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ABSTRACT: For randomly weighted and randomly indexed sums of the form∑Tn
j=1 Anj

(
Vnj − E(VnjI(||Vnj|| ≤ cn))

)
where {Anj, j ≥ 1, n ≥ 1} is an array of

rowwise independent random variables, {Vnj, j ≥ 1, n ≥ 1} is an array of rowwise
independent random elements in a separable real Rademacher type p Banach space,
{cn, n ≥ 1} is a sequence of positive constants, and {Tn, n ≥ 1} is a sequence of pos-
itive integer-valued random variables, we present conditions under which the general

weak law of large numbers
∑Tn

j=1 Anj

(
Vnj − E(VnjI(||Vnj|| ≤ cn))

)
P→ 0 holds. It is

not assumed that the {Vnj, j ≥ 1, n ≥ 1} have expected values or absolute moments.
The sequences {Anj, j ≥ 1} and {Vnj, j ≥ 1} are assumed to be independent for all
n ≥ 1. However, no conditions are imposed on the joint distributions of the random
indices {Tn, n ≥ 1} and no independence conditions are imposed between {Tn, n ≥ 1}
and {Anj, Vnj, j ≥ 1, n ≥ 1}. The sharpness of the weak law is illustrated by examples.
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1. INTRODUCTION

Consider an array {Vnj, j ≥ 1, n ≥ 1} of rowwise independent random elements
defined on a probability space (Ω,F , P ) and taking values in a separable real Banach
space X with norm || · ||. Let {Anj, j ≥ 1, n ≥ 1} be an array of rowwise independent
(real-valued) random variables (called random weights) and let {Tn, n ≥ 1} be a
sequence of positive integer-valued random variables (called random indices). In the
current work, a general weak law of large numbers (WLLN) will be established for
the randomly indexed weighted sums

∑Tn
j=1 AnjVnj. This result takes the form

Tn∑
j=1

Anj

(
Vnj − E(VnjI(||Vnj|| ≤ cn))

)
P→ 0

where {cn, n ≥ 1} is a sequence of positive constants. It should be noted that each
AnjVnj is automatically a random element (see, e.g., Taylor, 1978, p. 24). The se-
quences {Anj, j ≥ 1} and {Vnj, j ≥ 1} are assumed to be independent for all n ≥ 1
but it is not assumed that {Anj, Vnj, j ≥ 1} and {An′j, Vn′j, j ≥ 1} are independent
for n 6= n′. No conditions are imposed on the joint distributions of the {Tn, n ≥ 1}
whose marginal distributions are constrained solely by (3.1), and no independence
conditions are imposed between {Tn, n ≥ 1} and {Anj, Vnj, j ≥ 1, n ≥ 1}. It is also
not being assumed that the {Vnj, j ≥ 1, n ≥ 1} have expected values or absolute
moments. The Banach space X is assumed to be of Rademacher type p (1 ≤ p ≤ 2).
(Technical definitions such as this will be discussed in Section 2.)

Hong (1996) studied the WLLN problem for randomly indexed partial sums∑Tn
j=1 Xnj from an array of random variables {Xnj, j ≥ 1, n ≥ 1}. Except for some

recent work of Rosalsky and Sreehari (2001a, 2001b) concerning mean convergence
and the WLLN, respectively, in martingale type p Banach spaces, we are unaware of
any literature of investigation on limit laws for both randomly weighted and randomly
indexed sums

∑Tn
j=1 AnjVnj even when the Vnj are random variables. In the current

work, we establish a Rademacher type p Banach space version of the main result of
Rosalsky and Sreehari (2001b).

Let θnj be a generic symbol for a (suitably selected) conditional expectation,
j ≥ 1, n ≥ 1. Assuming X is of martingale type p, Adler, Rosalsky, and Volodin
(1997a) proved under a Cesàro type condition of Hong and Oh (1995) (which is
weaker than Cesàro uniform integrability as introduced by Chandra (1989)) the

WLLN
∑kn

j=1 anj(Vnj − θnj)
P→ 0 where {anj, 1 ≤ j ≤ kn < ∞, n ≥ 1} is an ar-

ray of constants with kn → ∞. In a martingale type p Banach space setting, Hong,
Ordóñez Cabrera, Sung, and Volodin (1999, 2000) gave conditions for the WLLN

(with random indices)
∑Tn

j=1 anj(Vnj − θnj)
P→ 0 to hold. Also in a martingale type

p Banach space setting, Adler, Rosalsky, and Volodin (1997a) proved the Lr con-

vergence result ||
∑kn

j=1 anj(Vnj − θnj)||
Lr−→ 0 where 1 ≤ r ≤ p under a uniform
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integrability type condition introduced by Ordóñez Cabrera (1994) which contains
Cesàro uniform integrability as a special case.

When X is of Rademacher type p (1 ≤ p ≤ 2) and the array {Vnj, j ≥ 1, n ≥
1} is comprised of rowwise independent random elements, Adler, Rosalsky, and
Volodin (1997b) established a WLLN (with random indices) of the form

∑Tn
j=1 aj(Vnj−

µnj)/bn
P→ 0 where {µnj, j ≥ 1, n ≥ 1} is an array of suitable elements of X and

{an, n ≥ 1} and {bn, n ≥ 1} are sequences of constants with 0 < bn →∞.
Taylor and Padgett (1974), Wei and Taylor (1978a, 1978b), Taylor and Calhoun

(1983), Taylor, Raina, and Daffer (1984), Ordóñez Cabrera (1988), and Adler, Ros-
alsky, and Taylor (1992) studied either the weak or the almost sure (a.s.) limiting
behavior of randomly weighted partial sums of Banach space valued random ele-
ments. However, in all of those articles, the number of terms in the partial sums is
deterministic.

The plan of the paper is as follows. Some technical definitions will be given in
Section 2. The main result will be presented in Section 3. In Section 4, some examples
will be offered which illustrate the sharpness of the result.

Finally, the symbol C denotes throughout a generic constant (0 < C <∞) which
is not necessarily the same one in each appearance, and for x > 0 the symbol [x]
denotes the greatest integer in x.

2. PRELIMINARIES

Technical definitions relevant to the current work will be discussed in this section.
The expected value or mean of a random element V , denoted by EV , is defined

to be the Pettis integral provided it exists. That is, V has expected value EV ∈ X
if f(EV ) = E(f(V )) for every f ∈ X ∗ where X ∗ denotes the (dual) space of all
continuous linear functionals on X . A sufficient condition for EV to exist is that
E||V || < ∞ (see, e.g., Taylor, 1978, p. 4). Thus, E(V I(||V || < c)) exists for every
random element V and constant c <∞.

Let {Yn, n ≥ 1} be a symmetric Bernoulli sequence, that is, {Yn, n ≥ 1} are
independent and identically distributed (i.i.d.) random variables with P{Y1 = 1} =
P{Y1 = −1} = 1/2. Let X∞ = X×X×X×· · · and define C(X ) = {(v1, v2, · · ·) ∈ X∞ :∑∞

n=1 Ynvn converges in probability}. Let 1 ≤ p ≤ 2. Then the separable real Banach
space X is said to be of Rademacher type p if there exists a constant 0 < C < ∞
such that E||

∑∞
n=1 Ynvn||p ≤ C

∑∞
n=1 ||vn||p for all (v1, v2, · · ·) ∈ C(X ). Hoffmann-

Jørgensen and Pisier (1976) proved for 1 ≤ p ≤ 2 that a real separable Banach space
is of Rademacher type p if and only if there exists a constant 0 < C <∞ such that

E
∣∣∣∣∣∣ n∑

j=1

Vj

∣∣∣∣∣∣p ≤ C
n∑
j=1

E||Vj||p

for every finite collection {V1, · · · , Vn} of independent mean 0 random elements.
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If a separable real Banach space is of Rademacher type p for some 1 < p ≤ 2,
than it is of Rademacher type q for all 1 ≤ q < p. Every separable real Banach
space is of Rademacher type (at least) 1 while the Lp-spaces and `p-spaces are of
Rademacher type 2 ∧ p for p ≥ 1. Every separable real Hilbert space and separable
real finite-dimensional Banach space is of Rademacher type 2.

The following lemma of Adler, Rosalsky, and Volodin (1997b) is a Kolmogorov
type maximal inequality for random elements in Rademacher type p (1 ≤ p ≤ 2)
Banach spaces and it will be used to prove the main result. Lemma 2.1 is immediate
when p = 1 and it had been obtained by Jain (1976) and Woyczyński (1978) when
p = 2.

Lemma 2.1 (Adler, Rosalsky, and Volodin, 1997b). Let {Vn, n ≥ 1} be a sequence
of independent mean 0 random elements in a separable real Rademacher type p (1 ≤
p ≤ 2) Banach space. Then for all n ≥ 1

P

{
max

1≤k≤n

∣∣∣∣∣∣ k∑
j=1

Vj

∣∣∣∣∣∣ > t

}
≤ C

tp

n∑
j=1

E||Vj||p, t > 0

where C is a constant which does not depend on n.

3. MAINSTREAM

With the preliminaries accounted for, the main result may now be presented. It

should be noted that if Tn/in
P→ c for some c ∈ [0, 1), then the condition (3.1) of

Theorem 3.1 holds. An example wherein the converse fails is given by a positive
integer sequence in → ∞ with in divisible by 4, n ≥ 1 and a sequence of random
variables {Tn, n ≥ 1} with P{Tn = 1

2
in} = P{Tn = 1

4
in} = 1

2
, n ≥ 1. Also, observe

that the condition (3.5) of Theorem 3.1 is of the spirit of the condition nP{|X1| >
n} = o(1) of the classical WLLN with random indices for sums of i.i.d. random
variables {Xn, n ≥ 1} (see, e.g., Chow and Teicher, 1997, p. 133). Finally, note in
Theorem 3.1 that the slower in →∞ can be taken to satisfy (3.1), the weaker are the
conditions (3.4), (3.5), and (3.6).

Theorem 3.1. Let {Vnj, j ≥ 1, n ≥ 1} be an array of rowwise independent
random elements in a separable real Rademacher type p (1 ≤ p ≤ 2) Banach space
and let {Anj, j ≥ 1, n ≥ 1} be an array of rowwise independent random variables.
Suppose that the sequences {Anj, j ≥ 1} and {Vnj, j ≥ 1} are independent for all
n ≥ 1. Let {Tn, n ≥ 1} be a sequence of positive integer-valued random variables
such that

P{Tn > in} = o(1) (1)

for some positive integer sequence in →∞. Let g be a strictly increasing, continuous
function defined on [0,∞) such that
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g(0) = 0 and
gp(x)

x
→∞ as x→∞. (2)

Suppose that

n∑
k=1

gp(k)

k2
= O

(
gp(n)

n

)
, (3)

in∑
j=1

E|Anj|p = o(1), (4)

and that there exists a sequence of positive constants cn →∞ such that

in∑
j=1

P{||Vnj|| > cn} = o(1) (5)

and

lim
k→∞

sup
n≥1

cpn
g−1(cn)

in∑
j=1

E|Anj|pkP{||Vnj|| > g(k)} = 0. (6)

Then the WLLN

Tn∑
j=1

Anj

(
Vnj − E(VnjI(||Vnj|| ≤ cn))

)
P→ 0 (7)

obtains.
Proof: Let Wnj = VnjI(||Vnj|| ≤ cn), j ≥ 1, n ≥ 1. Note that for arbitrary ε > 0

P

{∣∣∣∣∣∣ Tn∑
j=1

AnjVnj −
Tn∑
j=1

AnjWnj

∣∣∣∣∣∣ > ε

}
≤ P {Tn > in}+ P

{
in⋃
j=1

[Vnj 6= Wnj]

}

≤ o(1) +
in∑
j=1

P{||Vnj|| > cn} (by (3.1))

= o(1) (by (3.5)).

Thus
∑Tn

j=1 AnjVnj−
∑Tn

j=1 AnjWnj
P→ 0, and to prove (3.7) it suffices to show that

Tn∑
j=1

AnjWnj −
Tn∑
j=1

AnjEWnj
P→ 0. (8)

To prove (3.8), let ε > 0 be arbitrary and let

Bn =

[
max

1≤r≤in

∣∣∣∣∣∣ r∑
j=1

Anj (Wnj − EWnj)
∣∣∣∣∣∣ > ε

]
, n ≥ 1.
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Then for all n ≥ 1,

P

{∣∣∣∣∣∣ Tn∑
j=1

AnjWnj −
Tn∑
j=1

AnjEWnj

∣∣∣∣∣∣ > ε

}

= P

{∣∣∣∣∣∣ Tn∑
j=1

Anj(Wnj − EWnj)
∣∣∣∣∣∣ > ε

}
≤ P{Tn > in}+ P{Bn ∩ [Tn ≤ in]}
≤ o(1) + P{Bn} (by (3.1)). (9)

Note that for all n ≥ 1, {Anj(Wnj − EWnj), j ≥ 1} is a sequence of independent
random elements and by (3.4)

E||Anj(Wnj − EWnj)|| ≤ E(|Anj|(||Wnj||+ E||Wnj||)) ≤ 2cnE|Anj| <∞, j ≥ 1

implying that E(Anj(Wnj − EWnj)) exists, j ≥ 1. Then since Anj and Vnj are
independent, j ≥ 1, n ≥ 1, we have

E(Anj(Wnj − EWnj)) = 0, j ≥ 1, n ≥ 1.

Applying Lemma 2.1, it follows from (3.9) that

P

{∣∣∣∣∣∣ Tn∑
j=1

AnjWnj −
Tn∑
j=1

AnjEWnj

∣∣∣∣∣∣ > ε

}

≤ o(1) +
C

εp

in∑
j=1

E||Anj(Wnj − EWnj)||p

≤ o(1) + C
in∑
j=1

(
E||AnjWnj||p + E||AnjEWnj||p

)
≤ o(1) + C

in∑
j=1

(
E(|Anj|p||Wnj||p) + E(|Anj|p(E||Wnj||)p)

)

6



≤ o(1) + C
in∑
j=1

(
E(|Anj|p||Wnj||p) + E(|Anj|pE||Wnj||p)

)
(by Jensen’s inequality)

= o(1) + C

in∑
j=1

E|Anj|pE||Wnj||p (since Anj and Vnj are independent)

= o(1)

by (3.3), (3.4), and (3.6) and arguing as in the proof of Theorem 3.1 of Rosalsky and
Sreehari (2001b) thereby proving (3.8). �

Corollary 3.1. Let {Vnj, 1 ≤ j ≤ kn < ∞, n ≥ 1, kn → ∞} be an array of
rowwise independent random elements in a separable real Rademacher type p (1 ≤
p ≤ 2) Banach space. Suppose that the uniform Cesàro type condition

lim
a→∞

sup
n≥1

1

kn

kn∑
j=1

aP{||Vnj||r > a} = 0

holds for some 0 < r < p. Let {anj, 1 ≤ j ≤ kn, n ≥ 1} be an array of constants such
that

max
1≤j≤kn

|anj| = O(k−1/r
n ).

Then the WLLN

kn∑
j=1

anj

(
Vnj − E(VnjI(||Vnj|| ≤ k1/r

n ))
)

P→ 0

obtains.
Proof: It is easy to check that the hypotheses of Theorem 3.1 are satisfied with

Tn = kn, n ≥ 1, Anj = anj, 1 ≤ j ≤ kn, n ≥ 1, in = kn, n ≥ 1, g(x) = x1/r, x ≥ 0 where

0 < r < p, and cn = k
1/r
n , n ≥ 1. The details are left to the reader. �

4. SOME INTERESTING EXAMPLES

Four illustrative examples will now be presented. For 1 ≤ r ≤ 2, let `r denote
the Banach space of absolute rth power summable real sequences v = {vi, i ≥ 1} with
norm ||v|| = (

∑∞
i=1 |vi|r)1/r. The element having 1 in its jth position and 0 elsewhere

will be denoted by v(j), j ≥ 1. Define a sequence {Vj, j ≥ 1} of independent random
elements in `1 by requiring the {Vj, j ≥ 1} to be independent with P{Vj = v(j)} =
P{Vj = −v(j)} = 1/2, j ≥ 1. Set Vnj = Vj, j ≥ 1, n ≥ 1. Note that for all n ≥ 1 and
j ≥ 1, Vnj is a random element in `r for all 1 ≤ r ≤ 2.
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Let α > 0, and for each n ≥ 1, let {Anj, j ≥ 1} be a sequence of independent and
identically distributed random variables with

P
{
An1 =

1

nα

}
= P

{
An1 = − 1

nα

}
=

1

2

such that the sequences {Anj, j ≥ 1} and {Vj, j ≥ 1} are independent.
Let θ > 0 and let Tn = Nn + 1, n ≥ 1 where {Nn, n ≥ 1} is a sequence of Poisson

distributed random variables with ENn = nθ, n ≥ 1. Let 1 ≤ dn →∞ be a numerical
sequence such that

dn = o(nθ) and nθ/2 = o(dn). (1)

Let in = [nθ + dn], n ≥ 1, g(x) = x2/p, x ≥ 0 where 1 ≤ p ≤ 2, and cn = nγ, n ≥ 1
where γ > 0.

The random elements {Vnj, j ≥ 1, n ≥ 1}, random variables {Anj, j ≥ 1, n ≥ 1}
and {Tn, n ≥ 1}, sequences {dn, n ≥ 1}, {in, n ≥ 1}, and {cn, n ≥ 1}, and function
g(·) will be used in the examples. The constants α > 0, θ > 0, p ∈ [1, 2], and γ > 0
may have additional constraints imposed on them in the different examples.

The first example illustrates the essential role that condition (3.4) plays in Theo-
rem 3.1.

Example 1. Consider the Rademacher type p Banach space `p. Now (3.2) and
(3.3) hold and since ||Vnj|| = 1 a.s., j ≥ 1, n ≥ 1, the conditions (3.5) and (3.6) are
also satisfied. Now (3.1) holds (see Example 4.1 of Rosalsky and Sreehari (2001b)).

Next, note that by (4.1)

in∑
j=1

E|Anj|p =
in
nαp

= (1 + o(1))
nθ

nαp
. (2)

Thus if θ < αp, then (3.4) holds, and hence by Theorem 3.1,
∑Tn

j=1 AnjVnj
P→ 0.

On the other hand if θ ≥ αp, then (3.4) fails in view of (4.2). Note that with
probability 1, ∣∣∣∣∣∣ Tn∑

j=1

AnjVnj

∣∣∣∣∣∣ =
||
∑Tn

j=1 Vnj||
nα

=
T

1/p
n

nα
, n ≥ 1.

Then for 0 < ε < 1,

P
{∣∣∣∣∣∣ Tn∑

j=1

AnjVnj

∣∣∣∣∣∣ > ε
}

= P{Tn ≥ εpnαp} ≥ P{Tn > εpnθ} → 1

by the same argument as in Example 4.1 of Rosalsky and Sreehari (2001b). Thus the
conclusion (3.7) of Theorem 3.1 fails.

The second example shows that in Theorem 3.1 the condition (3.5) cannot be
dispensed with.
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Example 2. Consider the Rademacher type p Banach space `p. Suppose α > 1 and
θ < p(α− 1) are such that 2α− 1− 2θp−1 > 1. Take γ = 1. Note that θ < p(α− 1)
ensures that (α−(2α−1−2θp−1))p < θ, and thus we can choose δ ∈ (1, 2α−1−2θp−1)
so that (α−δ)p < θ. Consider the array V∗ = {V ∗nj, j ≥ 1, n ≥ 1} of random elements
in `p defined by V ∗nj = nδVnj, j ≥ 1, n ≥ 1. We will verify that the array V∗ (in place
of {Vnj, j ≥ 1, n ≥ 1}) satisfies all the assumptions of Theorem 3.1 (except (3.5))
and that the conclusion (3.7) fails. As in Example 1, the conditions (3.1), (3.2), and
(3.3) hold. Now (3.4) holds in view of (4.2) and θ < αp. Since for all n ≥ 2 and
j ≥ 1, with probability 1, ||V ∗nj|| = nδ > cn, the condition (3.5) fails. Now V∗ satisfies
(3.6) (see Example 4.2 of Rosalsky and Sreehari (2001b)). Finally, observe that with
probability 1, ∣∣∣∣∣∣ Tn∑

i=1

AnjV
∗
nj

∣∣∣∣∣∣ =
nδT

1/p
n

nα
, n ≥ 1.

Thus, for ε > 0

P
{∣∣∣∣∣∣ Tn∑

j=1

AnjV
∗
nj

∣∣∣∣∣∣ > ε
}

= P{Tn > εpn(α−δ)p} = P
{Tn − nθ

nθ/2
>
εpn(α−δ)p − nθ

nθ/2

}
→ 1

arguing as in Example 4.1 of Rosalsky and Sreehari (2001b) and recalling that
(α− δ) p < θ. Thus, the conclusion (3.7) of Theorem 3.1 fails for the array V∗.

The third example shows that in Theorem 3.1 the condition (3.6) cannot be dis-
pensed with.

Example 3. Consider the Rademacher type p Banach space `p. Suppose that
γ ≤ α, choose δ ∈

(
γ
2
, γ
)
, and suppose that θ ∈ (p(α − δ), p(α − γ

2
)]. Consider the

array V∗ = {V ∗nj, j ≥ 1, n ≥ 1} of random elements in `p defined by V ∗nj = nδVnj, j ≥
1, n ≥ 1. We will verify that the array V∗ (in place of {Vnj, j ≥ 1, n ≥ 1}) satisfies
all the assumptions of Theorem 3.1 (except (3.6)) and that the conclusion (3.7) fails.
As in Example 1, the conditions (3.1), (3.2), and (3.3) hold. Now (3.4) holds in
view of (4.2) and θ < αp. Moreover, for all n ≥ 1 and j ≥ 1, with probability
1, ||V ∗nj|| = nδ ≤ cn and hence (3.5) holds. To verify that (3.6) fails for V∗, note that

since g(k) = k2/p, k ≥ 1 we have for all fixed k ≥ 1

P{||V ∗nj|| > g(k)} =

{
0, 1 ≤ j ≤ in, 1 ≤ n ≤ k

2
pδ

1, 1 ≤ j ≤ in, n > k
2
pδ

and hence

sup
n≥1

cpn
g−1(cn)

in∑
j=1

E|Anj|pkP{||V ∗nj|| > g(k)}

= sup

n>k
2
pδ

n(γp−2αp)/2ink
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≥ sup

n>k
2
pδ

n(γp−2αp+2θ)/2k (since in ≥ nθ, n ≥ 1)

≥ k(γp−2αp+2θ)/pδk
(

since θ ≤ p
(
α− γ

2

))
= k(γp−2αp+2θ+pδ)/pδ

≥ k(γp−2αp+2p(α−δ)+pδ)/pδ (since θ > p(α− δ))
= k(γ−δ)/δ

→∞ (since γ > δ).

Thus, (3.6) fails for V∗. Finally, since p(α− δ) < θ and arguing as in Example 2, we
have for ε > 0 that

P
{∣∣∣∣∣∣ Tn∑

j=1

AnjV
∗
nj

∣∣∣∣∣∣ > ε
}
→ 1

and thus the conclusion (3.7) of Theorem 3.1 fails for the array V∗.
The fourth example shows that the Rademacher type p hypothesis cannot be

dispensed with in Theorem 3.1.
Example 4. Suppose p > 1 and consider the Banach space `r where 1 ≤ r < p. It

is well known that `r is not of Rademacher type p. Suppose that θ = αr. Thus, (4.2)
and p > r ensure that (3.4) holds. As in Example 1, the conditions (3.1), (3.2), (3.3),
(3.5), and (3.6) hold. All of the hypotheses of Theorem 3.1 are satisfied except for the
underlying Banach space being of Rademacher type p. Note that with probability 1,∣∣∣∣∣∣ Tn∑

j=1

AnjVnj

∣∣∣∣∣∣ =
||
∑Tn

j=1 Vnj||
nα

=
T

1/r
n

nα
, n ≥ 1.

Thus for 0 < ε < 1, arguing as in Example 1 (or Example 4.1 of Rosalsky and Sreehari
(2001b)),

P
{∣∣∣∣∣∣ Tn∑

j=1

AnjVnj

∣∣∣∣∣∣ > ε
}

= P{Tn > εrnαr} → 1

and so the conclusion (3.7) of Theorem 3.1 fails.
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linear spaces. Sankhyā, Ser. A 36 359-368.

Taylor, R.L., Raina, C.C., and Daffer, P.Z. (1984): Stochastic convergence of ran-
domly weighted sums of random elements. Stochastic Anal. Appl. 2 299-321.

Wei, D. and Taylor, R.L. (1978a): Geometrical consideration of weighted sums con-
vergence and random weighting. Bull. Inst. Math. Acad. Sinica 6 49-59.

Wei, D. and Taylor, R.L. (1978b): Convergence of weighted sums of tight random
elements. J. Multiv. Anal. 8 282-294.
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