
A Rational Function Model of Spatial Summation and SingleNeuron Computation Based on Equivalent Circuit ModelsM. Wang C.N. ZhangDepartment of Computer Science, University of ReginaRegina, Saskatchewan, Canada S4S 0A2AbstractIn this work, neuronal spatial summation is studied by using equivalent circuit models. The whole membranesurface is considered as a pavement of small, nonoverlapping patches. Accordingly, the equivalent circuit modelof a cell membrane consists of a set of patch modules interconnected through an axial resistance network. Basedon the equivalent circuit model a closed-form formulation for spatial summation is developed. It is demonstratedthat the spatial summation follows strictly the rule of weighted-averaging, which essentially prescribes a nonlinearrelation between the spatial summation and individual patch electromotive potentials. By considering thetransmitter-gated conductances as functions of presynaptic neuronal activities, we develop a rational functionmodel for neuronal interactions. This new model of single neurons a�ords all four basic arithmetic operations.We show that through suitable, biologically plausible, arrangement of parameters in the proposed model, singleneurons can e�ectively perform complicated nonlinear computations.Keywords: spatial summation, rational function, equivalent circuit, membrane potential, rational approxima-tion.1 IntroductionNeuronal integration is a spatiotemporal process in which individual synaptic potentials generated at di�erentsites and di�erent time on a single neuron determine cooperatively whether an action potential is �red. Inthis work we focus on spatial summation, the spatial aspect of neuronal integration. The necessity for spatialsummation is usually claimed as that since the postsynaptic potentials produced by individual synapses wouldsu�er a decay before they �nally spread to the axon hillock, su�ciently many postsynaptic potentials have to beadded together in order to overcome the triggering threshold (Kandel et al 1991). Following this understanding,study of spatial summation consists of two basic issues: how individual postsynaptic potentials spread? and howpotentials arriving at a speci�c spatial site are added up?Most modeling works regarding the �rst issue have been essentially based on the cable theory (Jack 1979).Depending on the type of cross-membrane channels under consideration, the cable theory has succeeded insolving two classes of problems: generation and conduction of action potentials along the neuronal axon andpassive spread of single electrotonic potentials in dendrites (Hodgkin 1964; Jack et al 1975). The nature of thismethod is to consider a segment of axon or dendrite as a one-dimensional cable and to solve the boundary/initialproblems concerning the cable equation. An alternative to this continuous approach is to consider a discreterepresentation of �bers as �nite ladder networks. In both cases, a closed-form expression of the cross-membranepotential at a given site is normally available.Despite its success in modeling the spread of single electrotonic potentials, the cable theory-based approachis not an adequate tool for the modeling of spatial summation. This limitation is intrinsic in the nature ofthe approach. When multiple synaptic signals are considered, which causes conductance changes at multiplesites in the model network, the principle of superposition is no longer applicable. This di�culty blocks anysolution based on linear summation of single-signal solutions. Besides, most cable theory-based methods work1



with one-dimensional linear networks. While a dendritic segment can be approximated by a one-dimensionalladder, two-dimensionality seems to be a nature of most problems (e.g. it seems more adequate to de�ne thesignal spreading on cell body as a two-dimensional, than a one-dimensional, problem). Compartmental model(Rall 1964; Segev et al 1989), which has achieved substantial success in solving dendritic problems, can be viewedas an intermediate approach between pure one-dimensional and pure two-dimensional descriptions. This modelbasically follows a discretized numerical approach, and does not lead to a closed-form formulation of signalintegration.Although the discrete, numerical calculations provide us with important information about the biophysics andinformation processing of single neurons, a closed-form function of spatial summation that explicitly interrelatesthe inputs to and the response of a single neuron is preferable in physiological study. Due to the lack of such aclosed-form formulation, a linear summation model for spatial summation has been the most popularly assumedand relied upon in both theoretical and experimental studies (for example, the simple cell model in primaryvisual cortex, see Hubel and Wiesel 1962). According to this model, the spatial summation is determined bya weighted summation of individual synaptic inputs. An important reason for the popularity of the linearsummation model is that it admits the principle of superposition, which provides an e�cient way to understanda system's response properties. Despite this, drawbacks with the linear summation model are obvious. Someimportant experimental facts can not be well accounted for by the linear summationmodel (for a recent example,see Heeger 1992, 1993). Most critically, it may overlook signi�cant information processing functions conductedby single neurons (for dendritic tree information processing, see Koch and Poggio 1983; Segev and Rall 1988;Mel 1994).In this work, we work on a closed-form formulation for spatial summation based on membrane equivalentcircuit models. A main idea of this work is that, although there have been a number of suggestions thatcomplicated single neuron functions be supported by special membrane mechanisms (Shepherd and Brayton1987; Koch et al 1983; Zador et al 1992; Mel 1994), nonlinear single neuron computation can be an intrinsic,universal nature of general membrane structures with parallel conductive channels. In order to tackle two-dimensional problems, di�erent from the compartmental model, we consider the membrane as a pavement ofsome isopotential patches. In section 2, di�erent patch models are brie
y reviewed and a pavement model isdescribed. In section 3, we derive a rational function model for spatial summation. By taking presynapticactivity into consideration, a rational function model for neuronal interaction is derived in Section 4. We shallsee that this model endows single neurons with complicated computational power. In Section 5, we discusspossible functional signi�cances of the proposed model. The main purpose of this work is to derive a closed-formformulation of spatial summation and to investigate its possible signi�cance to single neuron computation. Inorder to focus on this goal, biophysical detail of the underlying membrane mechanisms is not emphasized.2 Membrane Pavement and Equivalent Circuits2.1 Models of Single Membrane Patches: A ReviewLoosely speaking, a patch refers to an isopotential and spatially local area on a cell's membrane. Even with thesetwo speci�cations, a membrane patch can still be de�ned in varied ways. For the purpose of spatial summationstudy, we understand a patch as a membrane area where all transmitter-gated channels are gated by a singlesynapse. Neglecting the in
uence of a presynaptic terminal on distant channels, this description of membranepatch actually refers to the postsynaptic membrane area that is directly opposed to the presynaptic terminal.The local cross-membrane potential in that patch is referred to as the patch potential.Fig.1 collects di�erent electrical models of isopotential membrane patches (see also Table I for a functionalclassi�cation). These equivalent circuit models proposed with di�erent purposes in di�erent time captureddi�erent cross-membrane channel/pathway mechanisms that underlie patch potentials. The most completemodel is shown in Fig.1(a) (even though it is claimed to be the most complete, some recently-described channelmechanisms, e.g. the double-gated channels, are not included). The resting nature of the membrane patch isre
ected by a constant conductance gm in series with a �xed electromotive potential Em. The value of parametergm, when conductance channels for ion species 1; 2; ::: are considered, is calculated as gm = Pj gj where gj isthe conductance for the jth ion species (e.g. gm = gNa + gK + gCl). Em, the resting potential, is determined by2
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(e)Figure 1: Equivalent circuit models of an isopotential membrane patch. (a) A completemodel taking both passive and active properties into consideration, showing the non-gated,voltage-gated, and transmitted-gated ionic channels, and the capacitive pathway. (b) Thegm � Em branch, in parallel with a capacitance pathway, is usually used as a model forresting properties of a patch. (c) The model with gv � Ev and gm � Em branches and thecapacitance pathway in parallel is a building-block of circuit models for action potentialconduction. (d) The model used for the study of neuronal integration, where the restingbranch gm�Em, the transmitter-gated branch gsp�Esp, and the capacitance pathway, areconsidered. (e) The model for spatial summation.a weighted average: Em = 1gm Xj gjEj (1)where Ej is the jth species's Nernst potential. The nature of the resting pathway is that it is only determinedby those non-gated cross-membrane ionic channels. In other words, it re
ects those constant properties of themembrane patch which is independent of its response to electrical or chemical signals. Operating in parallelwith a capacitance pathway (Fig.1(b)), the gm �Em pathway provides a model for the resting properties of thepatch potential. TABLE I. MEMBRANE PATCH CIRCUIT MODELSModel Channels (pathways) Considered Applicable Areas ApplicationsFig.1(a) All non-gated, Voltage-gated, In theory, all areastransmitter-gated channels andthe capacitance pathwayFig.1(b) Non-gated channels and the Soma, dendrites Resting property; passivecapacitance pathway tangential-membraneconduction of singleelectrotonic potentialsFig.1(c) Voltage-gated channels, Axon Action potentialnon-gated channels, andthe capacitance pathwayFig.1(d) Transmitter-gated channels, Soma, dendrites Neuronal integrationnon-gated channels, andthe capacitance pathwayFig.1(e) Transmitter-gated channels Soma, dendrites Spatial summationand non-gated channelsThere are two gated pathways in the general model. The gv � Ev pathway describes the voltage-gated ion3
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only patch models given in Fig.1(b) and (e) are used for the pavement. By doing so we are aware that thoseactive properties due to voltage-gated membrane mechanisms are ignored. A patch of the form Fig.1(b) paves alocal area on the membrane where transmitter-gated channels are rare, and a patch given in Fig.1(e) can pavethe area underneath a single synapse. To unify the description, we may consider a pavement strategy in whichonly the patch model in Fig.1(e) is used: if the gated channels in a patch can be neglected, the gsp there is setto zero. In the rest of this work we shall follow this convention.Tangential-membrane interactions among patches are modeled by an axial resistance network. If the tangential-membrane current between patch i and patch j is signi�cant, then an axial resistance rij is considered in thenetwork which connects the equivalent circuits of patch i and patch j. Fig.3 illustrates equivalent circuitscorresponding to di�erent pavement geometry. In building our equivalent circuit models, the extracellular envi-ronment is supposed to be of low resistance so that the extracellular side of the circuit is equipotential and isrepresented by a short-circuit. Furthermore, the resting property of membrane is assumed uniform throughoutall patches so that the values of gm and Em are the same everywhere.
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3.1 Spatial Summation TheoremConsider an arbitrary n-patch pavement as shown in Fig.3(d). The spatial summation at patch i, denoted asVi, is the cross-membrane potential observed at patch i when it is connected with the axial resistance network.In respect to the axial resistance network, if V mi is the open-circuit patch potential at patch i, then Vi is theclosed-circuit patch potential. According to Kirchho�'s fundamental rules for linear circuits, Vi is measuredas the total ionic 
ow from all patches to the considered patch divided by the total conductance. De�ne theinter-patch conductance Gij as Gij = [(gm + gj)�1 +Rij]�1; (3)which is the conductance of patch j in series with the conductance resistance Rij evaluated in the con�gurationin Fig.4, we have the following basic theorem of spatial summation:
i j

Rij

Axial resistance network

1 2 NFigure 4: The measurement of Rij.Theorem In an n-patch membrane pavement with arbitrary axial resistance network, the spatial summationvalue at any patch i is the weighted average of the patch electromotive potential of all patches, with the weightingfactors given by the inter-patch conductances calculated from all individual patches to the patch i, respectively.Let Vi be the spatial summation at patch i, V mj be the electromotive potential of patch j, and Gij be theinter-patch conductance between patches j and i, We haveVi = 1Pnj Gij nXj Gij � V mj (4)In regard to the relation between patch electromotive potentials and spatial summations, equation (4) de-scribes a weighted-averaging model for spatial summation. However, for the relation between individual gatedconductances and spatial summations, equation (4) de�nes a rational function model for spatial summation. Infact, by substituting (2) and (3) into (4), one hasVi = Pj[Emgm + Ejgj] Qk 6=j[1 +Rik(gm + gk)]Pj[gm + gj] Qk 6=j[1 + Rik(gm + gk)] : (5)In this expression, the spatial summation Vi is represented as a rational function of the gated conductancesg1; g2; :::; gn: both the numerator and the denominator of (5) are polynomials of the nth-degree concerningg1; g2; :::; gn. The degree of the polynomials in gj (j = 1; 2; :::; n) is one. All coe�cients, with the possibleexception of Ej, are positive constant. The sign of Ej is determined by the selection of Em. If Em is chosen aszero, then Ej > 0 when Ej = EEPSP and Ej < 0 when Ej = EIPSP . Fig.5 shows the pictures of the rationalfunction model (5) for n = 2 (a two-patch pavement).3.2 Monotonity, Saturability, and the Isopolar Neighbor ShuntingThe rational function (5) has a number of important properties. We �rst point out that Vi is an increasing (ordecreasing) function of gj; j = 1; 2; ::: if Ej = EEPSP (or EIPSP ). From the basic theorem (4) we know that@Vi=@V mj = Gij=(PGij) > 0, which means that Vi is an increasing function of patch electromotive potentials.We also have that, from (2), @V mj =@gj = gm(Ej � Em)=(gm + gj)2. Therefore, V mj is an increasing function ofgj when Ej > Em (i.e. when Ej = EEPSP ) and a decreasing function when Ej < Em (i.e. when Ej = EIPSP ).6
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Figure 5: Pictures of the rational function model with n = 2. Left: E1 = E2 = EEPSP . Middle:E1 = EEPSP and E2 = EIPSP . Right: E1 = E2 = EIPSP . For all pictures, g1 and g2 change from0 to 5� 10�5S. V1 is the spatial summation observed at patch 1.The monotonity of the rational function (5) assures us that in an arbitrary membrane pavement, the contri-bution of an excitatory (inhibitory) gated conductance to the spatial summation is always positive (negative).Meanwhile, spatial summation saturates itself for large-valued gated conductances. This is implied by that boththe numerator and the denominator of (5) are of the same degree concerning a speci�c gj. To estimate the upperand lower bounds to the value of Vi, we notice that, from (4),minfV m1 ; V m2 ; :::Vmn g � Vi � maxfV m1 ; V m2 ; :::Vmn g: (6)Since the relation (2) requires that Em � V mj < Ej; if Ej = EEPSP ;Em � V mj > Ej; if Ej = EIPSP ;We have a looser relation: minfEm; E1; E2; :::; Emg � Vi � maxfEm; E1; E2; :::; Eng: (7)An even looser estimator is that EIPSP < Vi < EEPSP : (8)The monotonity of the rational function (5) implies that the contributions of several excitatory patches arealways accumulative. However, it does not imply that when several excitatory patches interact, the value ofspatial summation at a speci�c patch has to be larger than its patch electromotive potential. Let us take asexample a two-patch system, with E1 = E2 = EEPSP , and consider V1 and V2, the spatial summation atthe two patches, respectively. If g1 < g2, which implies that V m1 < V m2 by (2), we have V m1 < V1 < V m2and V m1 < V2 < V m2 by (6). That is, the value of spatial summation at patch 1 is larger than the valueof the electromotive potential at patch 1; however, the value of spatial summation V2 is lower than its patchelectromotive potential due to the existence of a closely-sited, less active, excitatory patch. Similarly, for twoinhibitory patches, if g1 < g2, which implies that V m1 > V m2 , we have V m1 > V1 > V m2 and V m1 > V2 > V m2 .7



In this case, the value of spatial summation at patch 2 is higher, instead of lower, than its patch electromotivepotential, with an inhibitory but less active neighborhood.To summarize, if we regard the open-circuit patch potential V mi as the contribution of channels gm and gito Vi in the absence of other patches, then the phenomenon described above states that a neighboring patch j(j 6= i) whose gated mechanism is less active but with the same polarity (that is, Ei = Ej) would act in e�ectagainst the V mi .This is an inhibition mechanism di�erent from the inhibition observed between oppositely-polarized patches,and is due to the existence of the non-gated conductance gm. In the case of oppositely-polarized patches,the inhibition mechanism is implemented by a current-shunting e�ect imposed by the inhibitory patch on theexcitatory patch. In the weighted-averaging relation (2), Em and Esp are two `forces' in
uencing the V m: eachof them tends to make the value of V m closer to itself and away from the other. In this sense, Em and Esp alwayscounteract each other whatever type the Esp is. Take V1 as example: putting patch 2 next to patch 1 wouldnot only contribute a gated conductance g2 but also a new Em which counteracts E1. It is the combination ofgm and g2 that determines the contribution of V m2 to V1. Suppose E1 = E2 = EEPSP (the following commentsapplies to the case of E1 = E2 = EIPSP as well). When g1 > g2, which means that V m1 > V m2 , we have a nettangential-membrane current I12 
owing from patch 1 to patch 2 (see Fig.6). Because I12 shunts the currentIsp, it causes a loss of potential drop across g1, which results in V1 < V m1 .
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3.3 Axial Resistance NetworksIn comparison with the neat relationship between Vi and the gated conductances, the in
uence of axial resistanceson Vi is subtle. If we consider (5) as a function between Vi and Rij's, then it is also a rational function. A plainfact is that Vi saturates itself for large Rij's. Besides this, the monotonity of this function is uncertain. In fact,from (3) one has that Gij is a decreasing function of Rij, but from (4) the sign of@Vi=@Gij =Xk Gik(V mj � V mk )=[Xk Gik]2is undetermined.For the two-patch systems, where r12 is the only axial resistance connecting the two patches, the in
uenceof r12 on V1 is depicted in Fig.7. A common property shared by all curves is that the contribution of the gatedconductance (g2) to V1 decays as r12 increases. On the left end (r12 = 0) of each curve V1 is simply the weightedaverage of the two patch electromotive potentials, the weighting factors being the two patch conductances. Onthe right hand side of each curve, the value of V1 approaches to V m1 as r12 increasingly blocks the contributionof V m2 .
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For simplicity we assume that all axial resistances possess the same value of ra, which makes Rij = jj � ijra.Suppose the number of patches in the ladder is n, we �rst consider the spatial summation Vi at patch i; 1 � i � n,with the only one nonzero g� at patch �; 1 � � � n. We have:Vi = E�g�gm + g� + gm[1 + j�� ijra(gm + g�)]Pnj 6=�(1 + jj � ijragm)�1 (9)where the expressionPnj 6=�(1+ jj� ijragm)�1 can be e�ectively evaluated in term of the psi function. Similarly,Vi with two nonzero gated conductances g� and g� is given by (assume � 6= � and 1 � �; � � n)Vi = E�g�[1 + j� � ijra(gm + g�)] +E�g�[1 + j�� ijra(gm + g�)]� (gm + g�)[1 + j� � ijra(gm + g�)] + (gm + g�)[1 + j�� ijra(gm + g�)]+gm[1 + j� � ijra(gm + g�)][1 + j�� ijra(gm + g�)]Pnj 6=�j 6=�(1 + jj � ijragm)�1 � (10)These equations actually give the distribution of spatial summation values along the one-dimensional pavement.Fig.8 shows some calculation results for the cases of single nonzero gsp and two nonzero gsp's.
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Figure 8: Distributions of spatial summation values over �nite ladder networks (40 patches).(a) With only one nonzero g� at patch � = 13, the distribution of Vi; i = 1; 2; :::; 40 followsa negative exponential law. (b) Spatial summation distribution with two nonzero gatedconductances, g� and g�, with � = 13; � = 20, and E13 = E20 = EEPSP . The in
uencesof single gated conductance are also shown. Notice that the spatial summation with twononzero gated conductances does not strictly follow the rule of superposition. (c) Spatialsummation distribution with two nonzero gated conductances, g� and g�, with � = 12; � =20; E13 = EIPSP , and E20 = EEPSP . The in
uences of single gated conductance are alsoshown. Parameters for all pictures: Em = 0; EEPSP = 65 mV; EIPSP = �5 mV; gm =10�6 S. For (b): g� = g� = g� = gm. For (c): g� = g� = g� = 3� gm.4 Nonlinear Neuronal InteractionsSpatial summation carried out by tangential-membrane activity directly underlies interactions between neurons.In this section we derive a new neuronal interaction model based on the rational function model for spatialsummation. 10



4.1 Neurons That Add, Multiply, and DivideConsider a single cortical neuron i and all of its presynaptic neurons j; j = 1; 2; :::; n; j 6= i. According to themembrane pavement model, we may pave the membrane of neuron i with all patches j; j = 1; 2; :::; n where thejth patch corresponds to synapse j made by neuron j, together with those patches j; j = n + 1; :::; N with notransmitter-gated channels. The set of spatial summation values fVi1; :::; Vij; :::; ViNg de�nes the state of neuroni. Speci�cally, let the patch at the axon hillock be named h, the spatial summation be Vih. The �ring or theoutput of neuron i, denoted as O, is determined by Vih. Thus, when we write O(xi) to indicate how the stateof a neuron determines its output, we understand that xi refers to Vih.We now take the presynaptic activity into consideration. For simplicity, the relation between the transmitter-gated conductance gj and presynaptic activity O(xj) is modeled asgj = 
j�jO(xj) = w�jO(xj) (11)where 
j = drj=dO(xj) measures the transmitter releasing e�cacy of the presynaptic terminal, rj being therelease intensity of transmitters in the synapse j as a function of O(xj); the coe�cient �j = dgj=drj re
ectsthe postsynaptic conductance change as a response to transmitter releasing. w�j = 
j�j can be regarded asthe strength of synapse j. Since the property of synapse j (being excitatory or inhibitory) has been taken intoaccount in the sign of Ej, we hereby take wj; j = 1; 2; :::; n as unsigned numbers (notice that in (11) the actionof a neuron exerts on another neuron is modeled by a single membrane patch, which is a highly simpli�edtreatment. A neuron can potentially make dozens of synapses on another neuron. If the spatial distribution ofthose synapses are to be considered, the resultant model of neuronal interaction would become more subtle).Given relations (5) and (11), the spatial summation xi = Vih can be evaluated asxi = Pj [Emgm + Ejw�jO(xj)] Qk 6=j [1 + Rhk(gm +w�kO(xk))]Pj[gm + w�jO(xj)] Qk 6=j [1 + Rhk(gm +w�kO(xk))] : (12)Notice that this relation de�nes the state of the postsynaptic neuron, xi, as a rational function of the outputs ofpresynaptic neurons, O(x1); :::; O(xn). Therefore, it can be regarded as a rational function model for neuronalinteractions.Almost all discussions made in the last section on spatial summation can be readily applied to neuronalinteractions. For example, the model requires that xi do not take values of arbitrary magnitude but saturateitself for large-valued input. Perhaps the most notable feature of the rational function model (12) is its potentialin a�ording complicated computations. As can be seen from (12), all four basic arithmetic operations, includingaddition, subtraction, multiplication, and division, are involved in single-cell processing of presynaptic neuronalactivities. We now discuss how this potential of single-neuron complicated computation can be put into e�ectivethrough suitable, biologically plausible, arrangement of parameters in the general model.4.2 Reduce to Linear Summation ModelIf Rhj(gm +w�jO(xj)) << 1 for all j's, the general relation (12) is reduced to:xh � Pj [gmEm + Ej
j�jO(xj)]Pj [gm + 
j�jO(xj)] : (13)With a small-signal assumption: gm >> n�1Xj gj; (14)the equation (13) becomes: xh � Em +Xj � Ejngm� 
j�jO(xj): (15)If we further de�ne wj � � Ejngm�
j�j ; (16)11



and set Em = 0 as the reference for all voltage values, we havexh �Xj wjO(xj): (17)This is the linear summation model which has been popularly cited and relied upon in most of experimental andtheoretical studies.From the derivation above one can conclude that the linear summationmodel (17) is an approximation to therational function model (12) under the condition that Rhj(gm + w�jO(xj)) << 1 for all j's and the small-signalassumption (14). This approximation neglects two important natures of the general model and henceforth goesfarther away from biological realisticity. First, we notice that in the general model (5) the axial resistances arealways multiplied with patch conductances, which typically results in a product of order 100 ( M
 � 10�6S).As the term (gm +w�jO(xj)) has a lower bound gm, the only possibility that Rhj(gm +w�jO(xj)) << 1 is whenRhj is small. Even if this is true for those patches close to patch h (the hillock), it is hardly met by thosedistant patches (say, most dendritic patches). Neglecting all axial resistances equalizes spatial summations atall patches and therefore yields a single spatial summation value for a given cell.Another problem with the linear summation model is the small-signal assumption, because of which thevariable part of the divisor in formula (13) is omitted. In comparison to the small Rhj assumption, the small-signal assumption is not hardly satis�ed. To understand this we notice that relation (14) prescribes a restrictionover the entire membrane rather than at a single patch. If only a small fraction of gated channels are open, thenthere are a small number of nonzero items in the summationPj gj. With an n enough large, the inequality canbe satis�ed by those few channels even with large values. As an estimate, let n = 104, gm = 10�6S. If thereare 100 nonzero gated conductances (a fraction of 1% of the total) each of which has a mean value of 10�5 (10times gm), then the value of gm is still 10 times the averaged total of gated conductances. Compared with thegeneral model (5), a main loss in the linear model is the nature of saturation for large-magnitude inputs.Despite those problems, the linear summation model have still found its application in many problems. Itdoes capture the basic nature that presynaptic activities are somehow accumulated. An important property ofthe linear summation model is that the principle of superposition applies, which is a useful property for stimulusdesign in some physiological experiments.4.3 Nonlinear Operation: DivisionRecently Heeger et al suggested a normalization model for simple cells in primate visual cortex (Heeger 1992;Carandini and Heeger 1994). According to this model, simple cell's response begins with a linear stage, whichperforms essentially the same function as in the linear summation model, followed by a normalization stage(Fig.9(a)). At the normalization stage, each cell's linear response is divided by a quantity proportional tothe pooled activity of other cortical cells (Heeger 1992; Carandini et al 1994). The mechanism underlyingthe normalization model has been investigated (Carandini et al 1994) in terms of equivalent circuit model ofa cellular membrane (see Fig.9(b)). The Eleak � gleak branch corresponds to our Em � gm branch in thiswork; the two gated channels ge and gi represent excitatory and inhibitory lateral geniculate nucleus (LGN)contributions, respectively; and the gated channel gshunt represents lateral interaction within the visual cortex.The steady-state value of membrane potential V is calculated as V = Id=g, withId = geEe + giEi + gshuntEshunt + gleakEleak;g = ge + gi + gshunt + gleak:It was postulated (see Carandini et al 1994) that ge and gi act as \linear synaptic conductances" and gshunt as\normalization synaptic conductance". By settinggi + ge + gleak = const; (18)Eshunt = 0; (19)the membrane potential V can be approximated as V � (geEe+giEi+const)=(gshunt+const), which e�ectivelystates that the linear summation geEe + giEi of LGN inputs is divided by pooled cortical activity (the gshuntterm). 12
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is plausible that many terms in the sum PLl Elw�l O(xl) cancel each other. As a result, the condition (20) canbe easily satis�ed by a large number of w� settings. On the other hand, the relation (21) can be met if thecortico-cortical synapses made on a cortical cell dominate the synapses made by LGN a�erents.5 DiscussionFrom the weighted-averaging rule to the ration function model Distinguishing the concept of patchelectromotive potential from the concept of spatial summation at a given patch provides a starting point toderive a closed-form model for spatial summation. The weighted-averaging model (4) discloses a hidden relationbetween these two concepts. From the computational point of view, this model basically states that spatialsummation is not a simple accumulation, nor a linear weighted summation, but a nonlinear weighted-average ofindividual local patch potentials. This nonlinearity lies in that the weighting factors Gij(j = 1; 2:::) in (4) arenot constant coe�cients but increasing functions of gj's (see (3)). As a result, with a constant total conductance(Pj Gij = const:) a larger gj results in not only a greater patch contribution V mj but also a greater weightingfactor Gij.Weighted-averaging seems to be a universal rule in a membrane structure with parallel conductive pathways.We have seen that the calculations of resting potential (see (1)), of patch electromotive potential (see (2)), and ofspatial summation (see (4)), all follow the weighted-averaging rule. These three weighted-averaging operationsform a hierarchy of observation levels: single channels, single patches, and the whole membrane. However,when the relation of gated channels and spatial summations is concerned, we are dealing with a new, compositefunction relation: substituting the weighted-average (2) into the weighted-average (4) results in (5) which is nolonger a weighted-average (this seems to be a contradiction to that a weighted-average of weighted-average isstill a weighted-average). This can be explained by the fact that (4) is a nonlinear weighted-average: both theweighted quantities V mj and the weighting factors Gij(j = 1; 2:::) are functions of gj's. This relation is depictedin the diagram in Fig.10.
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uence of axial resistanceson spatial summation is subtle. In the case of two patches with opposite polarities, a large axial resistancecan block the in
uence of the inhibitory patch on the excitatory patch and vice versa. This helps the spatialsummation at the excitatory patch whereas dishelps the other. In the case of several excitatory patches, a largeaxial resistance blocks the isopolar neighbor shunting, which helps to increase the spatial summation at the themost active patches.Functional signi�cance of isopolar neighbor shunting In this phenomenon, for several closely-sited,isopolar patches, the spatial summation at a given patch would su�er a remarkable loss of magnitude if only afew (including itself) gated conductances are active while most of others are much less active. One physiological14



implication of this is that meaningful a�erents to a neuron have to coincide each other in order to produce asigni�cant spatial summation. In contrast, meanless, spontaneous signals could be e�ectively masked o� throughthe means of isopolar neighbor shunting. For single neuron computation, two excitatory, closely-sited clusterscan `inhibit' each other through isopolar neighbor shunting. In this case, if one a�erent cluster needs to inhibitthe other, it simply keeps silent (not-to-incorporate), and has not to employ some intermediate, inhibitory cells.Functional signi�cance of spatial summation There has been an increasing collection of observationswhich support the idea that neuronal spatial summation may mean more than merely the action potentialtriggering (Koch and Poggio 1983; Segev and Rall 1988; Mel 1994). Based on the rational model (5), anextension to the conceptual scope of neuronal spatial summation can be suggested: it does not only referexclusively to the activity accumulation e�ect at the axon hillock, with the functional signi�cance of summingup individual synaptic signals to overcome the �ring threshold. Instead, for every patch on the membrane alocal spatial summation value can be observed and is de�ned by (5). Neglecting temporal summation e�ects,single neuron computation is completely captured by the distribution of those spatial summation values. Thus,spatial summation a�ords both the `classical' function of action potential triggering and the other functionswhich were not considered `classical', such as masking certain a�erents, normalizing a cell's response, or thosedendritic functions (Koch and Poggio 1983; Segev and Rall 1988; Mel 1994).Regarding to information processing, the rational function model (12) suggests that single cortical neuronsmight behave as rational approximators. Since there are a remarkable number of free parameters in the generalmodel (12), it is reasonable to expect more complicated computational functions in the proposed model thanwhat can be achieved by neuronal polynomial approximators (Poggio and Girosi 1990; Dubin and Rumelhart1990; Mel and Koch 1990).6 ConclusionIn this work, a closed-form rational function model of spatial summation is derived based on membrane equivalentcircuit models. We have shown that tangential-membrane activity plays an important role in neuronal spatialsummation, and that single neuron computation can be an intrinsic, universal nature of the general membranestructure with parallel conductive channels. The nonlinear, rational function model of neuronal interactionproposes that single neurons be rational approximators.Some improvements on the present work are expected in the near future. As this work is focused on a generalmodel of spatial summation, we did not closely match the general model to neurophysiological experimentaldata. By taking the morphological and physiological features of various cortical neurons into consideration,more biologically realistic models can be expected. Besides, we have seen that single neurons can e�ectivelyperform divisions. Biologically plausible implementation of single-neuron multiplication is to be investigated.Finally, our present model of spatial summation is not a complete model for neuronal integration since temporalsummation is not considered. A general, closed-form model for neuronal integration will be available shortly.References[1] Carandini, M. and Heeger, D. 1994. Summation and division by neurons in primate visual cortex, Science264:1333-1336.[2] Dubin, R. and Rumelhart,D.E. 1990. Product units: a computationally powerful and biologically plausibleextension to backpropagation networks. Neural Computation 1, 133-142.[3] Heeger, D. 1993. Modeling single-cell direction selectivity with normalized, half-squared, linear operators,J. Neurophysiol. 70:1885-1898.[4] Heeger, D. 1992. Normalization of cell responses in cat striate cortex, Visual Neuroscience 9:181-197.[5] Hodgkin, A.L. 1964. The Conduction of the Nervous Impulse. Thomas, Spring�eld, Ill.[6] Hubel, D. and Wiesel, T. 1962. Receptive �elds, binocular interaction, and functional architecture in thecat's visual cortex. Journal of Physiology (London) 160:106-154.15
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