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Abstract

Two iterative methods for solving the absolute value equations are recently
proposed and analyzed in the paper by Yu and Wu (Appl. Numer. Math. 208
(2025) 148-159). We point out that the convergence analysis for both methods
is incorrect and that the second method with “optimal” parameters is always
slightly less efficient than the well-known generalized Newton method.
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Two iterative methods are given in [5] for solving the absolute value equation
(AVE)
Az — [a| = b, (1)

where A € R™*" is nonsingular, b € R", and | - | denotes absolute value.
The first method is the AGSOR-like iteration method, with iteration formula

(oo 1) o )= (00 02 ) (0 (),

where D(z) = diag(sign(z)) and «, are nonzero parameters. The authors
then introduce the iteration matrix

Ma,p = ( _Bpéckﬂ) ? >_1< ! _oa)A (1 fIB)I >

From the proof and later use of [5, Theorem 3.1], that result should be
restated as follows.

Theorem 1. Suppose that owin(A) > 1. If A is any eigenvalue of M, 5 with
A#Z1l—«aand A #1— 3, then

M- (aBu—a—B+2A+aB—a—-B+1=0

for some eigenvalue p of A~ D(wp41).
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In [5, Theorem 3.2], the assumption that all eigenvalues of A=1D(xs41)
are real is very restrictive and not so practical, but is not a main issue here.
We point out that the proof of convergence for the AGSOR-like method is not
valid. That proof goes as follows: When 0 < a8 < a+ 8 < 2, || < 1 for all
eigenvalues of M, g (using Theorem 1 and |u| < 1), and therefore the AGSOR-
like method is convergent. The argument is not valid because the matrices M, g
are dependent on k. For the special case b = 0, the authors have effectively used
the assertion that the sequence {z;} defined by zp4+1 = Myzy is convergent for
any zg if p(My) < 1 for all k > 0. This assertion is obviously false, as shown by
the example

1 0 0 0 2
Z():<1>7 M2k:(2 0>, M2k+1:<0 O), k:(),l,

The proof of [5, Theorem 3.2] is therefore incorrect.

Whether the conclusion of [5, Theorem 3.2] is true is not an interesting ques-
tion because, in general, verifying the assumption in [5, Theorem 3.2] is more
time-consuming than solving the AVE inefficiently (by looking for a solution of
any sign pattern and solving the corresponding ordinary linear system). More-
over, when (¢, 8) = (1,1), AGSOR-like method with zy = yo = 0 is reduced to
the Picard iteration zx11 = A~Y(|zk| + b) with 2o = 0, whose convergence is
well known under the usual assumption that opin(A) > 1. When (o, 8) # (1,1),
the convergence of AGSOR-like method is not known even with the very restric-
tive additional assumption on A=*D(xy1). It is even more difficult to choose
(ar, B) such that AGSOR-like method is faster than Picard iteration. In fact,
the authors of [5] used (a, 5) = (0.96,1.04) for their Examples 5.1 and 5.2, and
used (a, 8) = (1.00,1.01) for their Example 5.3. Both choices are outside their
claimed convergence region in [5, Theorem 3.2]. Presumably they did not find
good parameters inside their claimed convergence region. Moreover, their choice
(o, B) = (0.96,1.04), for example, does not appear to be better than the choice
(o, B) = (1,1), as we illustrate below.

In the spirit of [5, Example 5.1], we consider a very simple AVE (1) with
unique solution x,, where

2.1 -1 1 2.1
A:[—1 2.1]’ x*:[—1]’ b:{—4.1]'

We take x¢p = 0 and after 20 iterations of Picard iteration we get approximate
solution (0.999995296, —0.999995296)7. We then take o = yo = 0 and after
20 iterations of AGSOR-like method with («, 8) = (0.96,1.04) we get approxi-
mate solution (0.999994519, —0.999995766)7. So Picard iteration gives a better
approximation in terms of 1-norm, 2-norm, and co-norm.

We also mention that the statements in [5, Theorem 3.3] are not valid since
the fimax there is k-dependent and (a, 8) is supposed to be k-independent.

The second method in [5] is the PGSOR-like iteration method, given by

Th1 = (1 —a)zp + (WA = D(x) Halw — 1)ys + awb),
o o)
Y1 = m(AIkH Fwlzra]) + (1 — )y — 1T wb



[5, Theorem 4.3] says that the optimal parameters for the PGSOR-like
method is (a,w) = (1,1) under certain conditions and the authors use the
optimal parameters for PGSOR in numerical experiments and compare PG-
SOR with the generalized Newton method (GN). But when (o, w) = (1, 1), the
PGSOR-like method becomes

wpr1 = (A= D(a) 7', (2)
1 1
Yet+1 = §(A$k+1 + |zrtal]) — §b- (3)

Note that equation (2) is precisely GN and equation (3) is now useless. There-
fore, the PGSOR-like method with the optimal parameters is always slightly
less efficient than GN.

The proof of [5, Theorem 4.1] is incorrect exactly like the proof of [5, Theo-
rem 3.2] is incorrect. Also, “w > 1”7 in [5, Theorem 4.1] is believed to be a typo
of “w > 17. In fact, the (main) statement and (incorrect) proof of [5, Theorem
4.1] remain the same if w > 1 is replaced by w > 1, and actually (a,w) = (1,1)
is claimed to be optimal in [5, Theorem 4.3]. With (o,w) = (1,1), equation
(15) of [5] holds trivially. So if [5, Theorem 4.1] were true with (o,w) = (1, 1),
one would have the following: GN converges whenever ||A~!|| < 1, where | - ||
is the matrix 2-norm. This assertion about GN can be shown to be false by the
following example, suggested by [2, Proposition 7.7]. Therefore, [5, Theorem
4.1] is false with (o, w) = (1,1).

Example 1. Consider the AVE (1) with n =3 and

0 16 0 1.6
A= 0 o0 16|, b= 16
16 0 0 1.6

Then ||[AY|| = 0.625. Take x¢ = (c1,c2,c3)T with

1.6 +1.62+1.6 1.6 —1.62—-1.6 1.6+ 1.62—1.6
o=——/—=F""—, &§Q=——""™—F"", (3= ——=7——
1.634+1 1.654+1 1.63+1
Then we find

z1 = (cg,c1,02)", w2 =(c2,c3,01)", 3= (c1,c2,03)" = o,
So the sequence {xy} is not converging.

In practice, however, GN often works well in terms of the number of iter-
ations. GN has the finite termination property, as discussed in [4]. The finite
termination property has been stated in [3] more generally: GN has finite termi-
nation property whenever it has convergence, even when the AVE has infinitely
many solutions. In practice, GN often terminates after just 2 or 3 iterations,
as also shown in the numerical results reported in [5] for GN and PGSOR-like
(with (o, w) = (1,1)). Why GN would terminate with so few iterations (even



with a very large n) remains a mystery. It is certainly not due to the smallness
of the spectral radii of some matrices.

The paper [5] seems to be following closely the approach used in [1], where the
authors claim that “the convergence and optimal parameters of NSOR method
for solving the AVE are studied in detail”. In view of my comments here on the
AGSOR-like method in [5], we can see that there is no convergence analysis of
NSOR in [1] either.
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