Using Latin Squares to Test Video Games

Karen Meagher

Department of Mathematics and Statistics
University of Regina
Regina, Saskatchewan, Canada

A Dream Job

You are a video game tester and you have to test a retro version of PacMan.

A Dream Job

You are a video game tester and you have to test a retro version of PacMan.

Why Test?

The original version of PacMan was released with an error.

Why Test?

The original version of PacMan was released with an error. If you get to level 256 this is what you see,

Why Test?

The original version of PacMan was released with an error. If you get to level 256 this is what you see,

Why Test?

The original version of PacMan was released with an error. If you get to level 256 this is what you see,

They only allocated 8 bits of memory for the level counter.

Why Test?

The original version of PacMan was released with an error. If you get to level 256 this is what you see,

They only allocated 8 bits of memory for the level counter.
In binary the largest 8 bit number is

Why Test?

The original version of PacMan was released with an error. If you get to level 256 this is what you see,

They only allocated 8 bits of memory for the level counter.
In binary the largest 8 bit number is

11111111

which is equal to

$$
2^{7}+2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0}=255 .
$$

What to test

What to test

There are several "parameters" in the game.

What to test

There are several "parameters" in the game.

1. PacMan's speed:

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Blue

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

Blue

Flashing

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal
3. Maze:

Blue

Flashing

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

Blue

圆
Flashing
3. Maze: α, β, γ

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

Blue

圆
Flashing
3. Maze: α, β, γ
4. Fruit on screen:

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

Blue

Flashing
3. Maze: α, β, γ
4. Fruit on screen:

Banana

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

Blue

Flashing
3. Maze: α, β, γ
4. Fruit on screen:

Banana

Orange

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal
3. Maze: α, β, γ
4. Fruit on screen:

Banana

Blue

Flashing

Cherries

What to test

There are several "parameters" in the game.

1. PacMan's speed: Slow, Medium, Fast
2. Ghosts' image:

Normal

Blue

.

Flashing
3. Maze: α, β, γ
4. Fruit on screen:

Banana

Orange

Cherries

You need to test all of these parameters, so you make a chart

Your Chart

Your Chart

	Speed	Ghosts	Maze Type	Fruit
test 1	slow	$\boldsymbol{\epsilon c}$	α	A
test 2	slow	$\mathbf{c c}$	α	

Your Chart

	Speed	Ghosts	Maze Type	Fruit
test 1	slow	ct	α	d
test 2	slow	ct	α	
test 3	slow	ct	α	*

Your Chart

	Speed	Ghosts	Maze Type	Fruit
test 1	slow	ct	α	λ
test 2	slow	ce	α	
test 3	slow	ct	α	\%
test 4	slow	ct	β	1
test 5	slow	ct	β	
test 6	slow	ct	β	8

Your Chart

	Speed	Ghosts	Maze Type	Fruit
test 1	slow	Ce	α	A
test 2	slow	ct	α	
test 3	slow	Cc	α	4
test 4	slow	Cc	β	4
test 5	slow	cc	β	
test 6	slow	ct	β	6
:	:	:		

Your Chart

	Speed	Ghosts	Maze Type	Fruit
test 1	slow	ct	α	A
test 2	slow	ct_{4}	α	
test 3	slow	Ct	α	4
test 4	slow	ct	β	λ
test 5	slow	Cc	β	
test 6	slow	Ct	β	6
:				

There are $\underset{\substack{\uparrow \\ \text { speed }}}{3} \times \underset{\substack{\uparrow \\ \text { ghost }}}{3} \times \underset{\substack{\uparrow \\ \text { maze }}}{3} \times \underset{\substack{\uparrow \\ \text { fruit }}}{3}=81$ different combinations!

Your Chart

	Speed	Ghosts	Maze Type	Fruit
test 1	slow	ct	α	A
test 2	slow	cc	α	1
test 3	slow	ct	α	4
test 4	slow	cc	β	A
test 5	slow	ct	β	
test 6	slow	$c t$	β	*
!		.		

Playing PacMan will become really boring before you finish.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	ct	α	λ
test 2:	slow	~	β	
test 3:	slow	ct	γ	:
test 4:	medium	ct	β	6
test 5:	medium	\cdots	γ	λ
test 6:	medium	C8,	α	
test 7:	fast	¢	γ	
test 8:	fast	\cdots	α	*
test 9:	fast	[c]	β	2

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	ct	α	2
test 2:	slow	-	β	
test 3:	slow	ca	γ	4
test 4:	medium	ct	β	6
test 5:	medium	\#	γ	A
test 6:	medium	Cat	α	
test 7:	fast	C	γ	
test 8:	fast	\cdots	α	8
test 9:	fast	cal	β	21

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
\rightarrow test 1:	slow	cc	α	A
test 2:	slow	\cdots	β	\cdots
test 3:	slow	cid	γ	3
test 4:	medium	ct	β	4
test 5:	medium	\cdots	γ	A
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
test 9:	fast	cc	β	A

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	2l
test 2:	slow	\cdots	β	L
test 3:	slow	cid	γ	4
\rightarrow test 4:	medium	ct	β	x
test 5:	medium	\cdots	γ	A1
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
test 9:	fast	cc	β	İ

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	A
test 2:	slow	\cdots	β	\pm
test 3:	slow	cid	γ	3
test 4:	medium	ct	β	4
test 5:	medium	20	γ	A1
test 6:	medium	ca	α	
\rightarrow test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
test 9:	fast	cc	β	A

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	2l
test 2:	slow	\cdots	β	L
test 3:	slow	cid	γ	4
test 4:	medium	ct	β	x
\rightarrow test 5:	medium	20	γ	1
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	\#	α	3
test 9:	fast	cc	β	İ

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	A
test 2:	slow	\cdots	β	\pm
test 3:	slow	cid	γ	3
test 4:	medium	ct	β	4
test 5:	medium	20	γ	A1
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
\rightarrow test 8:	fast	シ	α	4
test 9:	fast	cc	β	A

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	A
\rightarrow test 2:	slow	\cdots	β	\pm
test 3:	slow	cid	γ	3
test 4:	medium	ct	β	4
test 5:	medium	20	γ	A1
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
test 9:	fast	cc	β	A

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	2l
test 2:	slow	\cdots	β	L
test 3:	slow	cid	γ	4
test 4:	medium	ct	β	4
test 5:	medium	20	γ	1
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
\rightarrow test 9:	fast	cc	β	/1

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	2l
test 2:	slow	\cdots	β	L
\rightarrow test 3:	slow	cid	γ	4
test 4:	medium	ct	β	4
test 5:	medium	20	γ	1
test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
test 9:	fast	cc	β	/1

This will test all nine possible pairs for any two parameters.

Karen's Solution to get to an Early Lunch

	Speed	Ghosts	Maze	Fruit
test 1:	slow	cc	α	A
test 2:	slow	\cdots	β	\pm
test 3:	slow	cid	γ	3
test 4:	medium	ct	β	4
test 5:	medium	20	γ	A1
\rightarrow test 6:	medium	ca	α	
test 7:	fast	ct	γ	
test 8:	fast	シ	α	4
test 9:	fast	cc	β	A

This will test all nine possible pairs for any two parameters.

Latin Squares

The first three columns can be written as a square:

Latin Squares

The first three columns can be written as a square:

Latin Squares

The first three columns can be written as a square:

Each symbol occurs once in every row and column.

Latin Squares

The first three columns can be written as a square:

Each symbol occurs once in every row and column. This is called a Latin square.

Latin Squares

The first three columns can be written as a square:

Each symbol occurs once in every row and column. This is called a Latin square.
The fourth column can also be written as a square:

Latin Squares

The first three columns can be written as a square:

Each symbol occurs once in every row and column. This is called a Latin square.
The fourth column can also be written as a square:

Greco-Latin Squares

We can put these to Latin squares together to make a Greco-Latin square.

Greco-Latin Squares

We can put these to Latin squares together to make a Greco-Latin square.

Greco-Latin Squares

We can put these to Latin squares together to make a Greco-Latin square.

I get every maze/fruit combintation exactly once!

Everyone loves Latin Squares!

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Sudoko games are 9×9 Latin squares.

History

This was a "recreatational" math problem from 1725:

History

This was a "recreatational" math problem from 1725:
Take all aces, kings, queens and jacks from a standard deck of cards,

History

This was a "recreatational" math problem from 1725:
Take all aces, kings, queens and jacks from a standard deck of cards, and arrange them in a 4×4 grid

History

This was a "recreatational" math problem from 1725:
Take all aces, kings, queens and jacks from a standard deck of cards, and arrange them in a 4×4 grid such that each row and each column contained all four suits as well as one of each face value.

History

This was a "recreatational" math problem from 1725:
Take all aces, kings, queens and jacks from a standard deck of cards, and arrange them in a 4×4 grid such that each row and each column contained all four suits as well as one of each face value.

Latin Squares are good for "art"

Latin Squares are good for "art"

This is a 7×7 Greco-Latin square

Latin Squares are good for "art"

This is a 7×7 Greco-Latin square (it is a baby blanket I made for my Ph.D. supervisor's baby).

36 Officers Problem

36 Officers Problem

(from Wikipedia) The thirty-six officers problem is a mathematical puzzle proposed by Leonhard Euler in 1782.

36 Officers Problem

(from Wikipedia) The thirty-six officers problem is a mathematical puzzle proposed by Leonhard Euler in 1782.

The problem asks if it is possible to arrange six regiments consisting of six officers each of different ranks in a 6×6 square so that no rank or regiment will be repeated in any row or column.

36 Officers Problem

(from Wikipedia) The thirty-six officers problem is a mathematical puzzle proposed by Leonhard Euler in 1782.

The problem asks if it is possible to arrange six regiments consisting of six officers each of different ranks in a 6×6 square so that no rank or regiment will be repeated in any row or column.

36 Officers Problem

(from Wikipedia) The thirty-six officers problem is a mathematical puzzle proposed by Leonhard Euler in 1782.

The problem asks if it is possible to arrange six regiments consisting of six officers each of different ranks in a 6×6 square so that no rank or regiment will be repeated in any row or column.

This problem is asking for a 6×6 Latin square

36 Officers Problem

(from Wikipedia) The thirty-six officers problem is a mathematical puzzle proposed by Leonhard Euler in 1782.

The problem asks if it is possible to arrange six regiments consisting of six officers each of different ranks in a 6×6 square so that no rank or regiment will be repeated in any row or column.

This problem is asking for a 6×6 Latin square

In 1901 it was shown that it is not possible to make a 6×6 Greco-Latin square!

10×10 Latin Square

10×10 Latin Square

For a long time it was unknown if it was possible to build a 10×10 Greco-Latin square.

10×10 Latin Square

For a long time it was unknown if it was possible to build a 10×10 Greco-Latin square.

A computer in $1959 ?$

A computer in $1959 ?$

This is the type of computer that was used to find the first 10×10 Greco-Latin square.

Open Problems with Latin Squares

Open Problems with Latin Squares

We look for ways to build them:

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

1	2	3	\ldots	$n-1$	n

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

1	2	3	\ldots	$n-1$	n
2	3	4	\ldots	n	1

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

1	2	3	\ldots	$n-1$	n
2	3	4	\ldots	n	1
3	4	5	\ldots	1	2

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

1	2	3	\ldots	$n-1$	n
2	3	4	\ldots	n	1
3	4	5	\ldots	1	2
\vdots					
n	1	2	\ldots	$n-2$	$n-1$

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

1	2	3	\ldots	$n-1$	n
2	3	4	\ldots	n	1
3	4	5	\ldots	1	2
\vdots					
n	1	2	\ldots	$n-2$	$n-1$

I can also build an $n \times n$ Greco-Latin square if n is the power of a prime number.

Open Problems with Latin Squares

We look for ways to build them:
I can build an $n \times n$ Latin square for any n :

1	2	3	\ldots	$n-1$	n
2	3	4	\ldots	n	1
3	4	5	\ldots	1	2
\vdots					
n	1	2	\ldots	$n-2$	$n-1$

I can also build an $n \times n$ Greco-Latin square if n is the power of a prime number. It is easy, if you have a finite field!

Open Problems with Latin Squares

Open Problems with Latin Squares

We try to count Latin squares:

Open Problems with Latin Squares

We try to count Latin squares:
There are two or order 2 :

$$
\begin{array}{|ll|}
\hline 1 & 2 \\
2 & 1
\end{array} \quad \begin{array}{|ll|}
\hline 2 & 1 \\
1 & 2 \\
\hline
\end{array}
$$

Open Problems with Latin Squares

We try to count Latin squares:
There are two or order 2 :

$$
\begin{array}{|ll|}
\hline 1 & 2 \\
2 & 1
\end{array} \quad \begin{array}{|ll|}
\hline 2 & 1 \\
1 & 2 \\
\hline
\end{array}
$$

Order	Number
3	12
4	576
5	161280
6	812851200

Open Problems with Latin Squares

Open Problems with Latin Squares

We classify Latin squares:

Open Problems with Latin Squares

We classify Latin squares:

$$
\begin{array}{|llll|}
\hline 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3 \\
\hline
\end{array}
$$

Open Problems with Latin Squares

We classify Latin squares:

$$
\left.\begin{array}{|llll|}
\hline 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3
\end{array} \quad \right\rvert\, \begin{array}{llll|}
1 & 4 & 2 & 3 \\
3 & 2 & 4 & 1 \\
4 & 1 & 3 & 2 \\
2 & 3 & 1 & 4 \\
\hline
\end{array}
$$

Open Problems with Latin Squares

We classify Latin squares:

Last Slide

Still LOTS of open problems with Latin squares and Graeco-Latin squares and experimental design.

Last Slide

Still LOTS of open problems with Latin squares and Graeco-Latin squares and experimental design.

- Build better test sets:

Last Slide

Still LOTS of open problems with Latin squares and Graeco-Latin squares and experimental design.

- Build better test sets:
- test sets that avoid combinations;
- tests sets that balance other aspects;
- tests sets that test only give pairs of the parameters.

Last Slide

Still LOTS of open problems with Latin squares and Graeco-Latin squares and experimental design.

- Build better test sets:
- test sets that avoid combinations;
- tests sets that balance other aspects;
- tests sets that test only give pairs of the parameters.
- Latin Squares are important in other aspects of math:

Last Slide

Still LOTS of open problems with Latin squares and Graeco-Latin squares and experimental design.

- Build better test sets:
- test sets that avoid combinations;
- tests sets that balance other aspects;
- tests sets that test only give pairs of the parameters.
- Latin Squares are important in other aspects of math:
- finite fields-these are important for cyptography;
- decompositions of graphs;
- extremal combinatorics.

