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Abstract: In this paper the space-time mapping of the dependency matrix of an algo-
rithm is used to study spatial properties of a systolic array implementation of a 3-nested
loop structure. Elementary expressions are developed for both the number of processing
elements and the area of the array. These expressions involve only the space-time trans-
formation and the lengths of the loops. As well, characterizations have been found for the
form of the space-time transformation which produces a systolic array with the minimum
number of processing elements, and one which has both the minimum number of processing

elements and the smallest area.

1 Introduction

The mapping of algorithms, structured as nested loops, into systolic arrays has been the
focus of considerable research since the introduction of systolic arrays in 1979 [2, 3, 4, 6, 8].
Many of the results reported are concerned with both the possibility of implementing such
an algorithm in a systolic array, and optimization of the implementation with respect to

a variety of criteria. The objective functions usually involve either time or space consid-



erations. (A partial list is contained in reference [1].) The current paper examines two
measures of space in finding an optimal systolic array implementation of an algorithm,
the number of processing elements (PEs) and the area of the array. Since the number of
PEs and the area are associated with both fabrication costs and communication time they
are important parameters to be considered in choosing an implementation. Further if a
particular algorithm is to be implemented in a fixed size systolic array then the number of

For algorithms which can be written in the form of nested loops, the description of an
implementation in a systolic array can be cast in a mathematical framework involving a
space-time transformation which maps the algorithm to a systolic array [3, 6]. This space-
time transformation is used, in section 2, to find an explicit expressions for the number of
PEs and, in section 3, the area required. Also a necessary and sufficient condition is derived
for the form of a transformation which produces a systolic array consisting of the minimum
possible number of PEs as well as occupying the smallest area.

A p-nested loop structure with constant data dependence vectors can be represented by a
pair (D, Cp), in which D is the data dependency matrix [4, 5, 6], and Cp = {(i1, 22, -1,)" :
1 <43 <h,---,1 <14, <} is the index space (here t designates transpose). A systolic

array implementation of such an algorithm may be obtained by a linear transformation

T
(px pmatrix ) T'= where 7 is a 1 X p vector determining time scheduling, and S is

S

a (p— 1) x p matrix, the space transformation, which maps C'p onto an (p-1) - dimensional
systolic array. T is called the space-time transformation. Let C'¢ = T'C'p and Cg = 5Cp,
then when p = 3 the columns of Cg are the 2-space coordinates of the PEs in the systolic
array implementation. To ensure a one to one mapping and causal time scheduling, T
must be nonsingular and all the elements of the first row of A = T'D negative (or positive

depending on the convention). The latter two rows of A indicate the inter processor com-



munications [5, 6]. The requirement of nearest neighbor connection is precisely that these

latter two rows of A contain only 0, 1, or -1.

An example which has often been used to illustrate this approach is matrix multiplica-

tion. The algorithm, in normal form (without broadcast variables) is as follows:

Algorithm 1 ( Matrix multiplication ¢'= A x B)
for i1 := 1 to {y do
for i9 := 1 to I3 do

for i3 := 1 to I3 do

begin

a(iy,i2,t3) = a(iy,i2 — 1,13);

b(iy, iz i) = b(iy — 1,19, 13);

c(i1,12,13) = (i1, 02,03 — 1) + a(iy, ig,13)b(i1, ig, 3);
end;

where a(i1,0,3) = a;, 45, 0(0,129,23) = biy iy, €(i1,92,13) = ¢y, Tor all 41, ¢y, and is.

0 -1 0
For this algorithm, D = | _1 ¢ ¢ | and Cp = {(1,1,1),(1,1,2)%,---, (I1,12,03)"}.
0 0 -1

In this example there are many valid space-time transformations, T, even if the systolic

array is required to have only nearest neighbor connections. Three such valid transforma-

1 11 1 11
T T2
tions are 17 = = 91 -1 1|, 1Ix= =] 1 21 1|, andT5=
Sl 52
1 -1 1 0 -1 1



T3
= 0 —1 0 |- Here
S3
-1 00
-1 -1 -1 -1 -1 -1
A =T1D = 1 1 -1 7A2:T2D: 1 1 -1 ’
1 -1 -1 1 0 -1
-1 -1 -1
and As = 13D = 1 0 0 . If 1y =15 = I3 = 4 then the resulting systolic arrays
0 1 0

are shown in Figs. 1, 2 and 3.

In the following, the assumption will be made that p = 3 although the results in section

2 can be reworded to remain true for an arbitrary positive integer p.

2 Determining the number of processing elements

The space-time transformation gives a natural way to map a p-level nested loop algorithm
to an (p-1)-dimensional systolic array. In algorithm 1 when [y = I3 = I3 = 4 the three
transformations Ty,T,, and T3 give systolic arrays with 28, 28, and 16 PEs respectively,
(Figs. 1, 2, and 3). The usual approach to determining the number of PEs arising from a
particular T is to transform C'p by T and count the number of points in the image [1, 5, 6].
If the lengths of the loops are large this may take considerable time. Also, using this

method to find a transformation with the minimum number of PEs, it is necessary to first



determine the number of PEs required for each valid space-time transformation. Lemma
1 and Theorem 1 give an expression for determining the number of PEs directly from the
transformation T and the lengths of the loops.

Notation If 7" = (¢; ;) is a 3 x 3 integer matrix let 7; ; be the (i,j) cofactor of T, and for

T . .
gcd(|T171|,|1771]172|,|T173|)' The expression T'(D,Cp) = (A,Cs) will be

each j = 1,2,3 let a; =
used to indicate that T is a valid space-time transformation which maps the algorithm

represented by (D, Cp) to the systolic array represented by (A, Cyg).

s

Lemma 1 Let T(D,Cp) = (A,Cg), T = ,(11,12,13) € Cp and Aiq, Aig, Ais be in-
S
tegers, then S(i1,19,13)" = S(i1 + Ady, iz + Adg, i3 + Adz)' if and only if there is an integer

K so that (Ail, Aig, A’Lg) = K(al, asz, a3).

Proof: Since S is a linear function S(i1,%2,73)" = S(1 + Ady, iz + Adg, i3 + Adz)" if and
only if S(Aiq, Ay, Aiz)t = (0,0)". T is non-singular hence there is at least one j so that

Ti; # 0, suppose T11 # 0. Solving S(Ady, Aig, Aig)t = (0,0)" for Aig and Ais gives

. Tio . . Tz, .
Aty = —2A d Ais = —=A4q. 1
29 Tix 11 and Ais Tix 1 (1)

Since Aiy and Azs are integers there are integers Ky and K5 so that

i i Ti1 . T4
Ay = K . =K : .
! L ged(|Tal, |Th 2]) 2ged(|Tral, |Th 5])

Thus there is an integer K so that

Ty
ged([Tya] 5[ Ti 2| |1 3])

Ay =K = Ka;.

Hence (1) gives Aiz = Kag and Aiz = Kas.

A similar argument applies if T o # 0 or T 3 # 0.



Based on this description of the points in the index space C'p which collapse, under S,

to the same point in Cg, the number of PEs can be determined by the following theorem.

Theorem 1 IfT(D,Cp) = (A,Cs) then the number of PEs is

Lilyls if |a;| > 1 for some j =1,2,3, and lil3ls — (11 — |aq])(lz — |az|)(Is — |as|) otherwise .

Proof: If (i1,142,13)' C'p then call (i1 + ay,i2 + az,43 + a3)" its redundant sequel if (i; +
ay, iy + ag, iz + az)le Cp. Let (i9,49,19) be defined by

1 a; >0

l; a; <0
Clearly if (19,:9,73)! has no redundant sequel then no point in Cp has one. If |a;| >
[; for some j = 1,2, 3 then (:9,49,:3)" has no redundant sequel and each of the /1/3/3 points
in Cp has a distinct image in Cg, thus the number of PEs is [115(5.
If |a;| < I; for each j = 1,2,3 then (¢§ + a1, i + a2, i3 + a3)' is a redundant sequel. In
this case (19,79, 7)" has a redundant sequel if and only if 1 < r + a3 < [3. In either case
az > 0 or ag < 0, there are I3 — |a| choices for r. For each such choice rq for r, (i, ¢, r0) has
a redundant sequel if and only if 1 < g+ay < l5. As before there are [3 —|ay| such choices for
q. Now for each such choice ro and ¢q there are [; — |al| choices for p so that (p, go,70)" is a
redundant sequel. Hence there are (11 — |a1|)(l2 — |az|)(I3 — |as|) redundant sequels in total.

Removing these redundant sequels from Cp leaves l1l3ls — (I3 — |a1|)(l2 — |az|)(ls — |as|)

points, each of which maps, under S, to a distinct PE in Cg.

1 11
In algorithm 1, for example, if T = T} = 1 -1 1 andly = I = I3 =
1 -1 1



4, then Ty = 0,712 = 2,713 = 2soa; = 0,a2 = 1l,a3 = 1 and the number of PEs
is 28, Fig. 1. In this situation the minimum number of PEs possible is 16, and 75 is a
transformation which achieves this minimum, Fig. 3. The following corollary to theorem 1
characterizes the form of a space-time transformation which results in a systolic array with

the minimum number of PEs.

Corollary 1 If T(D,Cp) = (A,Cs) and 0 < [;,,1;, < I;, then the minimum number of

J2s
t11 ti2 ti3

if and

PEs is 1,15, and is realized by a space-time transformation T = |, 1,5 {193

t31 132 133
only if ty;, =13 = 0.
Proof: Since T is nonsingular there is a j; with 1 < j; < 3 and a;, # 0. Thus |a;,| >
1 and l]1_|a]1| < lj;—1, hence (lj1_1)lj2lj3 2 (lj1_|a]1 |)(lj2_|a]2 |)(lj3_|aj3|) where ji, j2, js
is 1,2, 3 in some order. The largest of these bounds is obtained when [;,,1;, <I; and a;, =

J2»

1,a;, = aj, =0, ie. ,T1;, =11 ; =0.But T ; = 0if and only if the j; and j3 columns
of S are linearly independent, and 7} ;, = 0 if and only if the j; and j; columns of S are
linearly independent. Thus if the j; column of S is not (0,0)" then the j; and j3 columns
of S are also linearly independent and the determinant of T is 0. Hence the systolic ar-
ray has the minimum possible number of PEs, [;,1;,, if and only if the j; column of S is

J3»

(0,0)t, 1.e. t27]‘1 = t37]‘1 =0.

3 Determining the area of the systolic array

The area of the array is another parameter which is associated with fabrication costs and
lengths of data paths. In [1] the area of a systolic array refers to the ”Silicon area measure”.

Here the area is defined as follows.



Definition 1 The bounding polygon of a two-dimensional systolic array is the smallest
convex polygon in the plane which contains the array. The area of a two-dimensional systolic

array is the area of its bounding polygon.

Figs. 4 and 5 show the bounding polygons, here parallelograms, for the systolic arrays given
by Ty and T in algorithm 1, and indicate that two systolic array implementations of the
same algorithm, with the same number of PEs may have different areas. Since the area of

a parallelogram with vertices (aq,az), (b1, b2),(c1,¢2), and (dy,d3) is the absolute value of

bl — a1 bg — a2
the determinant [7], the area of the bounding parallelogram required

€1 —day €2 —daz
for T4 is 36 (Fig. 4) and for T is 18 (Fig. 5).

It is useful to determine which polygons can be bounding polygons for systolic arrays.
Since the indexing set C'p is contained in a rectangular region in three dimensions, Fig. 6,
and the space-time transformation is linear and non-singular, the systolic array is bounded

by either a parallelogram, or a polygon constructed from six lines which are pairwise parallel

11 1
and of equal length. For example, for algorithm 1,74y = | 1 ¢ —1 | resultsin a systolic
0 1 1

array with bounding polygon shown in Fig. 7. The area of such a bounding polygon is

found using the following lemma.

Lemma 2 If ABCDFEF is a convex polygon bounded by six lines which are pairwise parallel
and of the same length (see Fig 8), then the area of ABCDEF is twice the sum of the areas

of the triangles ABF, BCD and DEF.

Proof: The proof is an argument in elementary geometry. Construct a line through D

parallel to BC and a line through B parallel to CD, and let P be their point of intersection.



Join P and F (see Fig 9). BCDP is then a parallelogram and hence CD, PB and AF are
parallel and have the same length. Therefore ABPF, and similarly FPDE are parallelograms

and the area of ABCDEF is the sum of the areas of these three parallelograms.

To apply this lemma suppose that, in Fig. 7, A, B and F are the images of (1,1, 1), (I1,1, 1)

taq1 ta2 t23
and (1,l2,1)" under 5 = then

t31 132 133
S(l, 1, 1)t - S(ll, 1, 1)t = (t271(11 - 1),15371(11 — 1)) and

S(1,1,1) = S(1,12,1)" = (t22(la—1),t32(t2 — 1)). Thus the area of the parallelogram ABPF
is

det t2,1(l1 B 1) tS’I(h B 1) = (l1 - 1)(12 - 1)|T173|‘ (2)

t272(12 — 1) t372(12 — 1)

The analogous results are true for the parallelograms CDPB and EFPD.

Theorem 2 IfT(D,Cp) = (A,Cs) then the area of the polygon bounding the systolic array
is [(ln = 1)(lz = Dfaa| + (i = 1)(Is = D) az| + (I2 = 1)(I3 = D)las|]ged(| Ty 1|, |T1 2], [T1,3])

= (h =)l = D[Tral + (= Dl = DTy 2| + (2 = 1)(ls = 1)| T3 5]

Proof: If the polygon is of the form of Fig. 8 then the result follows directly from lemma

2 and (2) above. If it is a parallelogram then either one or two of the cofactors is zero and

expression (2) remains valid.

Referring again to algorithm 1 with [ = Iy = I3 = 4 the area of the bounding polygon

resulting from T4 is 3 X 3 x |[1|+3 x3 x| = 1|+3x 3 x |1| = 27.

Corollary 2 If T(D,Cp) = (A,Cs) and l;,,1;, <1, then this systolic implementation of

(D,Cp) requires the minimum possible number of PEs as well as the smallest area if and



only if ty;, =135 =0 and Ty ;, = £1.

4 Conclusions

In this paper we have used the space-time mapping T of the dependency matrix of an
algorithm to study spatial properties of a systolic array implementation of a 3-nested loop
structure. The 3 x 3 matrix T has been used to develop elementary expressions for both
the number of PEs and the area of the systolic array, expressions which involve only T and
the lengths of the loops and do not require evaluation of TCp. As well characterizations
have been developed for the form of T which produces a systolic array with the minimum
number of PEs, and one which has the minimum number of PEs and the smallest area.
These results have been presented for 2-dimensional systolic arrays, but may be easily be
extended to arrays of arbitrary dimensions.

Implementing an algorithm in a systolic array can be accomplished by converting the
dependency structure of the algorithm to a form which can be imbedded in the array. In
this paper the conversion function is constrained to be a linear transformation, the space-
time mapping, and this linearity is used in an essential way. It may be possible to use
the strength of the linearity of this function to optimize various other criteria which are

important in choosing a systolic array implementation of an algorithm.
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