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Abstract

The Green’s function approach for treating quantum transport in nano devices requires the solution of
nonlinear matrix equations of the form X + (C* 4+ inD*)X ~!(C + inD) = R + inP, where R and P are
Hermitian, P + AD* + A~'D is positive definite for all A on the unit circle, and  — 0*. For each fixed
n > 0, we show that the required solution is the unique stabilizing solution X;,. Then X, = lim,_,o+ X;, is a
particular weakly stabilizing solution of the matrix equation X + C*X~'C = R. In nano applications, the
matrices R and C are dependent on a parameter, which is the system energy £. In practice one is mainly
interested in those values of £ for which the equation X + C*X~!C = R has no stabilizing solutions or,
equivalently, the quadratic matrix polynomial P(\) = A2C* — AR + C has eigenvalues on the unit circle.
We point out that a doubling algorithm can be used to compute X, efficiently even for very small values
of 1, thus providing good approximations to X,. We also explain how the solution X, can be computed
directly using subspace methods such as the QZ algorithm by determining which unimodular eigenvalues
of P(\) should be included in the computation. In some applications the matrices C, D, R, P have very
special sparsity structures. We show how these special structures can be expoited to drastically reduce the
complexity of the doubling algorithm for computing X,,.
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1. Introduction
In this paper we study nonlinear matrix equations of the form
X +(C* +inD*)X~Y(C +inD) = R + inP, (1)

where R and P are Hermitian, P 4+ AD* + A~!D is positive definite for all A on the unit circle T, and 1 > 0.
The special case where P = I, D = 0 and C, R are real arises in nano research [1, 3, 12, 13] and has been
studied in [7, 9]. We now briefly explain how the general equation (1) also arises in nano applications.

A main goal of basic research in molecular electronics is to advance the understanding of electron trans-
port through molecules. In [17], a method for calculating the current is described for a system that consists
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of a molecule connected between two semi-infinite metallic electrodes, and is implemented in a program that
assumes a local-orbital picture and requires as input the Hamiltonian and overlap matrix elements between
orbitals.

The system Hamiltonian is a bi-infinite Hermitian matrix of the form

H;r, Hpyg 0
H=| Hi,y, Hum Hur |, (2)
0 Hin Hrn

where Hy;, Hy,, Hg are the Hamiltonians for the molecule, the left electrode, and the right electrode, re-
spectively, and the overlap matrix is a Hermitian positive definite matrix partitioned in the same way and
is given by

SL SLM 0
S=| Siy Su  Sur

In [17] the blocks Hy, and Hp,ps in (2) are shifted by s1,Sr, and sp.Sp s, respectively, where sy, is a proper
energy shift, and the blocks Hr and Hjysr are shifted similarly. These shifts do not change the structure
of the matrix H in (2). So we can simply assume that the matrix H in (2) has already gone through the
shifting procedure.

The Green’s function (of the full interacting system) is defined by

G=((E+i0")S—H) ' = lim ((E+in)S—H)™",

n—0+

where £ is energy. We note that for each n > 0 the infinite matrix (€ +in)S—H = £S— H +inS is known to
be invertible by Bendixson’s theorem (see [10, Lemma 3.3]), but the existence of the above one-sided limit
is something assumed. The molecule Green’s function G, is that part of G corresponding to the block for
the molecule and is obtained from

Gy = ((5+10+)5M —Hy — 31 — ER)il s
where
Yr=(EScm — Hom)"Gr(EScm — Hrm), Er=(ESur — Hur)Gr(ESvr — Hur)™,

with ) 1
Gr=((E+i07)S, —HL) , Gr=((E+i0%)Sk— Hgr) .

Then [17] the net current is detemined through a definite integral of the transmission function given by
T(g) = tr(FLGMPRG}k\/[),

where
'y =i(Xy -%1), T'r=i(Er—-Xg),

and tr(-) denotes the trace of a matrix. Note that T'(€) is a real function of € since I';, and I'g are Hermitian.
We now explain how the matrix X g is computed. The computation of ¥, is similar. The matrices Hg
and Sk can be written as [17]

Hs Hsb Ss Ssb
H:b Hb be S:b Sb Sbb
e Hy, H, Hy . St Sy Sw
Hy, H, Spp S



where Hg, S, € C?9 and Hy, S, € C"*™, and we suppose that Hys, Spy € CP*P. The size of Hy and S has
been taken sufficiently large so that all nonzero elements of the matrices Hy;r and Sy;r are in the p x ¢
block on the left. This means that we only need Gy, the ¢ x g block in the upper-left corner of G, for the
computation of ¥ . It is easy to see [17] that G is determined through

Gs = (Ue - UsbiU;b)ilv

where Uy = 2S5 — Hy,Ugp = 2S5, — Hgp, UL, = 2S%, — HY with 2z = € +inp and n — 07, and G is the n x n
block in the upper-left corner of the inverse of

28y — Hy  2Spw — Hyp
28y, — Hpy, 25y, — Hy  2Sp — Hup

oSy~ Hiy 2Sy—Hy - | )

Note that the above matrix is invertible by Bendixson’s theorem since the matrix

Sy Sy
Siy So Sw
Tr = - (4)

Sy Sb

is positive definite when S is positive definite. Note also that 7Tg is positive definite if and only if Sy + ASp, +
A~1S}, is positive definite for all A on T.
The block Toeplitz structure of the matrix (3) implies that G, satisfies the matrix equation

Gy = (Uy — UnGoUy,) ™, (5)
where Ub = ZSb — Hb, Ubb = ZSbb — be, Ulﬁb = ngb — Hl:b'
For any W € C"*", we can write W = Wg + ilW;, where the Hermitian matrices

1 1

are called the real part and the imaginary part of W, respectively. We are only interested in £ values for
which the required solution G} of (5) has a nonzero imaginary part (in the limit n — 07) since otherwise
Gy and then G4 would be Hermitian, which would imply that X is Hermitian and then T'(£) = 0 for the
transmission function.
Now we let
X=G,', C=¢£S;,-H},, D=S},, R=ES,—H,, P=5,.

Then the equation (5) becomes (1).

2. Characterization of the solution Gy

The matrix equation (1) may have many different solutions. So what solution X do we need so that
X~1 = Gy is the required solution of (5)?
Let A=C+inD, B=C*+inD*, Q = R+ inP. Then (1) becomes

X+BX'A=0Q. (6)
As before, R and P are Hermitian and P + AD* + A~ D is positive definite for all A on T. Let

M:[g 2}7L:[g é} (7)
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Then X is a solution of (6) if and only if

M[;;]:L{)‘Q}XAA. (8)

Therefore, every solution of (6) can be obtained from a suitable invariant subspace for the pencil M — AL.
Lemma 1. For any n # 0, the matriz pencil M — AL has no eigenvalues on T.
PROOF. Suppose that A € T and (M — AL)x = 0 for a vector x = (2] ,z4 )" with 21,22 € C". Then

Az = A\v2, Qx1 — 12 = AB1y. (9)
By eliminating x5 in (9) we have

Wz = (AB—Q+ A "4)z; =0. (10)

The imaginary part of ziWxq is —naj(P — AD* — A"1D)xy. Since P — AD* — A~1D is positive definite, it
follows from (10) that x1 = 0. By (9) we have xo = 0. Thus, M — AL has no eigenvalues on T. O

Theorem 2. For any n # 0, the matriz pencil M — AL € C?"*2" has n eigenvalues inside T and n
etgenvalues outside T.

PROOF. We consider the matrix pencils

tA 0 0 I
H(t,2) = tR+inP —I}_)‘{tB 0]

obtained from the pencil M — AL by replacing C, D, R with tC,¢D,tR. For each t € [0,1] and A € T,
P+ \tD*) +A"1(tD) = (1 —t)P + t(P + AD* + A\~!D) is positive definite. From Lemma 1 we know that
H(t,\) has no eigenvalues on T for all ¢ € [0,1]. Hence, H(1,\) = M — AL and H(0, ) have the same

numbers of eigenvalues inside T. But it is clear that H(0, A) has n eigenvalues at 0 and n eigenvalues at co.
O

Note that the pencil M — AL is a linearization of the quadratic polynomial P(\) = A\2B — \Q + A.

The basic fixed-point iteration for finding a solution of (6) is X} 41 = F(X}), where F(X) = Q—BX 1 A.
The Fréchet derivative of F at X is the linear map F4 : C"*" — C"*" given by Fi (Z) = (BX 1) Z(X1A).
A solution X of (6) is said to be stabilizing if p(F%) < 1 or, equivalently, p(BX ~*)p(X 1 A) < 1, where p(-)
denotes the spectral radius. Note that the basic fixed-point iteration is locally convergent at a stabilizing
solution.

Let X be any solution of (6). Then we have

P(A) = (ABX ' = DX\ - X'A).

So the eigenvalues of X 1A are n eigenvalues of P()\), and the eigenvalues of BX ! are the reciprocals of
the remaining n eigenvalues of P(\). It then follows from Theorem 2 that a solution X of (6) is stabilizing
if and only if p(X~1A) < 1 and that there is at most one stabilizing solution.

Let the invariant subspace of M — AL corresponding to its n eigenvalues inside T be spanned by the

‘(i }, where U,V € C™" ™. Then the existence of a stabilizing solution can be
established by showing that U and V are both invertible. The stabilizing solution is then X = VU~!. For
the case where the matrices C, D, R, P in (6) are all real, an elementary proof for the invertibility of U has
already been given in [8] and we note that the invertibility of V' can be proved in the same way. It is also
shown in [8] that the imaginary part of the stabilizing solution is positive definite for n > 0. The proofs can
be carried over to the complex case here with only very minor changes.
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Here, however, we are going to use an advanced result on linear operators to show the existence of a
stabilizing solution since this approach will also explain that the stabilizing solution is precisely the solution
we need for the nano application. The treatment is very similar to the one in [9] for a special case of the
equation (6). So our presentation here will be very brief.

Recall that G, = lim, o+ Gy(n), where Gy,(n) is the n x n matrix in the upper-left corner of 77! with
T given by (3) for each n > 0. Using the current notation, we have

Q B
A Q B
T = 4 0 (11)

Associated with T is the rational matrix function ¢(\) = AA+Q+A"1B. We already know from Bendixson’s
theorem (see [10, Lemma 3.3]) that T is invertible for each 1 > 0. Thus, by a result on linear operators (see
[6, Chapter XXIV, Theorem 4.1] and [15]) we know that ¢()) has a factorization

dN) = (I = \"'L)X(I - \U) (12)
with X invertible, p(L) < 1 and p(U) < 1. From (12) we see that
A=-XU, B=-LX, Q=X+LXU.

Thus X + BX 1A =Q and p(X~1A) < 1. In other words, X is the unique stabilizing solution of (6).
By [6, Chapter XXIV, Theorem 4.1] the n x n matrix in the upper-left corner of 7! is precisely X ~*.
We thus have the following characterization of Gy(n).

Theorem 3. For any n > 0, the matriz Gy(n) is the inverse of the unique stabilizing solution of (6).

3. Computation of the stabilizing solution

Let M and L be as in (7). Then the stabilizing solution X of (6) satisfies (8) with p(X 14) < 1.

We remark that the equation (6) with real matrices C, D, R, P also arises in the study of a quadratic
eigenvalue problem from the vibration analysis of fast trains, where the required solution is also the stabilizing
solution and a doubling algorithm is used to find the solution [10]. We can get similar results for our more
general equation (6). The situation here is slightly more complicated since we no longer have B = AT and
the stabilizing solution is no longer complex symmetric.

Starting with the matrices M and L in (7), we define the sequences { M} and {L}, where

A 0 [-P I
Mk_|:Qk I:|7Lk_|:Bk 0:|7

by the following structure-preserving doubling algorithm if no breakdown occurs.

Algorithm 1. Let AO = A,BO = B,QO = Q,PO =0.
Fork=0,1,..., compute

Apy1 = Ap(Qr — Py) ' Ay,
Bit1 = Bi(Qr—P) !By,
Qri1 = Qr— Bu(Qr — Pu) Ay,
Pey1 = Po+ Ak(Qr — Py) ' By

The above algorithm is the SDA-2 as presented in [2]. The next result shows that the doubling algorithm
has some nice properties. In particular, it can compute the stabilizing solution X of (6) efficiently.
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Theorem 4. Let X be the stabilizing solution of (6) and X be the stabilizing solution of the dual equation
X+AX'B=Q.

Then

(a) The sequences {Ar},{Bi},{Qk},{Px} in Algorithm 1 are well-defined.

(b) Qr converges to X quadratically, Ay and By converge to 0 quadratically, QQ — Py converges to X
quadratically, with

timsup /[ Qs = X < p(X ' B)p(X 1 4), timsup /AT < p(X~14),

k— o0
timsup VB[l < p(X ' B), limsup /Q — P — X| < o(X 7 B)p(X 1 4),
k—o0
where || - || is any matriz norm.

PROOF. The proof is very similar to that of [10, Theorem 4.1]. Although the statement of that theorem
and the beginning of its proof refer to the specific problem under consideration in [10], the proof there is
valid for this theorem after some minor changes. Here we only mention the following differences. In [10],
QT =Qand B= AT (this would be true here if the matrices C, D, R, P were all real), and in that case we

can conclude that B, = A, Q] = Qx, P, = Py, and p( “1B) = p(X~1A). O

Remark 1. Although we no longer have p(X~1B) = p(X~1A) in general, we always have p(X 1B) =
p(X~1B). In fact, the eigenvalues of X !B are those of ﬁ(A) = A2A—)\Q + B inside T. We have mentioned
earlier that the eigenvalues of BX ~! are the reciprocals of those eigenvalues of P(\) = A\2B —\Q + A outside
T. However, the reciprocals of the eigenvalues of P(A) outside T are precisely the eigenvalues of P(A) inside
T. It is also well known that BX ! and X !B have the same eigenvalues.

Remark 2. As in [9], we can show that the basic fixed-point iteration (FPI)
Xir1 =Q-BX; A, Xo=Q

is also convergent and Xox_; = Q. So the convergence of the FPI is much slower than the doubling
algorithm. However, we can use an averaging procedure for the FPI to speed up its convergence and for the
nano application we can use the computed solution for one energy value as an initial guess for the solution
for the next nearby energy value [17]. For the special case where P = I, D = 0 and C, R are real, convergence
results for methods based on these ideas have been proved in [7] using the Earle-Hamilton theorem [4, 11].
The proofs there can be carried over to equation (6), with some minor changes, as long as D = 0 still holds
(so C' is any complex matrix, R is any Hermitian matrix, and P is any Hermitian positive definite matrix).
However, when D # 0 we are unable to prove any non-local convergence results for those methods. The
Earle-Hamilton theorem is not applicable since we no longer have B = A*.

To emphasize its dependence on 7, the stabilizing solution of (6) will be denoted by X,,. For the nano
application, Gy = lim,_,o+ Gy(n) and Gy(n) = Xn_l. So G, = X! with X, =lim, o+ X,,. It is easy to see
that X, is a particular weakly stabilizing solution of the matrix equation

X+C*X'C =R, (13)

with p(X;1C) < 1 and p(C*X; 1) < 1. The solution X, can be approximated by computing X, by the
doubling algorithm for a sufficiently small 7, but can also be computed directly by subspace methods, as we
shall see in section 5. For now, we write X, = X, r 4+ iX, j, where the Hermitian matrices X, r and X,
are the real part and the imaginary part of X,, respectively, and we will examine the rank of X, ;. Since
the imaginary part of X, is positive definite for n > 0, we know that X, r is positive semi-definite.
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4. Rank of X, 1
We now denote the matrices A, B, Q in (6) by A,, By, @y, respectively. So
A,=C+inD, B,=C*"+inD*, Q,=R+inP, (14)

with C, D, R, P as before. Let
P,(\) = A?B,, — \Q, + A,.

We already know that P, has no eigenvalues on T for  # 0. For = 0 we get
Py(\) = \2C* — AR+ C.

It is quite possible that Py(\) has some eigenvalues on T. As we will see later, this is the case of primary
interest for the nano application.

Theorem 5. The number of eigenvalues (counting multiplicities) of Po(\) on T must be even, say 2m.
Moreover, we have rank (X, 1) < m.

PROOF. The matrix polynomial Py()) is #-palindromic. Thus p is an eigenvalue of Py()\) if and only if 1/%
is so, and they have the same algebraic, geometric, and partial multiplicities [14]. It follows that the total
number of eigenvalues of Py(\) on T must be even.

By X, + (C* +inD*) X, "(C +inD) = R + inP we have

X, +C* X, 'C = R+nW,, (15)

where
W, =iP —iD*X'C —iC*X,'D 4+ nD*X, ' D.

Taking imaginary parts on (15), we get
K, — Fy K, F, = T, (16)
where K, = Im(X,,),T;, = Im(W,), F,, = Xn_lC. Let F = lim,_,o+ F,, = X, 'C. Then the eigenvalues of F

consist of all n —m eigenvalues of Py(\) inside T plus m eigenvalues of Py(A) on T. Let

_ Rop O —1
F_VO{ iy }VO (17)

be a spectral resolution of F, where Ry; € C"™*™ and Ry € Cn=m)x(n=m) are upper triangular with

0(Ro,1) € T and o(Rp2) €D = {X € C| |A| < 1}. It follows from [16, Chapter V, Theorem 2.8] that there
is a nonsingular matrix V;, such that

F, =V, [ By O } vt (18)

and R, 1 — Ro1, Ry2 — Ro2, and V,, — Vp, as n — 0.
From (16) and (18) we have

. R:, 0 .. Ryi 0 .
VK,V — { . " }vn Knvn{ - } = VT,V (19)
Let
* o Hn,l Hn,?) * _ ZUJ Z77»3
VK,V = [ O ] VTV, = [ P (20)



Then (19) becomes

Hn 1 — R;’lelle = 77va1, (21&)
Hn,Q - R;QH?],QRn,Q = 77Z’r],27 (21b)
Hn,g - R;,IHW,3R77,2 = 77277’3. (21C)

Asn — 0%, R,1 — Ro1 with p(Ro,1) =1, Ry 2 — Ro,2 with p(Ro2) < 1, and Z,, » and Z, 5 are bounded by
the convergence of T;,. So we have H, » — 0 from (21b) and H,, 3 — 0 from (21c). Since X, ; = lim,_,o+ K,
it follows from (20) that rank(X, ;) < m. O

We conjecture that equality holds in Theorem 5 when all eigenvalues of Py(A) on T are simple.
For the nano application, the matrices C' and R in Py(\) are given by

C=E&Sy, — Hy,, R=ESy,— H,.

If Py()\) has no eigenvalues on T for an energy value £, then X, is Hermitian by Theorem 5 and G, = X!
is also Hermitian. We then know that the transmission function T'(£) takes zero value, without solving any
nonlinear matrix equations. So we are only interested in those £ values for which Py(\) has some eigenvalues
on T. The next simple result is thus relevant, where S, — ASp, — A™1S}; is positive definite for all A on T.

Theorem 6. For \ € T, let the eigenvalues of
(Sh — ASpp — A71S5) TH(Hy — Ay, — ATUH;)
be pr(AN) < -+ < pp(N). Let

A = ; . .
i = | pin 1i(A), ﬁﬁi)i“’()‘) ;

and A = |J;_, A;i. Then the quadratic pencil Po(X) = N2(ESw, — Hpp) — MESy — Hy) + (£S5, — Hy) has
some eigenvalues on T if and only if £ € A.

PRrROOF. The quadratic Py(\) has some eigenvalues on T if and only if det(Py(\)) = 0 for some A € T or,
equivalently,

det(—A"'Py(X)) = det (E(Sp — ASpy, — A1 Sp) — (Hy — AHyp, — A Hy,)) = 0

for some A € T, the latter is equivalent to £ € A. a

5. Direct computation of X,

The solution X, can be computed directly by subspace methods. We will need to include all eigenvalues
of

P(\) = \C* — AR+ C (22)

inside T and half of its eigenvalues on T — the half that would be perturbed to the inside of T when P())
is perturbed to

P,(A) = X*(C* +inD*) — A(R + inP) + (C + inD). (23)

Let

M:{g ‘”,ﬁ:{o‘l”. (24)



Then the pencil M — AL, also denoted by (M, L), is a linearization of the quadratic matrix polynomial
P(X). Tt is easy to check that y and z are the right and left eigenvectors, respectively, corresponding to an
eigenvalue A of P(A) if and only if

{ Ry *yAC*y ] ’ [ 32 ] (25)

are the right and left eigenvectors of (M, L), respectively.

The following result is a generalization of [7, Theorem 3.1] for the special case where P = I, D = 0 and
C, R are real. It shows which invariant subspace corresponding to unimodular eigenvalues of P()) should
be used in the computation of X, assuming they are all semi-simple.

Theorem 7. Suppose that Ao is a semi-simple eigenvalue of P(\) on T with multiplicity mg and Y €
Cn*™o forms an orthonormal basis of right eigenvectors corresponding to Ag. Then iY*(2XoC* — R)Y is a
nonsingular Hermitian matriz. Let dj, j =1,...,£, be the distinct eigenvalues of

Y*(P — XAD* — \;1D)Y (iY*(2XC* — R)Y) ™"

with multiplicities mé, and let &; € Cmoxm} form an orthonormal basis of the eigenspace corresponding to
dj. Then for n > 0 sufficiently small and j =1,...4

A = 2o = Nodjn+O?), k=1,...,mj,
and
Ui =Y (V'(P = D" = N'D)Y) ' ¢+ O(n) (26)
are perturbed eigenvalues and a basis of the corresponding invariant subspace of Pp(\), respectively.
PROOF. Since P(\g)Y =0 with Y*Y = I,,, and |\¢| = 1, we have
0" = (P(\)Y)" = XY *(A2C* — AR + O).

It follows that Y forms an orthonormal basis for left eigenvectors of P(\) corresponding to Ag. From (25),
we obtain that the column vectors of

Y Y
Vr = [ RY—/\OC*Y} and Y = [ —/\OY}

form a basis of left and right eigenspaces of M —AL corresponding to Ao, respectively. Since \q is semi-simple,
the matrix

V™, —AoY?]L [ oy _KOCW ] — _Y*(20C* — R)Y = —Y*P'(A\)Y

is nonsingular. Let
Vr=-Vr (Y*Pl(/\o)y)_l . YL=Jr.
Then we have
ViLYR = Iy and Y MY = ALy, - (27)

For n > 0 sufficiently small, we let

_[c+mD 0 B 0 I
M”_[}H—inP —1]’ E”_{C*JrinD* o]

9



Then M,, — AL, is a linearization of P,()). By (27) and [16, Chapter VI, Theorem 2.12] there are Yr and
JA)L such that [j}R )A)R] and [5@ )74 are nonsingular and

Vi S 51 [ delne O Vi
j)\z‘|M|:yRyR}—|: 0 M]’ lj)z

£ [ V] =[I’“° 9}

0 £

Then, by [16, Chapter VI, Theorem 2.15] the column vectors of Vi + O(n) span the right eigenspace of
(M, L,)) corresponding to (A, I,,,,), where

A = ((AoLmy + 1E11 + O()) (Img +1F11 + O(?))

with
~. | iD 0 | = K . « -
En =Yy |: 1P 0 :| Yr =Y*(NiP —iD)Y (Y P/<)\0)Y) 17
7% 0 0 35 * . Tk * 1/ -1
Fi1 = yL |: D* 0 :| Yr=Y ()\()ID )Y (Y P ()\())Y) .
Thus
A = NI, +n(E11 — MoFi1) + O(%) = ALy — nhoW + O(1%),
where

W =Y*(P =AD" — A\;'D)Y (iY*P'(\)Y) .

(28)
The matrix Z =1Y*P'(A\g)Y =iY*(2A0C* — R)Y in (28) is Hermitian since
Z— Z* =iY*(20C" + 20C — 2R)Y = 2iNgY*P(\)Y = 0.

Since Y*(P — AgD* — \; ' D)Y is positive definite, all eigenvalues of W in (28) are real and there are m
linearly independent eigenvectors. Let d; for j =1,...,¢ be the distinct eigenvalues of W with multiplicities

m}, and let &; € C™0XMb form an orthonormal basis of the eigenspace corresponding to d;j. Then we have
O IAD = ML, — nhodiag (dllmé, o dﬂmg> +Om?).

where & = [{1,...,&] € C™o*™o_ Then for each j € {1,2,...,¢}, the perturbed eigenvalues )\;ﬁ;, k=

1,... ,mg, and a basis of the corresponding invariant subspace of M, — AL, with /\§.f€73|7,=0 = )Xo can be
expressed by

MY = 2o = Xodjn+O0?), k=1,...,m, (29a)
and
* * _ —1
G =Y (Y*(P = 2D" = A\ 'D)Y) " &+ O(). (29b)
The equation in (26) follows from (29b). O

For the pencil (M, L) given by (24), the relation M [ ;; } =L { )‘2 } X 1A shows that the weakly

stabilizing solution X, of (13) is obtained by X, = X2X1_1, where the colums of { §1 } form a basis for
2
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the invariant subspace of (M, L) corresponding to its eigenvalues inside T and its eigenvalues on T that
would be perturbed to the inside of T when (M, £) is perturbed to (M,,, £,) with n > 0.

We can use the QZ algorithm to determine this invariant subspace, with the aid of Theorem 7 when all
unimodular eigenvalues of (M, £) are semi-simple. In practice, these unimodular eigenvalues are likely to be
simple and the statements in our Theorem 7 can be simplified significantly. However, if 1 (or —1) happens
to be an eigenvalue of (M, L), then it must have even multiplicity because (counting multiplicity) half of
eigenvalues at 1 (or —1) will be perturbed to the inside of T and the other half to the outside. Typically 1
(or —1) will be a double eigenvalue of partial multiplicity 2, and the eigenvector corresponding to it should
be used in the computation of X,.

6. Exploiting sparsity

Subspace methods for finding X, may be more efficient than the doubling algorithm that finds X, for a
sufficiently small 7. However, it is possible for the doubling algorithm to exploit certain sparsity structures
in the matrices A, B, Q in (6) while subspace methods couldn’t.

For the nano application here and other applications, the matrices A, B, Q) are from a semi-infinite block
tridiagonal and block Toeplitz matrix, as given in the matrix 7 in (11). In some situations, the matrix 7" is
block tridiagonal with the matrices on the three diagonals having some periodicity, but is not block Toeplitz
when the submatrices in T" are of the given sizes. To make T a block tridiagonal and block Toeplitz matrix,
we would have to partition the matrix T into larger submatrices. To be more precise, the matrix T is given
as in (11), and the matrices A, B,Q € C™*™ have the following structures.

K1 Kipo 0
K. K 0 K 0 0
Q= | Mo fo R O IR
. .. K p,p+1
: : p—1L,p
0 Kp,p—l Kp,p

where Kj’j € C7LJXTLJ,KP+1’Z, € Cmxnp, Kppt1 € Crexmn1,

We now use Algorithm 1 to compute the stabilizing solution X of (6). We remark that the equation
(6) here is more general than the one studied in [10]. That equation arises in the vibration analysis of fast
trains.

As in [10], the complexity of Algorithm 1 can be reduced drastically by using the special structures of
the matrices @, A, B given by (30). Write Qr = Q — ﬁk. Then it is easily seen from Algorithm 1 that the
matrices Ay, B, ﬁk and P, have the special forms

0 E 0 0 ~ 0 0 Gr 0
A’“:{o ok]’ B’“:[Fk o]’ P’“:[o Gk]’ P’“:{ ok 0}’

where Fj, Fy, @k and G are ny X np, ny X N1, N, X Ny and nyg X ng matrices, respectively. Algorithm 1
can be rewritten as the following simplified algorithm.

Algorithm 2. Let Ey = Kpy1,, Fo = Kppi1, Go =0, Go=0.
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Fork=0,1,..., compute

e - )
Sk,1 ¥ 0 Ly
Sk.2 0
: = Q - . ) (31)
’ 0
S ~ 0
k,p i G | _
_ 4. =1
Tia G 0 0]
T2 :
: 0 0
T ~ F
k,p | Gk | k]
where Sy ; € C"*™ and T}, ; € C**™ | and then compute
Eyi1 = EySikpy Frir = FiTk 1, Gryr = Gi + FpSii, Gre1 = G + BTy . (33)

The main task of Algorithm 2 is to solve the large sparse linear systems in (31) and (32). This could be
done by using the Sherman—Morrison-Woodbury formula, as in [10]. But here we present a new approach
that is both simpler and less expensive.

Let

be a permutation matrix and note that

G,
0 K11 — Gy 0 .
PlQ- PT = 0 K,,— G ,
0 7] | C
Gr
where
| Kip2 O 0
V=19 0 Kyp1 |’ (34)
Ks, 0 Kyp Kags 0
u=1| "° Cc= | B2 Kes B : (35)
. 0 Kp72,p71
0 Kpfl,p 0 Kpfl,pr Kpfl,pfl

Then the matrices Sk 1, Sk p, Tk,1 and T}, of the solutions of (31) and (32) satisfy
Kll_Gk 0 -1 Skl Tk1 Ek 0
' ~ | =Vvcu ' ’ = ’ . 36
({ 0 K,,-C Sk Top 0 F (36)
Note that the matrix VC~'U/ is independent of k. Since Qi = Q — ﬁk and limy_, o Qr = X5, we know that
X is obtained from @ by replacing K, ,, in the lower-right corner with K, , — G, where G, = limy_, o G.

The following algorithm gives a more detailed implementation of Algorithm 2 and computes the stabi-
lizing solution X of (6).

12



Algorithm 3. Computation of X,.

Input: K;; € C">*", K0 € CXMit Ky 5 € CW XM g =1,..., n, where npy1 = ny; tolerance 7.

Output: The stabilizing solution X of (6), where A, B,Q are given by (30).

Take V,U and C in (34) and (35);

Kl,l 0

Compute W = [ 0 K,,

} —Ve~u;

By = Kpi1p, Fo = Kppi1, Go =0, Go =0;
Fork=0,1,...

Ska Tk | W Gr O ! E, 0]
Sk:,p Tk:,p o O Gk 0 Fk ’
Eyi1 = EpSkyp, Frpr = FrTh 1, Grpr = Gr + FySia,
Giy1 = G + BTy p;
I |FSkall < 7lGell and || Ex T,

X+ Q, Xs(n—np+1l:nn—n,+1:n) <—Kp,p—ék+1,
and stop.

| < 7||Ggl|, then

In nano applications, we typically need the n; x n; matrix in the upper-left corner of 71, where T is
given by (11). We also know that X! is the n x n matrix in the upper-left corner of T~!. So we are mainly
interested in the n; x n matrix Y7 in the upper-left corner of X; 1. Note that Y; is the same as the matrix

Sk, in (31) when Gy, @k, Ej in (31) are replaced by 0, é*, I,,,, respectively. Thus

Vi = [In,, 0] (W { 8 G9 D_l [ b ]

where the matrix W has already been computed in Algorithm 3.

7. Numerical results

In this section we present some numerical results. We use the doubling algorithm to compute the
stabilizing solution X, of the equation

X+ B, X 'A4,=Q,, (37)

where A,, B,,Q, are given in (14). If these matrices have the special sparsity stuctures in (30), then
Algorithm 3 is used. To measure the accuracy of a computed stabilizing solution X,, to (37), we use the
relative residual )

HXn + Ban An B Qn”
12011+ [, 1By 11261+ Q4]

where || - || is the spectral norm. To see whether X, is a good approximation to the weakly stabilizing
solution X, of the equation X + C*X~1C = R, we compute

RRes, =

X, +C*X,;1C - R|

- : (38)
Xyl + ICI2(1X ]+ IR

RRes =

We also use the QZ algorithm to compute X, directly, and the relative residual RResy is defined as in (38),
with the computed X, replaced by the computed X,.
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Example 1. We randomly generate two complex matrices C, D and two complex Hermitian matrices R,
P of dimension 6. Let ¢ be the minimal eigenvalue of P and set

P =P+ (2|D| - o)Is.

We verify that P+ AD* + A\~ D is positive definite for all A € T. We then compute the stabilizing solution
X, of (37) with n = 1074, 1078, 1072, respectively, by using Algorithm 1. In each case, Algorithm 1 is
stopped when max{||Ax41]l, || Br+1]|} < 1071% and Q1 is taken to be the computed X,. When n = 0,
Py(A) = A2C* — AR + C has 2m = 4 eigenvalues on T, given by

A ={-0.9026 + 0.4304i, 0.5687 — 0.8226i, 0.9891 + 0.1472i, 0.1960 + 0.9806i}.
By Theorem 7 we determine that
A® ={0.5687 — 0.8226i, 0.9891 + 0.1472i}

is such that the perturbed eigenvalues of P, (\) (n > 0) associated with each A\* € A® are inside T. Then we
compute the weakly stabilizing solution X, of (37) by using the invariant subspace corresponding to stable
eigenvalues and eigenvalues in A® (the QZ algorithm). The numerical results are shown in Table 1.

Table 1: Relative residuals

n 10—4 10-8 10-12 0
RRes;, 3.36 x 10716 4.03x 107 4.24 x 10715  3.09 x 10716

We know that X, ; = % (X, — X,) is positive definite for n > 0 and we know from Theorem 5 that
rank(X, ;) < m = 2. These are confirmed by the numerical results shown in Table 2, where X ; = X, 1.

Table 2: The eigenvalues of X, r

n The eigenvalues of X, 1
10—4 2.3555, 1.2676, 5.87 x 1073, 1.89 x 10—3, 1.21 x 10~3, 1.10 x 103
10~8 || 2.3510, 1.2639, 5.91 x 10~7, 1.89 x 107, 1.21 x 10~7, 1.10 x 10~7
10~12 || 2.3510, 1.2639, 5.91 x 10~11, 1.89 x 10~ '1, 1.21 x 10—, 1.10 x 10— 11
0 2.3510, 1.2639, 5.41 x 10715 1.61 x 10715, —5.12 x 10716, —4.18 x 10~ 1®

Example 2. We consider a semi-infinite Hamiltonian operator of the transverse magnetic (TM) mode for
the two-dimensional photonic crystal of the form [5]

= 1 7 P\
H(u, k, %) = @ (V +1k) : (V +1k) u(Z)
S (A+ %1k - V — HEIF) u(Z) (39)
£(T) ’
where k = (ki,k;) is a wave number in the first Brillouin zone Q* = (—m,7]2, Z € Q = [—0.5,00) X

[—0.5,0.5] = Q; U Qs with

o

B (05 4,051 ] x [-05,05) \B, (1)
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and B,(j) = {(z1,x2)|(z1 — j)* + 23 < p?}, 0 < p < 0.5, and &(%) is the dielectric function with

E(f): €1 fte,
gy T €.

See Figure 1 for an illustration of the domain 2. By Bloch’s theorem, we assume that the boundary

XA
(0,0.5)

A 4

(~0.5,0)

Figure 1: The domain 2 = ©; U Q2.

conditions are given by

u(Z) =0, 7€ {(-0.5,z2)|z2 € [-0.5,0.5]},
u(z1,0.5) = eF2u(zy, —0.5), 21 € [-0.5, ).

We use the classical five-point central finite difference method to discretize the operator (39) on the
uniform grid points in  with mesh size h = 1/n. So n is the number of grid points on the x5 axis in
[—0.5,0.5). Let T, be the tridiagonal matrix of dimension n with 4 on the main diagonal and —1 on the
two adjacent diagonals and let D,, be the tridiagonal matrix of dimension n with 0 on the main diagonal
and —1 and 1 on the supper-diagonal and the sub-diagonal, respectively. Let

1 iko

o= ﬁ(Tn —dere, —depe] ) — T(Dn + dere, —denel ) + (k2 + kDI,

1 ik
V= <_h2 - h) In,

where § = €'*2 and e; denotes the jth column vector of the identity matrix. Then the system Hamiltonian
H from the operator (39) is a semi-infinite block tridiagonal matrix with Hj on the main diagonal and Hy,
and Hj, on the supper-diagonal and the sub-diagonal, respectively. The block matrices Hy and Hy, are of
the forms

and

Hi1 Hip

H, — Hi, H»

where
Hj,j = Fj(I)Fj, Hj,jJrl = Fj\I/Fj+1, ] = 1, ey Ny
and I'; = diag(Y(:, 7)), T = [Y;;] € R"*" with

Ti;=1/2, (=0.5+jh,0.5—ih) € B,(0),

Tij=1/2, (=05+jh,0.5—ih) ¢ B,(0).
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We now apply the Green’s function approach to the system Hamiltonian H with the overlap matrix being
the identity. So we need to determine the n? x n? block (particularly the n x n block) in the upper-left
corner of the inverse of the matrix (3) (now with S, = I and Sy, = 0). This is done by solving the matrix
equation (37). The matrices A,, By, @, € Ccr*xn® in (37) now have the structures in (30), withn; =p=n
and

. .
Kj;=z2I,—Hjj;, Kjj1=-Hjj1, Kjyi;=—Hj;, j=1,...,n,

where z = £ +in with £ € R and 0 < n < 1. We remark that the matrix equation here is a special case of
(1) with P=1, D =0,C = A, = By and R= &I — H,.

2

-1
10
10—13 [ ]

-14 | ]
10

1015, i

RRes,?

-16 .
10

RRes
=
5

Tterations of Alg. 6.2
[\
o

&

Figure 2: RRes;, RRes and the number of iterations of Algorithm 3.

We now use Algorithm 3 to compute the solution X, of (37). In our test we take n = 50, p = 0.3,
g1 =1, g9 = 10 and (ky, k2) = (0.5,0.7). We divide [0, 15] into k subintervals using x + 1 equally spaced
nodes &, i =0,1,...,x. We now choose x = 500 and run Algorithm 3 with 7 = 10~® and 7 = 10~® for each
&;. In Figure 2, we plot the relative residuals (RRes,, RRes) and the number of iterations of Algorithm 3.
We see that very good approximations to X, and X, are obtained in no more than 33 iterations. We also
determine the interested energy interval A = |J;_; A;, where A; are given in Theorem 6. The energy values
in A are precisely those for which the pencil (M, £), where M and L are given in (24), has eigenvalues on
T. In Figure 3, we plot the number of eigenvalues of (M, L) on T and A()[0,15]. For this example, the
number of such eigenvalues for £ € [0,15] is 0,2, or 4. For some larger values of £, we find the number of
such eigenvalues to be 6, which turns out to be the maximal number for any energy value. As expected from
our convergence results, Algorithm 3 requires more iterations when (M, £) has unimodular eigenvalues, but
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it does not matter too much whether the actual number of unimodular eigenvalues is 2, 4, or any other
positive even integer.

= 4
8
E
<
=
2 2F
: ] |
S
Z 0
0 5 10 15
o
=
-
<
0 5 . 10 15

Figure 3: The number of eigenvalues on T and interested energy interval between 0 to 15.

8. Conclusion

We have introduced a class of nonlinear matrix equations that is wider than those studied earlier in the
literature. The main motivation for studying this wider class is from the Green’s function approach for
treating quantum transport in nano devices. We have characterized the special solution of practical interest.
We have shown how the doubling algorithm and subspace methods like the QZ algorithm can be used to find
good approximations to the required solution. We have also shown how some special sparsity structures in
the coefficent matrices of the equation can be expoited to drastically reduce the complexity of the doubling
algorithm for computing the desired solution. The matrix equation from the nano application involves a
parameter. At present it is not clear whether the solution computed for one value of the parameter can be
used to reduce the computational work of some iterative methods in computing the solution for a nearby
value of the parameter, with guaranteed convergence. This could be a topic for further research.
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