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1 Introduction

Planning and forecasting tasks are important for mitigating the sudden and

potentially catastrophic impact of the infectious disease pandemic on society;

however, it is not an easy task. During a pandemic, decisions are made with lim-

ited experience in a rapidly changing and uncertain situation which we observed

during the novel coronavirus pandemic. The historically occurring pandemics

have caused the death of 10 million people all over the world [31]. Although,

currently, the existence of vaccines against some infectious diseases is reassur-

ing, the cities and countries connected via air transportation facilitate the rapid

transmission of viruses such as COVID-19. In particular, large number of in-

dividuals spend a relatively long period of incubation and hence, can transmit

the disease to other people without knowing for 10-14 days when no symptoms

are manifested [9]. In this regard, models are important tools for planning the

pandemic and carrying out response measures (see, [7, 31]). Certainly, it is not

possible to forecast the location or time of occurrence of next pandemic; how-

ever, models preserve large potential for increasing the effectiveness of response

measures once pandemic occurs (see, [7, 13, 15]).

Modelling is one of the broadly used tools for the forecasting related to the

epidemic situation in the society. At present, it is a topical problem to de-

velop imitation models of complex systems such as the process of spread of an

infection. The existence of a adequate mathematical model is paramount for

obtaining an accurate forecast regarding the level of the spread of a disease

and studying the process (see, [7, 23]). The modelling of pandemic processes

can be viewed as an integral component of electronic medical demographics
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system of the government and play a prominent role in prediction and effec-

tive decision making. Most epidemiological models are compartmental mod-

els, with the population divided into classes and with assumptions about the

rate of transfer from one class to another. Example of such models is the

Susceptible − Exposed − Infectious − Removed/Recovery (SEIR) model describ-

ing the disease transmission and the rate of infected individuals. The model,

and some of its applications is considered as a starting point for describing the

spread of various diseases, e.g tuberculosis, measles, MERS and COVID-19.

The basic idea of the SEIR model (see, [15, 24]), is to describe the number of

infected and recovered individuals based on the number of contacts, probability

of disease transmission, incubation period, recovery, and mortality rate. Since

the model focuses on a very short time with respect to demographic dynamics,

it postulates that births and natural (i.e, not connected with epidemics) while

deaths balance each other.

In some cases, the behaviour of average quantities of longer period of time

is sufficient to provide useful insight into the spread of the epidemics from the

available data, the spatial component of many transmission systems has been

recognised to be of pivotal importance. Due to this, spatially heterogeneous

features must be included in the model to properly represent the transmission

pattern. Then, a reasonable hypothesis about the phenomena may consider

that the spatial aspects of transmission heavily influence the aggregation char-

acteristic of the epidemic: we need hence to investigate data by using models

that include such spatial connections. For example, the understanding of hu-

man mobility and the development of qualitative and quantitative theories is

of key importance for the modelling and comprehension of human infectious

disease dynamics, on geographical scales of different sizes. Also for the spread

of infectious diseases in livestock comprehensive information on livestock move-

ments, cattle movement, and contacts is required to devise appropriate disease

control strategies. Understanding contact risk when herds mix extensively, and

where different pathogens can be transmitted at different spatial and temporal

scales, remains a major challenge [8]. For example, using data related to cattle

movements and focusing on the geographical distribution of these movements is

possible to improve the analysis of the spread of epizootic diseases [22]. To in-

troduce spatial heterogeneity we consider metapopulation-based models, where

the population is partitioned into large, spatially segregated sub-populations.

A similar approach could be used in a more general way, irrespective of the bi-

ological interpretation: different ages, small interacting communities e.t.c (see,

[21, 28, 29]). Understanding the dynamics of coupled systems on graphs mod-
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elling connectivity in real-life systems can be quite challenging. On the other

hand, one is often interested in the analysis of average quantities over large

networks [18].

1.1 Basic Graph Theory

Graph theory was introduced and developed in recent years by Lovàsz, Szegedy,

Borgs, Chayes, Sòs, and Vesztergombi among others (see, [1, 2, 3, 4, 19]). A

graph G = (V,E) is a set of nodes (vertices) V (G) = {1, . . . , n}, usually n =

|V (G)| where |.| denotes the cardinality of a set and a set of edges E(G) ⊆ V ×V

between the vertices. The graphs will be simple, without loops or multiple edges,

and finite unless otherwise specified. Weights (real numbers) will be given to

the edges of a graph to make it an edge-weighted graph. Moreover, we assume

that the graph is undirected, i.e., we identify the edges (i, j) and (j, i). Let

A = (aij) be the adjacency matrix of a graph:

aij =

{
1 if (i, j) is an edge,

0 otherwise.

Let G and H be graphs, a map ϕ from V (H) to V (G) is a homomorphism if

it preserves edge adjacency, i.e if for every edge (i, j) in E(H), (ϕ(i), ϕ(j)) is an

edge in E(G). Denote by hom(H,G) the number of homomorphisms from H to

G. For example for H with one node and no edge hom(H,G) = |V (G)|, instead
when H has two nodes and one edge hom(H,G) = |E(G)|, or when H has three

vertices and E(H) = {(1; 2); (2; 3); (3; 1)}, hom(H,G) is 6 times the number of

triangles in G. Normalising by the total number of possible maps, we get the

density of homomorphisms from H to G, t(H,G) = hom((H,G)
|V (G)||V (H)| . It is defined

that a sequence of simple graphs {G}n∈N is said to be convergent if Gn become

more and more similar as n goes to infinity.

Definition1 : A sequence of graphs {G}n∈N is said to be left convergent if

the sequences t(H,Gn) converges for n → ∞ for every simple graph H.

Definition2 : A graphon is a bounded measurable functions W : [0, 1]2 → R
that satisfy W (x, y) = W (y, x) for all x, y ∈ [0, 1].

2 Review of Related literature

The papaer [27] investigates various regression approaches for the modelling

of the spread of COVID-19 and its impact on stock market. The forecast of

the spread of coronavirus is studied with the application of logistic curve and
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Bayesian regression. The impact of COVID-19 is studied with a regression

approach and its impact is compared with the impact of other crises. The op-

portunity of the quantitative measurement of uncertainty in Bayesian regression

can be useful information for experts while choosing models.

[20] proposes a conceptual model of COVID-19 epidemic in Wuhan by con-

sidering individual behavioral reactions and government actions, for example,

the extension of leave, travel restriction, hospitalization and quarantine mea-

sures. The model has a simple structure, it can successfully predict the progress

of COVID-19 epidemic and thus allows for understanding the spread trends. [17]

focus on the analysis and prediction of the spread of COVID-19 pandemic. The

analysis of existing data characterizing the epidemiological situation in Hubei

shows that the error produced by the model is sufficiently small in compari-

son with official data. The study investigates the factors affecting the spread

of COVID-19, for instance, the number of recovered individuals, the period of

incubation and the average number of days of treatment.

[36] investigates the multiple routes transmitted epidemic process on multi-

plex networks. The authors propose detailed theoretical analysis to accurately

calculate the epidemic threshold and outbreak size. The main outcomes of the

study that the epidemic can spread across the multiplex network even if all the

network layers are well below their respective epidemic thresholds. Noted that

a strong positive degree correlation of nodes in a multiplex network could lead

to a much lower epidemic threshold and a relatively smaller outbreak size.

In [5] proposed Bats-Hosts-Reservoir-People network model for the mod-

elling of transmission potential from the source of infection (bats as assumed) to

human. However, as the investigation of Bats-Hosts-Reservoir-People network

is complex and public opinion is inclined towards the assumption that the virus

is transmitted from seafood market (Huanan Seafood Wholesale Market) to hu-

man, the model is simplified and Reservoir-People (RP) transmission network

is studied. Research results show that, compared to other severe respiratory

syndromes, the transmission potential of COVID-19 is higher than Middle East

Respiratory Syndrome (MERS), similar to severe acute respiratory syndrome

(SARS), but lower than MERS syndrome observed in the Republic of Korea.

[37] the study is dedicated to estimating the unreported number of novel

Coronavirus (2019-nCoV) cases in China in the first half of January 2020. On

the based of the proposed approach modelled the epidemic curve of 2019-nCoV

cases, in mainland China from 1 December 2019 to 24 January 2020 through the

exponential growth. The number of unreported cases was determined by the

maximum likelihood estimation. The author confirmed that the initial growth
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phase followed an exponential growth pattern. As a result, noted that the

reporting rate after 17 January 2020 was likely to have increased compared

with the situation from 1 to 17 January 2020 on average, and it should be

considered in future investigation.

[16] focused on projecting the transmission dynamics of SARS-CoV-2 through

the postpandemic period. The study used estimates of seasonality, immunity,

and cross-immunity for human coronavirus OC43 (HCoV-OC43) and HCoVHKU1

using time-series data from the United States to inform a model of SARS-CoV-

2 transmission. The authors projected that recurrent wintertime outbreaks of

SARS-CoV-2 will probably occur after the initial, most severe pandemic wave.

The study used existing data to build a deterministic model of multiyear inter-

actions between existing coronaviruses, with a focus on the United States, and

used this to project the potential epidemic dynamics. The author reckons that

the long-term dynamics of SARS-CoV-2 strongly depends on immune responses

and immune cross-reactions between the coronaviruses, as well as the timing of

introduction of the new virus into a population.

Different scenarios of the model will enable the assessment and forecast of

detected and undetected cases of infection and death by considering the dy-

namics, time and location-based demographic characteristics (age, nationality,

gender, profession, medical condition and etc.) starting from the moment of

registration of the first infection case.

3 SEIR Models on Graphs

When investigating the transmission of infectious diseases, the analysis of the

average behaviour of a large population is sufficient to provide useful insight

and extract valuable information from the input data. However, the impor-

tance of the spatial component of many transmission systems is being increas-

ingly recognised [28]. The main approaches for spatial models concern different

scales: an individual-based simulation, a meta-population model, or a network

model. Individual-based models explicitly represent every individual and usu-

ally assume a variable probability that any infectious host can infect any other

susceptible host. Then the model should be able to account for the states of

all N individuals in the population in an independent manner, and at the same

time, it should allow for arbitrary interactions among them. The analysis of

these models is a difficult task as the computational cost of numerical simu-

lations is very onerous, and the extraction of the collective behaviours is very

complex. Conversely, in the meta-population models the number of individu-
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als at different space locations is in some states. These models often assume

that each location is connected to others, with possible variable strengths of

connection.

To describe a mathematical model for the spread of infectious disease, one

has to make some assumptions about the disease transmission. We consider

here, as a basic model, the SEIR compartmental model, where individuals

are classified into different population groups based on the infection status.

The model tracks the number of people in each of the following categories:

Susceptibles (individuals that may become infected), Exposed (individuals that

have been infected with a pathogen, but due to the pathogen incubation period,

are not yet infectious), Infectious (individuals that are infected with a pathogen

and may transmit it to others), and Recovered (individual that is either no

longer infectious or has been “removed” from the population). For this report,

we consider diseases with a latent phase during which the individual is infected

but not yet infectious: a recent example of the application of this type of model

is the description of the transmission of the COVID-19 disease [30].

The initial population N is subdivide into four classes, namely, S(t) (suscep-

tibles), E(t) (exposed), I(t) (infected-infectious), and R(t) (recovered), where

t is the time variable. The basic assumption for the scalar model is the homo-

geneously mixing population hypothesis which, roughly speaking, means that

a given infectious individual may transmit the disease to any susceptible indi-

vidual at the same rate. Also, one postulates that all the individuals in the

population have the same chances of interacting with each other. People move

from S to E based on the number of contacts with I individuals, multiplied by

the probability of infection β, where βI(t)/N is the average number of contacts

with infection per unit time of one susceptible person. The other processes tak-

ing place at time t are: the exposed E become infectious I with a rate µ and the

infectious recover R with a rate γ. Recovered individuals do not flow back into

the S class, as lifelong immunity is postulated. The fractions 1/µ and 1/γ are

the average disease incubation and infectious periods, respectively. We assume

that the total population remain constant, i.e., S(t) + E(t) + I(t) + R(t) = N .

Next, we consider the rescaled variables, which for simplicity we do not relabel,

S(t)/N → S(t), E(t)/N → E(t), I(t)/N → I(t), R(t)/N → R(t). The system of
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ordinary differential equations (ODEs) becomes:

dS

dt
= −βS(t)I(t)

dE

dt
= βS(t)I(t)− µE(t)

dI

dt
= µE(t)− γI(t)

dR

dt
= γI(t). (1)

A meta-population model and a network that is represented by a sim-

ple graph G = (V,E) with n vertices (nodes, regions, patches) and m edges

(connections) was considered. Each edge is described by a couple of nodes

(u, v), u, v ∈ V . We order the nodes and label them with an integer index, and

assume that the adjacency matrix of G is an irreducible matrix: there are no

isolated and unreachable groups. In node j the corresponding sub-population

possesses Nj individuals and
∑n

j=1 Nj = N . Also, individuals can move to a

different node, interact with people in that node, and then return to the original

one. The total amount of sub-population j that goes into node k and interacts

with people in the node is denoted by ajk. The matrix with entries ajk, so

that
∑n

j=1 ajk = Nj j = 1, . . . , n. let P out be the probability outing matrix

with entries P out
jk where the probability (percentage) that the sub-population

j goes to node k is P out
jk . In addition, we denote P in the probability incom-

ing matrix with entries P in
jk , where P in

jk is now the probability (percentage) of

the sub-population in k that arrived from j. Let Mj =
∑n

j=1 ajk be the total

amount of people arrived in node j = 1, . . . , n, so that =
∑n

j=1 Mj = N . Then,

for any j = 1, . . . , n, =
∑n

k=1 P
out
jk =

∑n
k=1 P

in
jk = 1. Therefore, we have

A = Diag(N1, N2, . . . , Nn)P
out = P inDiag(M1,M2, . . . ,Mn),

whereDiag(x1, x2, . . . , xn) is the diagonal matrix with the vector (x1, x2, . . . , xn)
T ∈

Rn on the main diagonal.

Let Sj(t), Ej(t), Ij(t)Rj(t) be the number of individuals in the node j at

time t, Sj(t) +Ej(t) + Ij(t) +Rj(t) = Nj : we consider a time interval in which

we can neglect demographics. Without any interaction with other nodes, within

a deterministic approach of the compartmental models, with continuous time t,

the epidemic dynamics can be described by the following system of differential
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equations given below:

dSj

dt
= −λSj(t)

dEj

dt
= λSj(t)− µEj(t)

dIj
dt

= µEj(t)− γIj(t)

dRj

dt
= γIj(t), (2)

where the parameter λ is the force of infection (i.e, the rate at which susceptible

individuals become infected or exposed, and it is a function depending on the

number of infectious individuals: it contains information about the interactions

between individuals that concur with the infection transmission). Suppose that

the population of Nj individuals mix at random, meaning that all pairs of

individuals have the same probability of interacting, the force of infection may

be computed as:

λ = transmission rate

× effective number of contacts per unit time

× proportion of contents infection

≈ βij
Nj

, (3)

where β is the infectious rate. Then the system state,

dSj

dt
= −β

ij
Nj

Sj(t)

dEj

dt
= β

ij
Nj

− µEj(t)

dIj
dt

= µEj(t)− γIj(t)

dRJ

dt
= γIj(t), (4)

with the rescaled (percentage) quantities of susceptible, infected, removed at

time t at the node j normalised to the number Nj of individuals associated to
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the node j. Then, we obtain:

dSj

dt
= −βij(t)Sj(t)

dEj

dt
= βij(t)Sj(t)− µEj(t)

dIj
dt

= µEj(t)− γIj(t)

dRj

dt
= γIj(t), (5)

where ij denotes the derivative of the function ij .

Now, we take a node j that is connected with the other nodes as encoded in

matrix A. Then Sj(t) can change due to the contribution of susceptible people

that come from j reached an adjacent node k and met infectious people in that

node. Then the contribution to
dSj

dt due to the interactions in node k is given

by the P out
jk Sj = ajkSj susceptible people that met a population in node k with

a proportion of infectious people given by:

(no. of infectious people in node k)

( no. of total people in node k)
=

∑n
l=1 P

out
lk Ii∑n

l=1 alk
=

n∑
l=1

P in
lk il.

Let the vector X(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn, with X = S,E, I,R, the

SEIR model on the graph G is given below:

dS

dt
= −βDiag(S(t))BI(t)

dE

dt
= βDiag(S(t))BI(t)− µE(t)

dI

dt
= µE(t)− γI(t)

dR

dt
= γI(t), (6)

where B = P outDiag(M1, · · · ,Mn)
−1P outT , and after rescaling (obtained by a

premultiplication with Diag(N1, N2, · · · , Nn)
−1 we have,

dS

dt
= −βDiag(S(t))Ai(t)

dE

dt
= βDiag(S(t))Ai(t)− µE(t)

dI

dt
= µE(t)− γI(t)

dR

dt
= γI(t), (7)
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where A = P out(P in)T .

Owing to the classical Cauchy Lipschitz Picard Lindelof Theorem, the Cauchy

problem obtained by coupling system (7) with the initial data

Sj(0) = Sj0, Ij(0) = Ej0, Ij(0) = 1j0, Rj(0) = Rj0, for every j = 1, . . . , n (8)

has a local in-time solution. Since Sj , Ej , Ij , Rj represent percentages of indi-

viduals, the modelling range is then

0 ≤ Sj(t), Ej(t), Ij(t), Rj(t) ≤ 1, Sj(t) + Ej(t) + Ij(t) +Rj(t) = 1 (9)

for every t ≥ 0 and j = 1, . . . , n.

Lemma 1 : Assume that 0 ≤ Sj(t), Ej(t), Ij(t), Rj(t) ≤ 1 and Sj(t)+Ej(t)+

Ij(t) + Rj(t) = 1 for every j = 1, . . . , n. Then, the solution of the Cauchy

problem obtained by coupling (7) with (8) is global in time and satisfies [1].

Proof : To establish the second condition in (9), it suffices to observe that
˙Sj(t) + ˙Ej(t) + ˙Ij(t) + ˙Rj(t) = 0 for every j = 1, . . . , n. We recall that, if

the solution is bounded, then it can also be extended for every t ≥ 0. Indeed,

it suffices to show that Sj(t), Ej(t), Ij(t), Rj(t) ≥ 0 for every t and every j =

1, . . . , n. By the continuous dependence of solutions of ODEs on parameters, it

suffices to establish the same property for the family of perturbed systems:

dSe

dt
= −βSe

j (t)

n∑
k=1

ajki
e
k(t)

dEe

dt
= βSe

j (t)

n∑
k=1

ajki
e
k(t)− µEe

j (t) + ϵ

dI

dt
= µEe

j (t)− γIej (t) + ϵ

dR

dt
= γIej (t), (10)

where ϵ > 0 is a parameter converging to 0+. First, we observe that, if Se
j (t) = 0

for some t, then ˙Se
j (t) = 0. By the uniqueness part of the Cauchy Lipschitz

Picard Lindelof Theorem, this implies that Se
j (t) ≡ 0. If Se

j (0) = 0 and hence

that Se
j (t) > 0 for every t if Sj0 > 0. We set,

t̄e := min{t ≥ 0 : eej(t) = 0 or iej(t) = 0 for some j = 1, 2, . . . , n}

and we separately consider the following cases. If there is j = 1, . . . , n such that

eej(t̄e) = 0, then since sej(t̄e), i
e
j(t̄e) ≥ 0, we have eej(t̄e) ≥ ϵ and hence t̄e = 0 and

eej > 0 in a left neighborhood of 0. If there is j = 1, . . . , n such that ie(t̄e) = 0,

then ie(t̄e) ≥ ϵ and hence t̄e = 0 and iej > 0 in a left neighborhood of 0. This
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implies that 0 ≤ sej(t), e
e
j(t), i

e
j(t) for every t ≥ 0. Since ṙej ≥ 0, then rej (t) ≥ 0

for every t ≥ 0.

Lemma 2 : Considering the SEIR system (9), the equilibrium points are

P∞ = (S∞, 0, 0, R∞). Also, consider the Cauchy problem obtained by coupling

(9) with (10). Under the same assumptions as in Lemma 1, very trajectory

converges to an equilibrium point P∞ = (S∞, 0, 0, R∞) with ST
∞1 +RT

∞1 = 1.

Proof : Let (S, E, I, R) be an equilibrium point. From the fourth equation

in (9), we conclude that Ij = 0 for every j = 1, . . . , n. By plugging this equality

in the third equation of (9), we conclude that Ej = for every j = 1, . . . , n. This

implies that the equilibria are in the form P∞ = (S∞, 0, 0, R∞). We are left

to prove the second part of the lemma. We recall Lemma 1 and by using the

fourth equation in (9) we conclude that, for every j = 1, . . . , n, the function Rj

is monotone non-decreasing and hence has a limit as t → +∞. Also, the limit

is confined between 0 and 1. By adding the third and the fourth equation in (9)

we get that Ij+Rj is monotone non-decreasing and also has a limit as t → +∞.

We conclude that Ij has a limit as t → +∞. By using the first equation in (9)

we infer that, for every j = 1, . . . , n Sj is monotone non-increasing and hence

has a limit, which is confined between 0 and 1, as t → +∞. By adding the

first and the second equation in (9) we get that, for every j = 1, . . . , n Sj + Ej

is monotone non-increasing and hence has a limit as t → +∞. We eventually

conclude that Ej has a limit for t → +∞. Since the limit point is finite, it must

be an equilibrium. The condition ST
∞1 + RT

∞1 = 1 follows from the equality

Sj(t) + Ej(t) + Ij(t) +Rj(t) = 1 for every j = 1, . . . , n and t ≥ 0.

3.1 Factor affecting the spread of Infectious diseases and

main characteristics

Researchers utilize models in order to assess important epidemiological charac-

teristics of the disease such as the impact of public health interventions including

the period of incubation, ability to infect, asymptomaticity and severity as well

as social distancing, medical examination at airports, travel restrictions and con-

tact tracing [23]. It is to be noted that existing models can be considered as an

important tool for understanding the disease, implementing response measures

and political decisions; however, at the same time, this leads to disagreements as

their approaches and proposed assumptions differ from each other significantly

(see, [11, 12]). Most people are vulnerable to the infection at early stages of

epidemic and the spread of this disease from human to human can be modelled

as a stochastic “branching process”. If an infected person on average infects
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two individuals, the number of infected individuals doubles at each stage and

this process grows exponentially.

It is evident that an infected person does not necessarily infect others. Sev-

eral factors affect the probability of being infected. In case of a pandemic, the

speed of infection depends on average number of people one person can infect

and the time needed for these people to become contagious. Hence, it is impor-

tant to determine the main dynamics of transmission for accurate prediction of

COVID-19. According to WHO, following factors affect the spread of COVID-19

[35]:

• How many individuals does one person infect on average? (According

to WHO information, “reproduction number” is considered to be 1.4e2.5

currently)

• The period of infection of a person in the same environment with the

infected? (15 min or more and less than 2 m distance [9])

• What is the period after infection before the symptoms start to be mani-

fested? (“incubation period” is assumed to be approximately 5.1 days)

• What is the ratio of spread before symptoms start (if present)?

The collection of preliminary data enables precise predictions regarding COVID-

19 progress in order to take into consideration mentioned factors and known

specific characteristics in the model.

Currently, several applications are being used in China, South Korea, Singa-

pore, Israel and other countries to monitor social distancing among preventive

measures. Considering that practically everyone owns smartphones, it is pos-

sible to detect the location of these devices using geolocation systems. Based

on the data mining methods, a warning signal can be sent regarding the main-

tenance of social distance and undesirable approach distance when needed by

monitoring the distance between individuals in densely populated areas. In par-

ticular, it is possible to determine risk groups and maintain strict monitoring

between them. At present, contact tracing applications are used by governments

in several countries ([26]; TraceTogether; Stopp Corona APP; QR health code;

eRouska [25]; COVID Community Alert). Among those,Stopp Corona (Aus-

tria), Alipay Health Code (Chine), eRouska (Czechia), StopCovid (France),

COVID Community Alert (Italy), TraceTogether (Singapore), COVID-19 Ap-

ple / Google App (US) and etc. Apple and Google Companies state that it is

possible to apply contact tracing systems based on joint Bluetooth Low Energy

technology and privacy-preserving cryptography [26]; Apple & Google partner
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on COVID-19). For instance, TraceTogether app is used in Singapore in order

to obtain information via smartphone regarding possible contact with patients

infected with coronavirus (TraceTogether). According to criterion of the min-

istry of health of Singapore, a “close contact” implies a distance less than 2

m for 30 min. The ministry of health of Israel checks the presence of risk of

infection with coronavirus in case of being in proximity of or in contact with

a virus host with “HaMagen” app developed for mobile phones (HaMagen).

Two different methods are applied in order to measure the distance between

individuals via smartphones. One of those is the use of geolocation informa-

tion utilizing GPS (Global Positioning System) or GNSS (Global Navigation

Satellite System) systems - in this case, the positioning accuracy is 0.6 m and

can reach 10 cm with the time [6]. But the loading of local network or un-

sustainability and unreliability of the system in indoor locations are considered

to be main drawbacks (see, [6, 32]). The measurement of distance with Wi-Fi

and Bluetooth signals is characterized with large measurement error in close

distances. From this point of view, the use of ultra-wideband (UWB) radio

signals can significantly increase the measurement accuracy in close distances

(5e10 cm) [6]. At present, UWB technology is preferred for the development

of devices determining the location in specific indoor locations. The utilization

of this technology will play in important role in measuring social distance and

determining the risk of infection.

4 Spectrum of the SEIR model on graphs

Despite the presence of various approached to the modelling of the spread of

infectious diseases, it is known that an infectious agent is spread via interaction

between individuals as in social network. Formally, social networks can be

described with graph and in this case, the edges of the graph denote individuals

and arrows denote the set of interactions. In this regard, graph models can be

utilized while modelling and visualizing the pandemic processes. Graph models

play an important role in forecasting the disease spread and supporting decision

making. In particular, the use of colored graphs enables the visualization of

a pandemic process and can be paramount for forecasting, assessment of the

effectiveness of pandemic processes, implementation of proactive processes and

decision making. Alongside the hypotheses proposed in existing approaches,

uncertainty regarding epidemic characteristics is one of the drawbacks of these

models.

In this section, we always assume that all the components of S(t) are strictly
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positive. Based on the proof of Lemma 1, this amounts to assuming that they

are strictly positive at t = 0. The coefficient matrix B(t) := Diag(S(t))A of the

SEIR model on a general simple graph, can be interpreted as a weighted adja-

cency matrix, where the weight associated with each edge is bij(t) := Si(t)aij ;

the weighted adjacency matrix is not symmetric and the weighted graph is di-

rected. To study the spectrum of B(t) and eventually work with a symmetric

weighted adjacency matrix, we introduce its “symmetrisation”

Bsym(t) := Diag(S(t))
1
2ADiag(S(t))

1
2 ,

where the weight associated with the edge (i, j) bsymij (t) : S
1
2
i (t)aijS

1
2
j (t). Fur-

thermore, the matrices B(t) and Bsym(t) have the same eigenvalues; in fact

B(t)− νI = Diag(S(t))
1
2

(
Diag(S(t))

1
2ADiag(S(t))

1
2 − νI

)
Diag(S(t))−

1
2

= Diag(S(t))
1
2 (Bsym(t)− νI)Diag(S(t))−

1
2 .

Let v be an eigenvector of b(t) with eigenvalue ν. Then

(t)v = νv ⇔ Diag(S(t))−
1
2Bv = νDiag(S(t))−

1
2 v =⇔ y := Diag(S(t))−

1
2 v,

Diag(S(t))−
1
2BDiag(S(t))

1
2 y = νy ⇔ Bsym(t)v = νv

This shows that y = Diag(S(t))−
1
2 v is an eigenvector of Bsym(t) with eigenvalue

ν i.e, the the spectrum of B(t) is real and it uniquely identifies the spectrum

of Bsym(t), and vice versa. The eigenvectors yi = Diag(S(t))−
1
2 vi, i = 1, · · · , n

are not orthonormal.

Based on these properties, SEIR and symmetric SEIR models on a general

simple graph can be reduced (the vector r can be reconstructed from vectors

s, vi, e).


Ṡ = −βDiag(S(t))Ai = βB(t)i

Ė = βB(t)i− µE

İ = µE − γi

,


Ṡ = −βBsym(t)i

Ė = βBsym(t)i− µE

İ = µE − γi.
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Figure 1

(a) Non-symmetric and Symmetric weights for the SEIR models on a graph.

(b) definition of the SEIR model on graphs starting from the governing differ-

ential equations of 1D SEIR model at each node of the input graph.

Figure 2
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First case of infection is recorded at t0 time point and the coloured graph of

individuals in contact with infected person via flourish visualization tool.

Figure 3

It is possible to visualize the graph model at t1 time period by tracking

the process of human-human transmission of the virus. Only confirmed case of

infection are included in the graph model.

5 Conclusion

SEIR models defined on graphs were considered and their basic features such

as the spectral properties of the weighted adjacency matrix were discussed.

This analysis provides a useful step in understanding the spread of diseases in

populations with complex social structures. The development of metapopula-

tion models able to capture the spatial population structure, the development

of computationally efficient methods for calculating key epidemiological model

quantities, and the integration of within- and between-host dynamics in models.

Despite the existence of large number of proposed models, the majority of them

do not take into account the epidemiological characteristics of COVID-19 such

as social distancing, duration of contact with a patient as well as important

factors affecting the scale of infection. Currently, technologies for monitoring

16



the maintenance of social distance, contact tracing apps adopted by several

governments are used as preventive measures among others.

The governments, non-governmental organizations, experts and epidemiolo-

gists attempt to utilize models in order to understand how to respond to, fight

and treat the pandemic. The main challenges are the substantial differences

between models and the use of different data sets and methodologies in each

country. Here is a need for developing realistic models considering the human

behavior for the purpose of fighting COVID-19 pandemic at global level and

preventing future cases of pandemic. It must be noted that the application of

technologies will play an important role in measuring the social distance and

determining the risk of infection and also the analysis of the factors affecting the

number of infections will allows for developing more realistic models in future re-

search. Moreover, in some applications, it is necessary to estimate an underlying

graphon to perform some network analysis. Some non parametric estimation

methods have been proposed, and some are provably consistent. However, if

certain useful features of the nodes (e.g age, social group, health information)

are available, it may possible to incorporate this source of information to help

with the estimation, using both the adjacency matrix and node features.
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[19] L. Lovàsz Large (2012). “Networks and graph limits.” American Mathe-

matical Society.

[20] Lin, Q., Zhao, S., Gao, D., Lou, Y., et al.(2020). “A conceptual model

for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China

with individual reaction and governmental action.” International Journal

of Infectious Diseases 93, 211-216.

[21] M.E.J. Newman, (2002). “Spread of epidemic disease on networks.” Phys.

Rev. E 66 016128.

19
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