, 0, . . . , 0]T ∈ Rn.

For this example, A = I − B, where B ≥ 0. We now take n = 16. When
ε = 0.79, we find ρ(B) ≈ 0.997. When ε = 0.8, we find ρ(B) ≈ 1.006. Therefore,
A is a nonsingular M -tensor for ε ≤ 0.79, and is not a nonsingular M -tensor
for ε ≥ 0.8. We have I0 = [16] \ {1}, and may use definition to determine
the largest set I ⊆ I0 such that A is reducible with respect to I. It turns
out that I = I2 ∪ I3 ∪ I4, where I2 = {2, 7, 10, 15}, I3 = {3, 6, 11, 14} and
I4 = {4, 5, 12, 13}. This set I can also be found quickly by using Theorem 11.
With x0 = 0 in the Jacobi iteration, we find that k0 = 3 in Theorem 11 and
{i | (x3)i = 0} = I2 ∪ I3 ∪ I4. Note that A is also reducible with respect to
I2, I3, I4, I2 ∪ I3, I2 ∪ I4, I3 ∪ I4.

For ε = 0.7 and ε = 0.79, we find four nonnegative solutions of the tensor
equation by applying the Jacobi iteration to the tensor equation or to suitably
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Table 3: Four nonnegative solutions for Example 6 with n = 16 and ε = 0.7

x(1) x(2) x(3) x(4)

1.0620 1.1861 1.2421 1.3496
0 0.2981 0.4233 0.6512
0 0 0.2441 0.6024
0 0 0 0.5901
0 0 0 0.6145
0 0 0.4882 0.6755
0 0.5962 0.6538 0.7731

0.7148 0.7984 0.8361 0.9085
0.4578 0.5113 0.5354 0.5818

0 0.3688 0.4006 0.4660
0 0 0.2992 0.4010
0 0 0 0.3614
0 0 0 0.3437
0 0 0.1220 0.3472
0 0.1490 0.2275 0.3719

0.5310 0.6120 0.6501 0.7229

reduced tensor equations. The four solutions (rounded to four decimal places)
are given in Table 3 for ε = 0.7 and in Table 4 for ε = 0.79. Note that when ε is
increased from 0.7 to 0.79, all four solutions increase, as predicted by Corollaries
4 and 7 (applied to the original tensor equation or the reduced tensor equations).

We now examine the convergence speed of the iterative methods in Section 3
for finding the extremal solutions of Ax2 = b for Example 6. The stopping
criterion is ‖A(xk)2 − b‖2 ≤ 10−10. Recall that M is the majorization matrix
associated with A and M = P − Q is a splitting of M . Of particular interest
are the following four methods.

• Method 1: P is the diagonal part of M (Jacobi iteration).

• Method 2: P is the lower triangular part of M .

• Method 3: P is the upper triangular part of M .

• Method 4: P = M .

For the minimal solution, we use Methods 1–4 with x0 = 0 and stop the iteration
when ‖A(xk)2 − b‖2 ≤ 10−10. The numbers of iterations are reported in Table

5. For the maximal solution, we first take b̂ = [2, 1, . . . , 1]T ∈ R16 and apply the

Jacobi iteration with x̂0 = 0 to the equation Ax̂2 = b̂ and stop the iteration as
soon as A(x̂k)2 > b is satisfied (the number of iterations for each ε is recorded
in Table 6 in the row for “initial guess”). We then use Methods 1–4 with
x0 = x̂k to compute the maximal solution of Ax2 = b and stop the iteration
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Table 4: Four nonnegative solutions for Example 6 with n = 16 and ε = 0.79

x(1) x(2) x(3) x(4)

1.0700 1.2532 1.3819 4.9333
0 0.3756 0.6120 5.1982
0 0 0.3719 5.4377
0 0 0 5.4724
0 0 0 5.3017
0 0 0.7438 4.9235
0 0.7512 0.8827 4.3318

0.7611 0.8914 0.9830 3.5092
0.4874 0.5709 0.6295 2.2472

0 0.4537 0.5270 2.4649
0 0 0.4436 2.7891
0 0 0 3.0223
0 0 0 3.1400
0 0 0.1859 3.1395
0 0.1878 0.3301 3.0210

0.5350 0.6505 0.7335 2.8730

Table 5: Number of iterations for finding the minimal solution using Methods 1–4 for Example
6 with n = 16

ε 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Method 1 58 69 84 105 138 195 321 842
Method 2 42 50 61 77 102 145 240 631
Method 3 55 66 80 100 132 187 308 810
Method 4 40 48 58 73 96 137 227 599

Table 6: Number of iterations for finding the maximal solution using Methods 1–4 for Example
6 with n = 16

ε 0.70 0.72 0.74 0.76 0.78 0.79
initial guess 3 3 4 13 34 139
Method 1 326 407 549 877 2068 7924
Method 2 269 335 452 722 1704 6535
Method 3 292 365 493 789 1865 7152
Method 4 235 294 397 635 1501 5757
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when ‖A(xk)2−b‖2 ≤ 10−10. The numbers of iterations are reported in Table 6.
As predicted by Theorems 10 and 13, the convergence of Method 4 is faster than
the convergence of Methods 2 and 3, and the convergence of Method 1 is slower
than the convergence of Methods 2 and 3. For ε ≥ 0.8, the tensor equation has
no positive solutions. Indeed, if x > 0 is a solution, then (0.001I+A)x2 > 0 and
0.001I+A = 1.001I−B would be a nonsingular M -tensor, contradicting the fact
ρ(B) > 1.005. The exact turning point ε∗ is somewhere between 0.79 and 0.8.
We see from Table 6 that, for finding the (positive) maximal solution, Methods
1–4 require a large number of iterations when ε approaches ε∗ from the left. As
we have mentioned for Example 5, we can apply Newton’s method as a correction
method after the residual has been sufficiently reduced, to have better efficiency
in those situations. The turning point for the minimal solution is different. The
minimal solution has positive elements only in positions i ∈ I1 = {1, 8, 9, 16}
and may be found by applying Methods 1–4 to the reduced tensor equation
corresponding to the index set I1. The reduced tensor has the form Â = I − B̂,
where B̂ ∈ R3,4 is such that ρ(B̂) ≈ 0.975 for ε = 1.4 and ρ(B̂) ≈ 1.014 for
ε = 1.5. This is why we can still find the minimal nonnegative solution for
ε = 1.4. The tensor equation has no nonnegative solutions for ε ≥ 1.5. When
ε approaches the turning point from the left, Methods 1–4 will require a large
number of iterations. We can apply Newton’s method as a correction method
for better efficiency, but Newton’s method has to be applied to the reduced
equation (it is not applicable to the original equation due to the presence of
zero elements in the approximate solutions). The rate of convergence appears
linear in all cases in Tables 5 and 6. Linear convergence is guaranteed for
Methods 2 and 4 for finding the minimal solution since P−1b > 0 holds for the
reduced equation (see Theorem 11). However, none of our sufficient conditions
for linear convergence is satisfied for Methods 1 and 3 for finding the minimal
solution, and for Methods 1–4 for finding the maximal solution.

For Example 6, the tensor A is very sparse and Method 1 (Jacobi iteration)
can exploit the sparsity very well and may still be the most efficient among the
four methods. When n is one million and ε = 0.7, we just need a few seconds
to get the minimal solution (without using dimension reduction). The minimal
solution only has 4 nonzero elements, a very sparse solution indeed. We find that
the iterates x3 and x4 both have 4 nonzero elements. If we wish, we can perform
the remaining computation on a reduced tensor equation with dimension 4 (see
Theorem 11).

5. Conclusion

We have presented new proofs for the existence of extremal nonnegative so-
lutions of the M -tensor equation with a nonnegative right-side vector by using
some simple fixed-point iterations. We have studied these iterative methods and
their generalizations. With a suitable starting point, each of these methods has
monotonic convergence (to the maximal nonnegative solution or to the mini-
mal nonnegative solution) and the rate of convergence is (at least) linear under
some mild assumptions. These methods are currently the only methods that are
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guaranteed to compute the maximal nonnegative solution or the minimal non-
negative solution with suitable initial guesses, and they can exploit the sparsity
of the coefficient tensor easily. There are examples for which the presented iter-
ations have linear convergence at a rate very close to 1. In those situations, one
may use Newton’s method as a correction method to improve efficiency. Itera-
tive methods with faster global convergence (without increasing computational
work each iteration by too much) are still desirable. Those methods should be
ones that can compute the maximal nonnegative solution and/or the minimal
nonnegative solution, not just any one of the nonnegative solutions.
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