
Some Space Considerations of Space-Time Mappings intoSystolic ArraysJ.H. Weston, C.N. Zhang, Y.-F. YanAbstract: In this paper the space-time mapping of the dependency matrix of an algo-rithm is used to study spatial properties of a systolic array implementation of a 3-nestedloop structure. Elementary expressions are developed for both the number of processingelements and the area of the array. These expressions involve only the space-time trans-formation and the lengths of the loops. As well, characterizations have been found for theform of the space-time transformation which produces a systolic array with the minimumnumber of processing elements, and one which has both the minimum number of processingelements and the smallest area.1 IntroductionThe mapping of algorithms, structured as nested loops, into systolic arrays has been thefocus of considerable research since the introduction of systolic arrays in 1979 [2, 3, 4, 6, 8].Many of the results reported are concerned with both the possibility of implementing suchan algorithm in a systolic array, and optimization of the implementation with respect toa variety of criteria. The objective functions usually involve either time or space consid-1



erations. (A partial list is contained in reference [1].) The current paper examines twomeasures of space in �nding an optimal systolic array implementation of an algorithm,the number of processing elements (PEs) and the area of the array. Since the number ofPEs and the area are associated with both fabrication costs and communication time theyare important parameters to be considered in choosing an implementation. Further if aparticular algorithm is to be implemented in a �xed size systolic array then the number ofFor algorithms which can be written in the form of nested loops, the description of animplementation in a systolic array can be cast in a mathematical framework involving aspace-time transformation which maps the algorithm to a systolic array [3, 6]. This space-time transformation is used, in section 2, to �nd an explicit expressions for the number ofPEs and, in section 3, the area required. Also a necessary and su�cient condition is derivedfor the form of a transformation which produces a systolic array consisting of the minimumpossible number of PEs as well as occupying the smallest area.A p-nested loop structure with constant data dependence vectors can be represented by apair (D;CD), in which D is the data dependency matrix [4, 5, 6], and CD = f(i1; i2; � � � ip)t :1 � i1 � l1; � � � ; 1 � ip � lpg is the index space (here t designates transpose). A systolicarray implementation of such an algorithm may be obtained by a linear transformation(p� p matrix ) T = 0BBB@ �S 1CCCA where � is a 1� p vector determining time scheduling, and S isa (p� 1)� p matrix, the space transformation, which maps CD onto an (p-1) - dimensionalsystolic array. T is called the space-time transformation. Let CS = TCD and C 0S = SCD;then when p = 3 the columns of C 0S are the 2-space coordinates of the PEs in the systolicarray implementation. To ensure a one to one mapping and causal time scheduling, Tmust be nonsingular and all the elements of the �rst row of � = TD negative (or positivedepending on the convention). The latter two rows of � indicate the inter processor com-2



munications [5, 6]. The requirement of nearest neighbor connection is precisely that theselatter two rows of � contain only 0, 1, or -1.An example which has often been used to illustrate this approach is matrix multiplica-tion. The algorithm, in normal form (without broadcast variables) is as follows:Algorithm 1 ( Matrix multiplication C = A� B)for i1 := 1 to l1 dofor i2 := 1 to l2 dofor i3 := 1 to l3 dobegina(i1; i2; i3) := a(i1; i2 � 1; i3);b(i1; i2; i3) := b(i1� 1; i2; i3);c(i1; i2; i3) := c(i1; i2; i3 � 1) + a(i1; i2; i3)b(i1; i2; i3);end;where a(i1; 0; i3) = ai1 ;i3 ; b(0; i2; i3) = bi3;i2 ; c(i1; i2; l3) = ci1;i2 for all i1; i2; and i3:For this algorithm,D = 0BBBBBBB@ 0 �1 0�1 0 00 0 �1 1CCCCCCCA and CD = f(1; 1; 1)t; (1; 1; 2)t; � � � ; (l1; l2; l3)tg.In this example there are many valid space-time transformations, T, even if the systolicarray is required to have only nearest neighbor connections. Three such valid transforma-tions are T1 = 0BBB@ �1S1 1CCCA = 0BBBBBBB@ 1 1 1�1 �1 11 �1 1 1CCCCCCCA ; T2 = 0BBB@ �2S2 1CCCA = 0BBBBBBB@ 1 1 1�1 �1 10 �1 1 1CCCCCCCA ; and T3 =3



0BBB@ �3S3 1CCCA = 0BBBBBBB@ 1 1 10 �1 0�1 0 0 1CCCCCCCA : Here�1 = T1D = 0BBBBBBB@ �1 �1 �11 1 �11 �1 �1 1CCCCCCCA ;�2 = T2D = 0BBBBBBB@ �1 �1 �11 1 �11 0 �1 1CCCCCCCA ;and �3 = T3D = 0BBBBBBB@ �1 �1 �11 0 00 1 0 1CCCCCCCA . If l1 = l2 = l3 = 4 then the resulting systolic arraysare shown in Figs. 1, 2 and 3.In the following, the assumption will be made that p = 3 although the results in section2 can be reworded to remain true for an arbitrary positive integer p.2 Determining the number of processing elementsThe space-time transformation gives a natural way to map a p-level nested loop algorithmto an (p-1)-dimensional systolic array. In algorithm 1 when l1 = l2 = l3 = 4 the threetransformations T1; T2; and T3 give systolic arrays with 28, 28, and 16 PEs respectively,(Figs. 1, 2, and 3). The usual approach to determining the number of PEs arising from aparticular T is to transform CD by T and count the number of points in the image [1, 5, 6].If the lengths of the loops are large this may take considerable time. Also, using thismethod to �nd a transformation with the minimum number of PEs, it is necessary to �rst4



determine the number of PEs required for each valid space-time transformation. Lemma1 and Theorem 1 give an expression for determining the number of PEs directly from thetransformation T and the lengths of the loops.Notation If T = (ti;j) is a 3 � 3 integer matrix let Ti;j be the (i,j) cofactor of T, and foreach j = 1; 2; 3 let aj = T1;jgcd(jT1;1j;jT1;2j;jT1;3j) . The expression T (D;CD) = (�; CS) will beused to indicate that T is a valid space-time transformation which maps the algorithmrepresented by (D;CD) to the systolic array represented by (�; CS).Lemma 1 Let T (D;CD) = (�; CS); T = 0BBB@ �S 1CCCA ; (i1; i2; i3) � CD and �i1;�i2;�i3 be in-tegers, then S(i1; i2; i3)t = S(i1+ �i1; i2 +�i2; i3+ �i3)t if and only if there is an integerK so that (�i1;�i2;�i3) = K(a1; a2; a3):Proof: Since S is a linear function S(i1; i2; i3)t = S(i1 + �i1; i2 + �i2; i3 + �i3)t if andonly if S(�i1;�i2;�i3)t = (0; 0)t. T is non-singular hence there is at least one j so thatT1;j 6= 0, suppose T1;1 6= 0. Solving S(�i1;�i2;�i3)t = (0; 0)t for �i2 and �i3 gives�i2 = T1;2T1;1�i1 and �i3 = T1;3T1;1�i1: (1)Since �i2 and �i3 are integers there are integers K1 and K2 so that�i1 = K1 T1;1gcd(jT1;1j ; jT1;2j) = K2 T1;1gcd(jT1;1j ; jT1;3j) :Thus there is an integer K so that�i1 = K T1;1gcd(jT1;1j ; jT1;2j ; jT1;3j) = Ka1:Hence (1) gives �i2 = Ka2 and �i3 = Ka3:A similar argument applies if T1;2 6= 0 or T1;3 6= 0:5



Based on this description of the points in the index space CD which collapse, under S,to the same point in C 0S , the number of PEs can be determined by the following theorem.Theorem 1 If T (D;CD) = (�; CS) then the number of PEs isl1l2l3 if jaj j � lj for some j = 1; 2; 3; and l1l2l3� (l1� ja1j)(l2� ja2j)(l3� ja3j) otherwise :Proof: If (i1; i2; i3)t� CD then call (i1 + a1; i2 + a2; i3 + a3)t its redundant sequel if (i1 +a1; i2+ a2; i3+ a3)t� CD: Let (i01; i02; i03) be de�ned byi0j = 8>>><>>>: 1 aj � 0lj aj < 0Clearly if (i01; i02; i03)t has no redundant sequel then no point in CD has one. If jaj j �lj for some j = 1; 2; 3 then (i01; i02; i03)t has no redundant sequel and each of the l1l2l3 pointsin CD has a distinct image in C 0S ; thus the number of PEs is l1l2l3:If jaj j < lj for each j = 1; 2; 3 then (i01 + a1; i02 + a2; i03 + a3)t is a redundant sequel. Inthis case (i01; i02; r)t has a redundant sequel if and only if 1 � r + a3 � l3: In either casea3 � 0 or a3 < 0; there are l3�ja3j choices for r. For each such choice r0 for r, (i01; q; r0)t hasa redundant sequel if and only if 1 � q+a2 � l2: As before there are l2�ja2j such choices forq. Now for each such choice r0 and q0 there are l1�ja1j choices for p so that (p; q0; r0)t is aredundant sequel. Hence there are (l1� ja1j)(l2� ja2j)(l3� ja3j) redundant sequels in total.Removing these redundant sequels from CD leaves l1l2l3 � (l1 � ja1j)(l2 � ja2j)(l3 � ja3j)points, each of which maps, under S, to a distinct PE in C 0S :In algorithm 1, for example, if T = T1 = 0BBBBBBB@ 1 1 1�1 �1 11 �1 1 1CCCCCCCA and l1 = l2 = l3 =6



4; then T1;1 = 0; T1;2 = 2; T1;3 = 2 so a1 = 0; a2 = 1; a3 = 1 and the number of PEsis 28, Fig. 1. In this situation the minimum number of PEs possible is 16, and T3 is atransformation which achieves this minimum, Fig. 3. The following corollary to theorem 1characterizes the form of a space-time transformation which results in a systolic array withthe minimum number of PEs.Corollary 1 If T (D;CD) = (�; CS) and 0 � lj2 ; lj3 � lj1 then the minimum number ofPEs is lj2 lj3 and is realized by a space-time transformation T = 0BBBBBBB@ t1;1 t1;2 t1;3t2;1 t2;2 t2;3t3;1 t3;2 t3;3 1CCCCCCCA if andonly if t2;j1 = t3;j1 = 0:Proof: Since T is nonsingular there is a j1 with 1 � j1 � 3 and aj1 6= 0: Thus jaj1 j �1 and lj1�jaj1 j � lj1�1; hence (lj1�1)lj2lj3 � (lj1�jaj1 j)(lj2�jaj2 j)(lj3�jaj3 j) where j1; j2; j3is 1; 2; 3 in some order. The largest of these bounds is obtained when lj2 ; lj3 � lj1 and aj1 =1; aj2 = aj3 = 0; i.e. ; T1;j2 = T1;j3 = 0: But T1;j2 = 0 if and only if the j1 and j3 columnsof S are linearly independent, and T1;j3 = 0 if and only if the j1 and j2 columns of S arelinearly independent. Thus if the j1 column of S is not (0; 0)t then the j2 and j3 columnsof S are also linearly independent and the determinant of T is 0. Hence the systolic ar-ray has the minimum possible number of PEs, lj2lj3 ; if and only if the j1 column of S is(0; 0)t; i.e. t2;j1 = t3;j1 = 0:3 Determining the area of the systolic arrayThe area of the array is another parameter which is associated with fabrication costs andlengths of data paths. In [1] the area of a systolic array refers to the "Silicon area measure".Here the area is de�ned as follows. 7



De�nition 1 The bounding polygon of a two-dimensional systolic array is the smallestconvex polygon in the plane which contains the array. The area of a two-dimensional systolicarray is the area of its bounding polygon.Figs. 4 and 5 show the bounding polygons, here parallelograms, for the systolic arrays givenby T1 and T2 in algorithm 1, and indicate that two systolic array implementations of thesame algorithm, with the same number of PEs may have di�erent areas. Since the area ofa parallelogram with vertices (a1; a2); (b1; b2); (c1; c2); and (d1; d2) is the absolute value ofthe determinant ��������� b1 � a1 b2 � a2c1 � a1 c2 � a2 ��������� [7], the area of the bounding parallelogram requiredfor T1 is 36 (Fig. 4) and for T2 is 18 (Fig. 5).It is useful to determine which polygons can be bounding polygons for systolic arrays.Since the indexing set CD is contained in a rectangular region in three dimensions, Fig. 6,and the space-time transformation is linear and non-singular, the systolic array is boundedby either a parallelogram, or a polygon constructed from six lines which are pairwise paralleland of equal length. For example, for algorithm 1, T4 = 0BBBBBBB@ 1 1 11 0 �10 1 1 1CCCCCCCA results in a systolicarray with bounding polygon shown in Fig. 7. The area of such a bounding polygon isfound using the following lemma.Lemma 2 If ABCDEF is a convex polygon bounded by six lines which are pairwise paralleland of the same length (see Fig 8), then the area of ABCDEF is twice the sum of the areasof the triangles ABF, BCD and DEF.Proof: The proof is an argument in elementary geometry. Construct a line through Dparallel to BC and a line through B parallel to CD, and let P be their point of intersection.8



Join P and F (see Fig 9). BCDP is then a parallelogram and hence CD, PB and AF areparallel and have the same length. Therefore ABPF, and similarly FPDE are parallelogramsand the area of ABCDEF is the sum of the areas of these three parallelograms.To apply this lemma suppose that, in Fig. 7, A, B and F are the images of (1; 1; 1)t; (l1; 1; 1)tand (1; l2; 1)t under S = 0BBB@ t2;1 t2;2 t2;3t3;1 t3;2 t3;3 1CCCA thenS(1; 1; 1)t� S(l1; 1; 1)t = (t2;1(l1 � 1); t3;1(l1 � 1)) andS(1; 1; 1)t�S(1; l2; 1)t = (t2;2(l2�1); t3;2(t2�1)): Thus the area of the parallelogram ABPFis ��������� det 0BBB@ t2;1(l1 � 1) t3;1(l1 � 1)t2;2(l2 � 1) t3;2(l2 � 1) 1CCCA��������� = (l1 � 1)(l2� 1)jT1;3j: (2)The analogous results are true for the parallelograms CDPB and EFPD.Theorem 2 If T (D;CD) = (�; CS) then the area of the polygon bounding the systolic arrayis [(l1� 1)(l2� 1)ja1j+ (l1 � 1)(l3 � 1)ja2j+ (l2 � 1)(l3� 1)ja3j]gcd(jT1;1j; jT1;2j; jT1;3j)= (l1 � 1)(l2 � 1)jT1;1j+ (l1 � 1)(l3� 1)jT1;2j+ (l2 � 1)(l3 � 1)jT1;3jProof: If the polygon is of the form of Fig. 8 then the result follows directly from lemma2 and (2) above. If it is a parallelogram then either one or two of the cofactors is zero andexpression (2) remains valid.Referring again to algorithm 1 with l1 = l2 = l3 = 4 the area of the bounding polygonresulting from T4 is 3� 3� j1j+ 3� 3� j � 1j+ 3� 3� j1j = 27:Corollary 2 If T (D;CD) = (�; CS) and li2; li3 � li1 ; then this systolic implementation of(D;CD) requires the minimum possible number of PEs as well as the smallest area if and9



only if t2;j1 = t3;j1 = 0 and T1;j1 = �1:4 ConclusionsIn this paper we have used the space-time mapping T of the dependency matrix of analgorithm to study spatial properties of a systolic array implementation of a 3-nested loopstructure. The 3 � 3 matrix T has been used to develop elementary expressions for boththe number of PEs and the area of the systolic array, expressions which involve only T andthe lengths of the loops and do not require evaluation of TCD: As well characterizationshave been developed for the form of T which produces a systolic array with the minimumnumber of PEs, and one which has the minimum number of PEs and the smallest area.These results have been presented for 2-dimensional systolic arrays, but may be easily beextended to arrays of arbitrary dimensions.Implementing an algorithm in a systolic array can be accomplished by converting thedependency structure of the algorithm to a form which can be imbedded in the array. Inthis paper the conversion function is constrained to be a linear transformation, the space-time mapping, and this linearity is used in an essential way. It may be possible to usethe strength of the linearity of this function to optimize various other criteria which areimportant in choosing a systolic array implementation of an algorithm.References[1] Esonu, M.O., Al-Khalili, A.J., Hariri, S., and AlKhalili, D.: `Systolic arrays: how tochoose them', IEE Proceedings-E, 1992, 139, pp. 179-18810
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