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Abstract

In this work, neuronal spatial summation is studied by using equivalent circuit models. The whole membrane
surface is considered as a pavement of small, nonoverlapping patches. Accordingly, the equivalent circuit model
of a cell membrane consists of a set of patch modules interconnected through an axial resistance network. Based
on the equivalent circuit model a closed-form formulation for spatial summation is developed. It is demonstrated
that the spatial summation follows strictly the rule of weighted-averaging, which essentially prescribes a nonlinear
relation between the spatial summation and individual patch electromotive potentials. By considering the
transmitter-gated conductances as functions of presynaptic neuronal activities, we develop a rational function
model for neuronal interactions. This new model of single neurons affords all four basic arithmetic operations.
We show that through suitable, biologically plausible, arrangement of parameters in the proposed model, single
neurons can effectively perform complicated nonlinear computations.

Keywords: spatial summation, rational function, equivalent circuit, membrane potential, rational approxima-
tion.

1 Introduction

Neuronal integration is a spatiotemporal process in which individual synaptic potentials generated at different
sites and different time on a single neuron determine cooperatively whether an action potential is fired. In
this work we focus on spatial summation, the spatial aspect of neuronal integration. The necessity for spatial
summation is usually claimed as that since the postsynaptic potentials produced by individual synapses would
suffer a decay before they finally spread to the axon hillock, sufficiently many postsynaptic potentials have to be
added together in order to overcome the triggering threshold (Kandel et al 1991). Following this understanding,
study of spatial summation consists of two basic issues: how individual postsynaptic potentials spread? and how
potentials arriving at a specific spatial site are added up?

Most modeling works regarding the first issue have been essentially based on the cable theory (Jack 1979).
Depending on the type of cross-membrane channels under consideration, the cable theory has succeeded in
solving two classes of problems: generation and conduction of action potentials along the neuronal axon and
passive spread of single electrotonic potentials in dendrites (Hodgkin 1964; Jack et al 1975). The nature of this
method is to consider a segment of axon or dendrite as a one-dimensional cable and to solve the boundary /initial
problems concerning the cable equation. An alternative to this continuous approach is to consider a discrete
representation of fibers as finite ladder networks. In both cases, a closed-form expression of the cross-membrane
potential at a given site is normally available.

Despite its success in modeling the spread of single electrotonic potentials, the cable theory-based approach
is not an adequate tool for the modeling of spatial summation. This limitation is intrinsic in the nature of
the approach. When multiple synaptic signals are considered, which causes conductance changes at multiple
sites in the model network, the principle of superposition is no longer applicable. This difficulty blocks any
solution based on linear summation of single-signal solutions. Besides, most cable theory-based methods work



with one-dimensional linear networks. While a dendritic segment can be approximated by a one-dimensional
ladder, two-dimensionality seems to be a nature of most problems (e.g. it seems more adequate to define the
signal spreading on cell body as a two-dimensional, than a one-dimensional, problem). Compartmental model
(Rall 1964; Segev et al 1989), which has achieved substantial success in solving dendritic problems, can be viewed
as an intermediate approach between pure one-dimensional and pure two-dimensional descriptions. This model
basically follows a discretized numerical approach, and does not lead to a closed-form formulation of signal
integration.

Although the discrete, numerical calculations provide us with important information about the biophysics and
information processing of single neurons, a closed-form function of spatial summation that explicitly interrelates
the inputs to and the response of a single neuron is preferable in physiological study. Due to the lack of such a
closed-form formulation, a linear summation model for spatial summeation has been the most popularly assumed
and relied upon in both theoretical and experimental studies (for example, the simple cell model in primary
visual cortex, see Hubel and Wiesel 1962). According to this model, the spatial summation is determined by
a weighted summation of individual synaptic inputs. An important reason for the popularity of the linear
summation model 1s that it admits the principle of superposition, which provides an efficient way to understand
a system’s response properties. Despite this, drawbacks with the linear summation model are obvious. Some
important experimental facts can not be well accounted for by the linear summation model (for a recent example,
see Heeger 1992, 1993). Most critically, it may overlook significant information processing functions conducted
by single neurons (for dendritic tree information processing, see Koch and Poggio 1983; Segev and Rall 1988;
Mel 1994).

In this work, we work on a closed-form formulation for spatial summation based on membrane equivalent
circuit models. A main idea of this work is that, although there have been a number of suggestions that
complicated single neuron functions be supported by special membrane mechanisms (Shepherd and Brayton
1987; Koch et al 1983; Zador et al 1992; Mel 1994), nonlinear single neuron computation can be an intrinsic,
universal nature of general membrane structures with parallel conductive channels. In order to tackle two-
dimensional problems, different from the compartmental model, we consider the membrane as a pavement of
some 1sopotential patches. In section 2, different patch models are briefly reviewed and a pavement model is
described. In section 3, we derive a rational function model for spatial summation. By taking presynaptic
activity into consideration, a rational function model for neuronal interaction is derived in Section 4. We shall
see that this model endows single neurons with complicated computational power. In Section 5, we discuss
possible functional significances of the proposed model. The main purpose of this work is to derive a closed-form
formulation of spatial summation and to investigate its possible significance to single neuron computation. In
order to focus on this goal, biophysical detail of the underlying membrane mechanisms is not emphasized.

2 Membrane Pavement and Equivalent Circuits

2.1 Models of Single Membrane Patches: A Review

Loosely speaking, a patch refers to an isopotential and spatially local area on a cell’s membrane. Even with these
two specifications, a membrane patch can still be defined in varied ways. For the purpose of spatial summation
study, we understand a patch as a membrane area where all transmitter-gated channels are gated by a single
synapse. Neglecting the influence of a presynaptic terminal on distant channels, this description of membrane
patch actually refers to the postsynaptic membrane area that is directly opposed to the presynaptic terminal.
The local cross-membrane potential in that patch is referred to as the patch potential.

Fig.1 collects different electrical models of isopotential membrane patches (see also Table T for a functional
classification). These equivalent circuit models proposed with different purposes in different time captured
different cross-membrane channel/pathway mechanisms that underlie patch potentials. The most complete
model is shown in Fig.1(a) (even though it is claimed to be the most complete, some recently-described channel
mechanisms, e.g. the double-gated channels, are not included). The resting nature of the membrane patch is
reflected by a constant conductance g, in series with a fixed electromotive potential F,,. The value of parameter
Jm, When conductance channels for ion species 1,2, ... are considered, is calculated as g,, = Zj g; where g; is

the conductance for the j** ion species (e.8. gm = gNa + 9K + gci). Em, the resting potential, is determined by
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Figure 1: Equivalent circuit models of an isopotential membrane patch. (a) A complete
model taking both passive and active properties into consideration, showing the non-gated,
voltage-gated, and transmitted-gated ionic channels, and the capacitive pathway. (b) The
gm — FEp, branch, in parallel with a capacitance pathway, is usually used as a model for
resting properties of a patch. (¢) The model with g, — F, and ¢, — Ey branches and the
capacitance pathway in parallel is a building-block of circuit models for action potential
conduction. (d) The model used for the study of neuronal integration, where the resting
branch g¢,, — Ey,, the transmitter-gated branch g,, — F,,, and the capacitance pathway, are
considered. (e) The model for spatial summation.

a weighted average:

E, =

1
g—Zngj
"

Extracellular side

Cytoplasmic side

(1)

where Fj is the jt" species’s Nernst potential. The nature of the resting pathway is that it is only determined
by those non-gated cross-membrane ionic channels. In other words, it reflects those constant properties of the
membrane patch which is independent of its response to electrical or chemical signals. Operating in parallel

with a capacitance pathway (Fig.1(b)), the g, —

patch potential.

TABLE I. MEMBRANE PATCH CIRCUIT MODELS

E,, pathway provides a model for the resting properties of the

|| Model | Channels (pathways) Considered | Applicable Areas | Applications ||
Fig.1(a) | All non-gated, Voltage-gated, In theory, all areas
transmitter-gated channels and
the capacitance pathway
Fig.1(b) | Non-gated channels and the Soma, dendrites Resting property; passive
capacitance pathway tangential-membrane
conduction of single
electrotonic potentials
Fig.1(c) | Voltage-gated channels, Axon Action potential
non-gated channels, and
the capacitance pathway
Fig.1(d) | Transmitter-gated channels, Soma, dendrites Neuronal integration
non-gated channels, and
the capacitance pathway
Fig.1(e) | Transmitter-gated channels Soma, dendrites Spatial summation
and non-gated channels

There are two gated pathways in the general model. The g, — E, pathway describes the voltage-gated ion
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Figure 2: Patch electromotive potential as a function of g;p,. Curve 1: V™ when F,, =
Egpsp; curve 2: V™ when E,, = Erpsp. gm s set to 1 x 10-55.

channels in the patch. This pathway is necessary for the patches where the voltage-gated channels are abundant
(e.g. the axon patches). The conductance g, is a variable determined by the cross-patch potential. The g,, — Ep
branch reflects the transmitter-gated channel mechanism, where g;, is a function of synaptic efficacy as well as
of presynaptic activity. F,, is the reversal potential of synaptic potential, that is, F;, = Egppsp for excitatory
patches and E;, = Erpsp for inhibitory patches.

To focus on spatial summation, in the rest of this work we consider peak steady-state values of patch
potentials, which means that the capacitive current is null. Under this circumstance the capacitor (), in the
equivalent circuits will be omitted. Fig.1(e) shows such a model which serves as a building-block for equivalent
circuit models of spatial summation. We also ignore temporal summation effect by assuming that all patch
potentials reach their peak values at the same time. The patch model in Fig.1(e) has a patch electromotive
potential

Im + 9sp

which is a weighted average of the resting potential £, and the reversal potential F,,. It is worth noting that
the patch electromotive potential is a nonlinear (rational) function of g,,. This rational function has a zero
at ggp = —gmEm/E;sp and no pole because g, > 0 and g,, > 0. The graph of this function is an equilateral
hyperbola (Fig.2). With small g,, values the gated channels have little contribution to the patch electromotive
potential and the value of V™ approximates F,,, the resting potential; when the gated channels dominate
the non-gated channels (gsp >> ¢m), V"™ approaches to E,p, the reversal potential of the gated electromotive
potential.

Vm

2.2 Membrane Pavement

The membrane patch models outlined above describe cross-membrane electrical activities, being it the resting,
synaptic, or action potentials, in a single membrane patch. To a large entent, spatial summation is a tangential-
membrane activity where synaptic potentials spread and integrate from patches to patches. To model this
tangential-membrane phenomenon we consider the whole membrane surface, excluding the axon, of a single
neuron as a segmentation, or a pavement, by membrane patches. Specifically, when spatial summation is focused,



only patch models given in Fig.1(b) and (e) are used for the pavement. By doing so we are aware that those
active properties due to voltage-gated membrane mechanisms are ignored. A patch of the form Fig.1(b) paves a
local area on the membrane where transmitter-gated channels are rare, and a patch given in Fig.1(e) can pave
the area underneath a single synapse. To unify the description, we may consider a pavement strategy in which
only the patch model in Fig.1(e) is used: if the gated channels in a patch can be neglected, the g,, there is set
to zero. In the rest of this work we shall follow this convention.

Tangential-membrane interactions among patches are modeled by an azial resistance network. If the tangential-
membrane current between patch ¢ and patch j is significant, then an axial resistance r;; is considered in the
network which connects the equivalent circuits of patch ¢ and patch j. Fig.3 illustrates equivalent circuits
corresponding to different pavement geometry. In building our equivalent circuit models, the extracellular envi-
ronment 1s supposed to be of low resistance so that the extracellular side of the circuit is equipotential and is
represented by a short-circuit. Furthermore, the resting property of membrane is assumed uniform throughout
all patches so that the values of ¢, and F,, are the same everywhere.
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Figure 3: (a) - (¢) Equivalent circuits corresponding to different pavement geometry. Each
numbered box stands for a patch model as shown in Fig.1(e). Bidirectional arrows in
the figures indicate unnegligible tangential-membrane ionic flows between adjacent patches.
(d) The most general circuit model corresponding to arbitrary pavement strategy. Patch
potentials are measured at points Vi, Vs, ..., V.

It is worth noting that the equivalent circuit for a given membrane is usually not unique, depending on how
the axial resistance network is configured. Although the theoretical number of possible axial resistances for an
n-patch pavement is n(n — 1)/2, a notable feature of axial resistance network is its local connectivity, which
makes the actual axial network much simpler with a few, local, connections.

3 A Rational Function Model for Spatial Summation

Once a membrane pavement is given, tangential-membrane activity can be studied through the corresponding
equivalent circuit model. The definition of patch electromotive potential given in (2) can be generalized to those
patch modules in the general circuit model in Fig.3(d): let V;™ be the electromotive force of patch i. Tt is
measured at the site of V; in Fig.3(d) when patch 7 is isolated from the axial resistance network, and is evaluated
according to relation (2).



3.1 Spatial Summation Theorem

Consider an arbitrary n-patch pavement as shown in Fig.3(d). The spatial summation at patch ¢, denoted as
Vi, 18 the cross-membrane potential observed at patch ¢ when it is connected with the axial resistance network.
In respect to the axial resistance network, if V™ is the open-circuit patch potential at patch ¢, then V; is the
closed-circuit patch potential. According to Kirchhoff’s fundamental rules for linear circuits, V; is measured
as the total ionic flow from all patches to the considered patch divided by the total conductance. Define the
inter-patch conductance G; as

Gij = l(gm +95)" "+ Rij] ™", (3)

which is the conductance of patch j in series with the conductance resistance R;; evaluated in the configuration
in Fig.4, we have the following basic theorem of spatial summation:

BN
X

Axial resistance network

Figure 4: The measurement of R;;.

Theorem In an n-patch membrane pavement with arbitrary axial resistance network, the spatial summation
value at any patch ¢ is the weighted average of the patch electromotive potential of all patches, with the weighting
factors given by the inter-patch conductances calculated from all individual patches to the patch ¢, respectively.
Let Vi be the spatial summation at patch ¢, V™ be the electromotive potential of patch j, and Gj; be the
inter-patch conductance between patches j and ¢, We have

1 n
> Gig < V" (4)

Vi= n
25 Gij 5

In regard to the relation between patch electromotive potentials and spatial summations, equation (4) de-
scribes a weighted-averaging model for spatial summation. However, for the relation between individual gated
conductances and spatial summations, equation (4) defines a rational function model for spatial summation. In
fact, by substituting (2) and (3) into (4), one has

> Emgm + Ejg;] Tliz;[1 + Rik(gm + gx)]

Y T i + 93] Tlea L+ Bonam + 0]

(5)

In this expression, the spatial summation V; is represented as a rational function of the gated conductances
91,92, -, gn: both the numerator and the denominator of (5) are polynomials of the n'"-degree concerning
g1,92, ..., gn. The degree of the polynomials in ¢g; (j = 1,2,...,n) is one. All coefficients, with the possible
exception of I, are positive constant. The sign of E; is determined by the selection of Ey,. If £y, is chosen as
zero, then E; > 0 when E; = Egpsp and E; < 0 when E; = Erpsp. Fig.h shows the pictures of the rational
function model (5) for n = 2 (a two-patch pavement).

3.2 Monotonity, Saturability, and the Isopolar Neighbor Shunting

The rational function (5) has a number of important properties. We first point out that V; is an increasing (or
decreasing) function of g;,j = 1,2,...ift E; = Egpsp (or Erpsp). From the basic theorem (4) we know that
3%/3%’” = G;;/(3° Gy;) > 0, which means that V; is an increasing function of patch electromotive potentials.
We also have that, from (2), V" /9g; = gm (Ej — En)/(gm + g;)%. Therefore, V™ is an increasing function of
g; when E; > E,, (i.e. when E; = Fgpgp) and a decreasing function when E; < E,, (i.e. when E; = Erpsp).



Figure 5: Pictures of the rational function model with n = 2. Left: By = Es = Egpgp. Middle:
Ey = Egpsp and Ey = Erpsp. Right: £y = Fs = Erpgp. For all pictures, g1 and go change from
0to 5 x 107°S. V] is the spatial summation observed at patch 1.

The monotonity of the rational function (5) assures us that in an arbitrary membrane pavement, the contri-
bution of an excitatory (inhibitory) gated conductance to the spatial summation is always positive (negative).
Meanwhile, spatial summation saturates itself for large-valued gated conductances. This is implied by that both
the numerator and the denominator of (5) are of the same degree concerning a specific g;. To estimate the upper
and lower bounds to the value of V;, we notice that, from (4),

min{V{?, V37V <V < max{ VLV LV (6)
Since the relation (2) requires that
En <V" < E;, if Ej= Egpse,

Em >V > Ej, if E; = Erpsp,

We have a looser relation:
min{Ey,, B, Es, ..., B}t <V; <maz{E,,, E, Es, ..., E,}. (7)

An even looser estimator is that
Erpsp < V; < Egpsp. (8)

The monotonity of the rational function (5) implies that the contributions of several excitatory patches are
always accumulative. However, it does not imply that when several excitatory patches interact, the value of
spatial summation at a specific patch has to be larger than its patch electromotive potential. Let us take as
example a two-patch system, with £y = Fs = Egpgp, and consider Vi and Vs, the spatial summation at
the two patches, respectively. If g1 < g2, which implies that V™ < Vi by (2), we have V™ < V) < VJ?
and V™ < Vo < VJ” by (6). That is, the value of spatial summation at patch 1 is larger than the value
of the electromotive potential at patch 1; however, the value of spatial summation V5 is lower than its patch
electromotive potential due to the existence of a closely-sited, less active, excitatory patch. Similarly, for two
inhibitory patches, if g1 < g2, which implies that V] > Vi we have V™ > V4 > Vi and V] > Vu > V.



In this case, the value of spatial summation at patch 2 is higher, instead of lower, than its patch electromotive
potential, with an inhibitory but less active neighborhood.

To summarize, if we regard the open-circuit patch potential V;™ as the contribution of channels g, and g;
to V; in the absence of other patches, then the phenomenon described above states that a neighboring patch j
(j # 1) whose gated mechanism is less active but with the same polarity (that is, E; = E;) would act in effect
against the V;™.

This is an inhibition mechanism different from the inhibition observed between oppositely-polarized patches,
and is due to the existence of the non-gated conductance g,,. In the case of oppositely-polarized patches,
the inhibition mechanism is implemented by a current-shunting effect imposed by the inhibitory patch on the
excitatory patch. In the weighted-averaging relation (2), E,, and E;, are two ‘forces’ influencing the V™: each
of them tends to make the value of V™ closer to itself and away from the other. In this sense, F,, and F;, always
counteract each other whatever type the F,, is. Take V; as example: putting patch 2 next to patch 1 would
not only contribute a gated conductance g, but also a new E,, which counteracts F;. It is the combination of
gm and go that determines the contribution of V3™ to V4. Suppose Fy = Es = Egpgp (the following comments
applies to the case of By = E3 = Erpsp as well). When g; > g2, which means that V™ > V| we have a net
tangential-membrane current [12 flowing from patch 1 to patch 2 (see Fig.6). Because [12 shunts the current
I5p, it causes a loss of potential drop across g, which results in Vi < V.
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Figure 6: Two kinds of isopolar neighbor shunting (g1 > ¢2). (a) When patches 1 and 2 are
both excitatory and g1 > g2, there i1s a net tangential-membrane current /15 from patch 1
to patch 2, which shunts I, at patch 1. (b) When patches 1 and 2 are both inhibitory and
g1 > g2, there 18 a net tangential-membrane current I15 from patch 2 to patch 1, which still
shunts [, at patch 1.

This observation can be generalized to several adjacent patches with the same polarity. For several closely-
sited, isopolar patches, the spatial summation at a given patch would suffer a remarkable loss in magnitude if
only a few (including itself) gated conductances are active while most of others are much less active. Since the
shunting effect is significant when 715 1s small and happens for isopolar patches, the phenomenon can be referred
to as isopolar neighbor shunting. Table II lists all possible relations between spatial summation and open-circuit
patch potential for two-patch systems. It can be seen that the normal inhibition (when E; # E3) is unrelated
with the comparison between gy and g¢s.

TABLE II. RELATIONS BETWEEN V AND V'™

I Er | EBEs ] g1 > g | 91 < g |
EEPSP EEPSP *Vl < Vlm, V2 > Vzm V1 > Vlm, *VQ < Vzm
EEPSP EIPSP **Vl < Vlm, V2 > Vzm **Vl < Vlm, V2 > Vzm
EIPSP EEPSP V1 > Vlm, **VQ < Vzm V1 > Vlm, **VQ < Vzm
EIPSP EIPSP *Vl > Vlm, V2 < Vzm V1 < Vlm, *VQ > Vzm

Note: * Isopolar neighbor shunting; ** Normal inhibition.




3.3 Axial Resistance Networks

In comparison with the neat relationship between V; and the gated conductances, the influence of axial resistances
on V; is subtle. If we consider (5) as a function between Vj and R;;’s, then it is also a rational function. A plain
fact is that V; saturates itself for large R;;’s. Besides this, the monotonity of this function is uncertain. In fact,
from (3) one has that (;; is a decreasing function of R;;, but from (4) the sign of

oV /0G;; = Z Gi (V)" - Vkm)/[z Gil?
k k

is undetermined.

For the two-patch systems, where 15 1s the only axial resistance connecting the two patches, the influence
of 715 on Vj is depicted in Fig.7. A common property shared by all curves is that the contribution of the gated
conductance (gz) to V1 decays as r15 increases. On the left end (r12 = 0) of each curve V; is simply the weighted
average of the two patch electromotive potentials, the weighting factors being the two patch conductances. On
the right hand side of each curve, the value of Vi approaches to V™ as r15 increasingly blocks the contribution

of VJ™.
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Figure 7: Vi vs ri2 curves. Upper figures: g1 < go; lower figures: g1 > g¢o. (a) Fy =
Egpsp; (b) B2 = Erpsp; (¢) Fa = Egpsp; (d) Fa = Erpsp. Parameters for all figures:
gm =5 x107% S, E,, = =65 mV, Egpsp = 0 mV, Erpsp = —70 mV. For upper figures:
g1 =1x107° 8, go =8 x 107° S. For lower figures: g; =8 x 107° S, go = 1 x 107° S.

In the case of g1 < gs, that is, when the farther synapse contributes more than the nearer synapse, V}
approaches to V™ from above the V] when E2 = Egpsp (see Fig.7(a)), and from below the V/™ when Fy =
Erpsp (Fig.7(b)). This observation fails to be generalized to the case of g1 > g2. As can be seen from Fig.7(c),(d),
the curve V) when By = Fy = Egpgp in (¢) and the cure Vi when Fy = E2 = Erpgp in (d) behave just the
opposite as they do in Fig.7(a), (b): V1 approaches to Vi from below when both E; and E3 are Fgpgp, and
from above when both are Erpgsp. These two curves illustrate the effect of isopolar neighbor shunting.

One-dimensional pavements can be applied to dendrites and give rise to certain ladder circuits. The evaluation
of axial resistances in a ladder network becomes especially simple. The R;; between patch ¢ and patch j is simply
a summation (assume i < j):

R =riipi+ripriva+ .o+ 15215



For simplicity we assume that all axial resistances possess the same value of r,, which makes R;; = |j — {|ra.
Suppose the number of patches in the ladder is n, we first consider the spatial summation V; at patch 7,1 < i < n,
with the only one nonzero g, at patch A, 1 < A <n. We have:

V= Exgx
! Im + gx + gm[l + |/\ - i|ra(gm + gA)] Z;y&)\(l + |.7 - i|ragm)_1

)

where the expression E?¢A(1 + |7 —i|ragm) ! can be effectively evaluated in term of the psi function. Similarly,
V; with two nonzero gated conductances g, and gg is given by (assume o # Fand 1 < «, 5 < n)

v— Eoga[l + 18 — ilra(gm + 95)] + Epgp[l + [ — i|ra(gm + ga)]
Z { (9m + 9)[L+ 16 = ilra(gm + 95)] + (9m +95)[1 + | = ilra(gm + 9o )]+ }
gL+ 10 = ilralgm + gp)][1 + o = ilralgm + 9)] 3o ajp (L + 17 = ilragm) ™"

These equations actually give the distribution of spatial summation values along the one-dimensional pavement.
Fig.8 shows some calculation results for the cases of single nonzero g,, and two nonzero g;,’s.
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Figure 8: Distributions of spatial summation values over finite ladder networks (40 patches).
(a) With only one nonzero g, at patch A = 13, the distribution of V;,¢ = 1,2, ...,40 follows
a negative exponential law. (b) Spatial summation distribution with two nonzero gated
conductances, g and gg, with o = 13,8 = 20, and E13 = Es = Egpsp. The influences
of single gated conductance are also shown. Notice that the spatial summation with two
nonzero gated conductances does not strictly follow the rule of superposition. (c) Spatial
summation distribution with two nonzero gated conductances, g, and gg, with o = 12,8 =
20, E1s = Erpsp, and Foy = Egpsp. The influences of single gated conductance are also
shown. Parameters for all pictures: F,, = 0, Fgpsp = 6b mV, Erpsp = =5 mV, ¢ =
1079 S. For (b): g = ga = 95 = gm- For (c): g = 9o = 95 = 3 X gm.

4 Nonlinear Neuronal Interactions
Spatial summation carried out by tangential-membrane activity directly underlies interactions between neurons.

In this section we derive a new neuronal interaction model based on the rational function model for spatial
summation.
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4.1 Neurons That Add, Multiply, and Divide

Consider a single cortical neuron ¢ and all of its presynaptic neurons j,j = 1,2,...,n;j # i. According to the
membrane pavement model, we may pave the membrane of neuron ¢ with all patches j,j = 1,2, ..., n where the
jth patch corresponds to synapse j made by neuron j, together with those patches j, 7 = n+4+1,..., N with no
transmitter-gated channels. The set of spatial summation values {Vi1, ..., Vij, ..., Vin} defines the state of neuron
t. Specifically, let the patch at the axon hillock be named A, the spatial summation be Vj. The firing or the
output of neuron ¢, denoted as O, is determined by V;;. Thus, when we write O(x;) to indicate how the state
of a neuron determines its output, we understand that x; refers to V3.

We now take the presynaptic activity into consideration. For simplicity, the relation between the transmitter-
gated conductance g; and presynaptic activity O(z;) is modeled as

9; = 76 0(x) = w;O(x;) (11)

where v; = dr;/dO(z;) measures the transmitter releasing efficacy of the presynaptic terminal, r; being the
release intensity of transmitters in the synapse j as a function of O(z;); the coefficient {; = dg;/dr; reflects
the postsynaptic conductance change as a response to transmitter releasing. wj = 7;(; can be regarded as
the strength of synapse j. Since the property of synapse j (being excitatory or inhibitory) has been taken into
account in the sign of E;, we hereby take w;,j = 1,2, ..., n as unsigned numbers (notice that in (11) the action
of a neuron exerts on another neuron is modeled by a single membrane patch, which is a highly simplified
treatment. A neuron can potentially make dozens of synapses on another neuron. If the spatial distribution of
those synapses are to be considered, the resultant model of neuronal interaction would become more subtle).
Given relations (5) and (11), the spatial summation #; = Vj;, can be evaluated as

2 [Emgm + Ejw;O(x;)] Tz [+ Bak(gm + wZO(l’k))]

x; = 12
T Sl + ;0] Mgyl + Rkl + 93002 "
Notice that this relation defines the state of the postsynaptic neuron, z;, as a rational function of the outputs of
presynaptic neurons, O(x1),...,O(xy,). Therefore, it can be regarded as a rational function model for neuronal
interactions.

Almost all discussions made in the last section on spatial summation can be readily applied to neuronal
interactions. For example, the model requires that z; do not take values of arbitrary magnitude but saturate
itself for large-valued input. Perhaps the most notable feature of the rational function model (12) is its potential
in affording complicated computations. As can be seen from (12), all four basic arithmetic operations, including
addition, subtraction, multiplication, and division, are involved in single-cell processing of presynaptic neuronal
activities. We now discuss how this potential of single-neuron complicated computation can be put into effective
through suitable, biologically plausible, arrangement of parameters in the general model.

4.2 Reduce to Linear Summation Model

If Rpj(gm +w;O(z;)) << 1 for all j’s, the general relation (12) is reduced to:

2l Em + Ejv;G0(25)]

Zj [9m +7;¢GO(x;)] (13)
With a small-signal assumption:
Gm >> n_lzgj, (14)
J
the equation (13) becomes:
.
r, ~ B, + ZJ: (W—;) ’ijjO(l‘j). (15)
If we further define 5
= J s 16
wj (ngm)%@’ (16)
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and set E,, = 0 as the reference for all voltage values, we have
Th ~ Zw]’O(l‘j). (17)
J

This is the linear summation model which has been popularly cited and relied upon in most of experimental and
theoretical studies.

From the derivation above one can conclude that the linear summation model (17) is an approximation to the
rational function model (12) under the condition that Rp;(gm + wjO(x;)) << 1 for all j’s and the small-signal
assumption (14). This approximation neglects two important natures of the general model and henceforth goes
farther away from biological realisticity. First, we notice that in the general model (5) the axial resistances are
always multiplied with patch conductances, which typically results in a product of order 10° ( MQ x 10755).
As the term (g,n + wjO(z;)) has a lower bound g,,, the only possibility that Rj;(gm + wjO(x;)) << 1 is when
Ry; is small. Even 1f this is true for those patches close to patch h (the hillock), it is hardly met by those
distant patches (say, most dendritic patches). Neglecting all axial resistances equalizes spatial summations at
all patches and therefore yields a single spatial summation value for a given cell.

Another problem with the linear summation model is the small-signal assumption, because of which the
variable part of the divisor in formula (13) is omitted. In comparison to the small Rp; assumption, the small-
signal assumption is not hardly satisfied. To understand this we notice that relation (14) prescribes a restriction
over the entire membrane rather than at a single patch. If only a small fraction of gated channels are open, then
there are a small number of nonzero items in the summation Zj ¢;- With an n enough large, the inequality can
be satisfied by those few channels even with large values. As an estimate, let n = 10*, g,, = 107°S. If there
are 100 nonzero gated conductances (a fraction of 1% of the total) each of which has a mean value of 10> (10
times gy, ), then the value of g, is still 10 times the averaged total of gated conductances. Compared with the
general model (5), a main loss in the linear model is the nature of saturation for large-magnitude inputs.

Despite those problems, the linear summation model have still found its application in many problems. It
does capture the basic nature that presynaptic activities are somehow accumulated. An important property of
the linear summation model is that the principle of superposition applies, which is a useful property for stimulus
design in some physiological experiments.

4.3 Nonlinear Operation: Division

Recently Heeger et al suggested a normalization model for simple cells in primate visual cortex (Heeger 1992;
Carandini and Heeger 1994). According to this model, simple cell’s response begins with a linear stage, which
performs essentially the same function as in the linear summation model, followed by a normalization stage
(Fig.9(a)). At the normalization stage, each cell’s linear response is divided by a quantity proportional to
the pooled activity of other cortical cells (Heeger 1992; Carandini et al 1994). The mechanism underlying
the normalization model has been investigated (Carandini et al 1994) in terms of equivalent circuit model of
a cellular membrane (see Fig.9(b)). The FEleak — gicak branch corresponds to our FE,, — g branch in this
work; the two gated channels g. and g; represent excitatory and inhibitory lateral geniculate nucleus (LGN)
contributions, respectively; and the gated channel g pyn: represents lateral interaction within the visual cortex.
The steady-state value of membrane potential V' is calculated as V = I;/g, with

Iy = geEe +ngz +gshuntEshunt +gleakEleaka
9 = ge+ gi+ Gshunt T Jleak-

It was postulated (see Carandini et al 1994) that g. and g¢; act as “linear synaptic conductances” and gspun: as
“normalization synaptic conductance”. By setting

9i t 9e + Jicak = const, (18)
Eshunt = Oa (19)

the membrane potential V' can be approximated as V' = (ge Fe + ¢i Fs + const) / (¢shunt + const), which effectively
states that the linear summation g.F. + ¢; F; of LGN inputs is divided by pooled cortical activity (the gspunt
term).
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Figure 9: Heeger normalization. (a) Diagram of the normalization model. (b) Equivalent
circuit model used by Carandini et al to explain the membrane mechanism of normalization
(adapted from [1]).

This model 1s obviously an important generalization to the linear model and can explain a variety of physio-
logical phenomena (Heeger 1992, 1993). However, there are some difficulties in proposing biologically plausible
implementation for the two key assumptions (18) and (19). First, the setting (18) requires that both g, and
g; refer to the LGN inputs. As there has been no evidence for direct thalamocortical inhibition, the g; term
was postulated to come indirectly through other cortical cells (Carandini and Heeger 1994). If this is the case,
however, the g; term should also contribute to the divisor because it contribute to the pooled cortical activity.
Secondly, as conductances are non-negative, it is not plain to see how g¢; and g. trade off against one another.
Thirdly, the setting (19) implies that the contribution of cortical activity is purely inhibitory, which contradicts
to the fact that both excitatory and inhibitory cortico-cortical interactions are experienced by cortical cells.

We show that the Heeger normalization can be accounted for in terms of our rational function model. Consider
a cortical cell. For the ease of comparison with their results we omit all axial resistances in the general model
and set E,, = 0. In this case we are dealing with one spatial summation value only. Letting it be x, we have

b > Ejw;O(x;)
>oilgm +wiO(z;)]

Suppose that the input domain is divided into two non-overlapping clusters such that

o T BrwiO(ay) + 3 B Ofa)
S lom + w30 (k)] + 0 [gm + wiO(21)]

where the indices k and [ never coincide. If the following conditions hold:

K

L
ZEkaO(m) >> ZElwl*O(l‘l), (20)
& 1

> wiO(r) << > wiO(wm), (21)

we have X

gmL+ L2 i O(a)
If we explain cluster K as the input from the LGN, group L as the pooled cortical activity, then relation (22)
restates the normalization model given by Heeger et al. The constant g,, L in the divisor corresponds to Heeger’s
semisaturation constant (Heeger 1992, 1993).

Since the LGN inputs are considered all excitatory, Ex > 0 for all & and so the sum Zf Erw;O(zy) always
adds up. However, as cortico-cortical interactions can be both excitatory (F; > 0) and inhibitory (E; < 0), it
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is plausible that many terms in the sum ZlL Eyw;O(2;) cancel each other. As a result, the condition (20) can
be easily satisfied by a large number of w* settings. On the other hand, the relation (21) can be met if the
cortico-cortical synapses made on a cortical cell dominate the synapses made by LGN afferents.

5 Discussion

From the weighted-averaging rule to the ration function model Distinguishing the concept of patch
electromotive potential from the concept of spatial summation at a given patch provides a starting point to
derive a closed-form model for spatial summation. The weighted-averaging model (4) discloses a hidden relation
between these two concepts. From the computational point of view, this model basically states that spatial
summation is not a simple accumulation, nor a linear weighted summation, but a nonlinear weighted-average of
individual local patch potentials. This nonlinearity lies in that the weighting factors Gy;(j = 1,2...) in (4) are
not constant coefficients but increasing functions of g;’s (see (3)). As a result, with a constant total conductance
(Zj Gi; = const.) a larger g; results in not only a greater patch contribution V™ but also a greater weighting
factor Gjy;.

Weighted-averaging seems to be a universal rule in a membrane structure with parallel conductive pathways.
We have seen that the calculations of resting potential (see (1)), of patch electromotive potential (see (2)), and of
spatial summation (see (4)), all follow the weighted-averaging rule. These three weighted-averaging operations
form a hierarchy of observation levels: single channels, single patches, and the whole membrane. However,
when the relation of gated channels and spatial summations is concerned, we are dealing with a new, composite
function relation: substituting the weighted-average (2) into the weighted-average (4) results in (5) which is no
longer a weighted-average (this seems to be a contradiction to that a weighted-average of weighted-average is
still a weighted-average). This can be explained by the fact that (4) is a nonlinear weighted-average: both the
weighted quantities V" and the weighting factors G (j =1,2...) are functions of g;’s. This relation is depicted
in the diagram in Fig.10.

Waghted average

/ \ Rational function
—_——_———

I 5) Gij
x /
9

Figure 10: Functional relations among the gated conductances g;, the patch electromotive
potential V;™, the inter-patch conductance G;;, and the spatial summation V;. Numbers
with parenthesis refer to equation numbers in the text.

Functional significance of axial resistances The distinction of spatial summation from patch elec-
tromotive potential is made possible due to the existence of membrane electrical activity in the perpendicular
cross-membrane and tangential-membrane directions. Tangential-membrane activity is mediated by axial re-
sistances. Traditionally, the role played by axial resistances is considered negative: they are thought to be
responsible for the decay of activity (a patch electromotive potential of order 10mV may contribute only 0.1mV
to a spatial summation) in the course of spatial summation (as an example, the square of length constant A in the
cable theory is proportional to 1/r,). However, as we have seen in this work, the influence of axial resistances
on spatial summation is subtle. In the case of two patches with opposite polarities, a large axial resistance
can block the influence of the inhibitory patch on the excitatory patch and wice versa. This helps the spatial
summation at the excitatory patch whereas dishelps the other. In the case of several excitatory patches, a large
axial resistance blocks the isopolar neighbor shunting, which helps to increase the spatial summation at the the
most active patches.

Functional significance of isopolar neighbor shunting In this phenomenon, for several closely-sited,
isopolar patches, the spatial summation at a given patch would suffer a remarkable loss of magnitude if only a
few (including itself) gated conductances are active while most of others are much less active. One physiological
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implication of this is that meaningful afferents to a neuron have to coincide each other in order to produce a
significant spatial summation. In contrast, meanless, spontaneous signals could be effectively masked off through
the means of isopolar neighbor shunting. For single neuron computation, two excitatory, closely-sited clusters
can ‘inhibit’ each other through isopolar neighbor shunting. In this case, if one afferent cluster needs to inhibit
the other, it simply keeps silent (not-to-incorporate), and has not to employ some intermediate, inhibitory cells.

Functional significance of spatial summation There has been an increasing collection of observations
which support the idea that neuronal spatial summation may mean more than merely the action potential
triggering (Koch and Poggio 1983; Segev and Rall 1988; Mel 1994). Based on the rational model (5), an
extension to the conceptual scope of neuronal spatial summation can be suggested: it does not only refer
exclusively to the activity accumulation effect at the axon hillock, with the functional significance of summing
up individual synaptic signals to overcome the firing threshold. Instead, for every patch on the membrane a
local spatial summation value can be observed and is defined by (5). Neglecting temporal summation effects,
single neuron computation is completely captured by the distribution of those spatial summation values. Thus,
spatial summation affords both the ‘classical” function of action potential triggering and the other functions
which were not considered ‘classical’, such as masking certain afferents, normalizing a cell’s response, or those
dendritic functions (Koch and Poggio 1983; Segev and Rall 1988; Mel 1994).

Regarding to information processing, the rational function model (12) suggests that single cortical neurons
might behave as rational approrimators. Since there are a remarkable number of free parameters in the general
model (12), it is reasonable to expect more complicated computational functions in the proposed model than
what can be achieved by neuronal polynomial approximators (Poggio and Girosi 1990; Dubin and Rumelhart

1990; Mel and Koch 1990).

6 Conclusion

In this work, a closed-form rational function model of spatial summation is derived based on membrane equivalent
circuit models. We have shown that tangential-membrane activity plays an important role in neuronal spatial
summation, and that single neuron computation can be an intrinsic, universal nature of the general membrane
structure with parallel conductive channels. The nonlinear, rational function model of neuronal interaction
proposes that single neurons be rational approximators.

Some improvements on the present work are expected in the near future. As this work is focused on a general
model of spatial summation, we did not closely match the general model to neurophysiological experimental
data. By taking the morphological and physiological features of various cortical neurons into consideration,
more biologically realistic models can be expected. Besides, we have seen that single neurons can effectively
perform divisions. Biologically plausible implementation of single-neuron multiplication is to be investigated.
Finally, our present model of spatial summation is not a complete model for neuronal integration since temporal
summation is not considered. A general, closed-form model for neuronal integration will be available shortly.
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