Math 217, Spring 2013 Assignment 2

- 1. Find the general solutions of the following ODEs.
 - (a) $y' + y = e^{3x}$;
 - (b) $x^2y' + x(x+2)y = e^x$;
 - (c) $\frac{dr}{d\theta} + r \sec \theta = \cos \theta$;
 - (d) $(x^2 1)y' + 2y = (x + 1)^2$.
- 2. Solve the following IVPs.
 - (a) $\frac{dy}{dx} = 2x 3y$, $y(0) = \frac{1}{3}$;
 - (b) $xy' + y = e^x$, y(1) = 2.
- 3. (a) §2.4, Problem 10;
 - (b) $\S 2.4$, Problem 17;
 - (c) $\S 2.4$, Problem 21;
 - (d) §2.4, Problem 22.
- 4. Verify that the given functions form a fundamental set of solutions of the differential equation. Form the general solution.
 - (a) y'' 4y = 0; $\cosh 2x$, $\sinh 2x$
 - (b) $x^3y''' + 6x^2y'' + 4xy' 4y = 0,$ $x, x^{-2}, x^{-2} \ln x$

Hint. $\sinh x = \frac{e^x - e^{-x}}{2}$ and $\cosh x = \frac{e^x + e^{-x}}{2}$.

5. Show that the indicated function $y_1(x)$ is a solution of the given differential equation. Use reduction of order, to find a second solution $y_2(x)$.

(a)
$$y'' + y = 0;$$
 $y_1 = \sin x$

(b)
$$xy'' + y' = 0;$$
 $y_1 = \ln x$

(c)
$$(1 - 2x - x^{2})y'' + 2(1 + x)y' - 2y = 0;$$
 $y_{1} = x + 1$

6. Find the general solution of the given differential equations.

(a)
$$y'' - y' - 6y = 0$$

(b)
$$y'' - 10y' + 25y = 0$$

(c)
$$3y'' + 2y' + y = 0$$

(d)
$$y''' + 3y'' - 4y' - 12y = 0$$

(e)
$$y^{(4)} - y = 0$$

7. Solve the given differential equation by undetermined coefficients.

(a)
$$y'' + y' - 6y = 2x$$

(b)
$$y'' + 3y = 48x^2e^{3x}$$

(c)
$$y'' - 2y' + y = 2 \cosh x$$

(d)
$$y''' - 2y'' - 4y' + 8y = 6xe^{2x}$$