
327

0894-9840/04/0400-0327/0 © 2004 Plenum Publishing Corporation

Journal of Theoretical Probability, Vol. 17, No. 2, April 2004 (© 2004)

On the Weak Limiting Behavior of Almost Surely
Convergent Row Sums from Infinite Arrays of
Rowwise Independent Random Elements in
Banach Spaces

A. Rosalsky1 ,3 and A. I. Volodin2

1Department of Statistics, University of Florida, Gainesville, Florida 32611. E-mail: rosalsky
@stat.ufl.edu
2Department of Mathematics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2.
E-mail: volodin@math.uregina.ca
3 To whom correspondence should be addressed.

Received October 22, 2002; revised October 26, 2003

For an array {Vnk, k \ 1, n \ 1} of rowwise independent random elements in a
real separable Banach space X with almost surely convergent row sums Sn=
;.

k=1 Vnk, n \ 1, we provide criteria for Sn−An to be stochastically bounded or
for the weak law of large numbers Sn−An0P 0 to hold where {An, n \ 1} is a
(nonrandom) sequence in X.
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1. INTRODUCTION

Let V={Vnk, k \ 1, n \ 1} be an infinite array of rowwise independent
random elements defined on a probability space (W,F, P) and taking
values in a real separable Banach space X with norm || · ||. No geometric
conditions will be imposed on X. We assume throughout that for all n \ 1,
the row sum Sn —;.

k=1 Vnk converges almost surely (a.s.) (to a random
element). This of course implies that for all t > 0 and n \ 1, the row sum



S (t)n —;.

k=1 V
(t)
nk converges a.s. (to a random element) where V (t)nk=

VnkI(||Vnk || [ t), k \ 1. Woyczyński,(11, 12) Jain,(7) Gińe et al., (4) Etemadi,(3)

and Hu and Wang(6) among others have provided conditions under which
series of independent random elements converge a.s.
Note that if for all n \ 1, Vnk=0 a.s. for all k > some integer kn, then

for all n \ 1 the convergence of Sn=;.

k=1 Vnk to a random element is of
course automatic. Thus, in the current work, we can also consider a double
array of random elements {Vnk, 1 [ k [ kn, n \ 1} where {kn, n \ 1} is a
sequence of positive integers. Such an array can be viewed as the special
case of an infinite array with Vnk=0 a.s. for all k \ kn+1, n \ 1.
In the current work, we study the weak limiting behavior of Sn−An

where A={An, n \ 1} is a (nonrandom) sequence in X. More specifically,
for a given function j satisfying appropriate conditions, we provide:

(i) criteria for {Sn−An, n \ 1} to be stochastically bounded (that is,

lim
tQ.

sup
n \ 1
P{||Sn−An || > t}=0)

in terms of the limiting behavior (as t and n approach infinity) of

sup
u \ 0
j(u) P{||S (t)n −An || > u} or of sup

u \ 0
j(u) P{||Sn−An || > tu},

(ii) a criterion for the weak law of large numbers Sn−An0
P 0 to hold

in terms of the limiting behavior (as nQ.) of

sup
u \ 0
j(u) P{||Sn−An || > tu} where t > 0.

2. DEFINITIONS AND NOTATION

In this section we present some definitions and we establish some
notation.
A nonnegative nondecreasing function j defined on [0,.) is said to

satisfy the D2-condition if there exists a number B ¥ [1,.) such that j(2t) [
Bj(t) for all t \ 0. The D2-condition is equivalent (see Krasnolel’skiı̆ and
Rutickiı̆, (9) p. 23) to the condition: for all A \ 1, there exists a number
B=B(A) ¥ [1,.) such that

j(At) [ Bj(t) for all t \ 0. (2.1)
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We note that if j satisfies the D2-condition with j(t) > 0 for some t > 0,
then j(t) > 0 for all t > 0. To see this, suppose that j(t0) > 0 where t0 > 0.
Then j(t1) > 0 for all t1 \ t0. Let 0 < t1 < t0. Then by (2.1)

0 < j(t0)=j 1
t0
t1
t1 2 [ Bj(t1)

for some constant B \ 1 and so j(t1) > 0.
Let X denote the class of continuous, nondecreasing functions j

defined on [0,.) with j(0)=0 and lim tQ. j(t)=.. For a random vari-
able X and function j ¥ G, let

Lj(X)=sup
u \ 0
j(u) P{X > u}.

Any median of a random variable X will be denoted by med(X).
For a random element V, its symmetrized version V s is defined by

V s=V−V2 where V2 is an independent copy of V. The arrayV is said to be
symmetric if all the random elements Vnk comprising the array are symme-
tric (that is, Vnk and −Vnk are identically distributed for all n \ 1 and
k \ 1).
Three properties of an array V will now be defined. It proves conve-

nient to introduce subscripts (i, s, or a) in the T(e) and N(e) below to
signal the property that they pertain to.
The arrayV is said to be infinitesimal if

lim
tQ.
nQ.

sup
k \ 1
P{||Vnk || > t}=0.

This is equivalent to: for all e > 0, there exists a number T=Ti(e) > 0 and
an integer N=Ni(e) \ 1 such that for all t \ T and n \N

sup
k \ 1
P{||Vnk || > t} < e. (2.2)

Let j be a function in G satisfying the D2-condition. The array V is
said to be j-suitable if

lim
tQ.
nQ.

sup
u \ 1
j(u) C

.

k=1
P{||Vnk || > tu}=0.
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This is equivalent to: for all e > 0, there exists a number T=Ts(e) > 0 and
an integer N=Ns(e) \ 1 such that for all t \ T and n \N

sup
u \ 1
j(u) C

.

k=1
P{||Vnk || > tu} < e. (2.3)

Let {An, n \ 1} be a (nonrandom) sequence in X. The array V is said
to be {An, n \ 1}-limitable if

lim
tQ.
nQ.

P{||Sn−An || > t}=0.

This is equivalent to: for all e > 0, there exists a number T=Ta(e) > 0 and
an integer N=Na(e) \ 1 such that for all t \ T and n \N

P{||Sn−An || > t} < e. (2.4)

Remarks 1.

(i) Apropos of the preceding three definitions, we of course only
need to verify that each inequality (2.2), (2.3), or (2.4) holds for
t=T because it would then automatically hold for t > T.

(ii) It is clear that if the array V is j-suitable, then it is infinitesimal.
The converse is not true.

Proposition 1. The array V is {An, n \ 1}-limitable if and only if
Sn−An is stochastically bounded.

Proof. Sufficiency is obvious. To prove necessity, let e > 0. Clearly it
may be assumed that Na(

e

2) \ 2. Let T
− \ Ta(

e

2) be such that

P{||Sn−An || > T −} <
e

2
for 1 [ n [Na 1

e

2
2−1.

Then for all t \ T −,

sup
n \ 1
P{||Sn−An || > t}

[ sup
1 [ n [Na(

e
2)−1
P{||Sn−An || > t}+ sup

n \Na(
e
2)
P{||Sn−An || > t}

<
e

2
+
e

2
=e. i
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Remark 2. In view of Proposition 1, for an array V which is
{An, n \ 1}-limitable, the integer Na(e) can be taken to be 1 for all e > 0
(provided Ta(e) is taken to be sufficiently large).

3. PRELIMINARY LEMMAS

Some lemmas needed to establish the main results are presented in this
section.
The following two lemmas are well known and are stated for the

convenience of the reader. See Etemadi(3) for some results relating to
Lemma 1. Lemma 2 is originally due to Hoffmann-Jørgensen(5) and may
also be found in Jain and Marcus(8).

Lemma 1 (Ref. 2). Let the array V be symmetric. Then for all t > 0
and n \ 1

C
.

k=1
P{||Vnk || > t} [

2P{||Sn || > t}
1−2P{||Sn || > t}

provided P{||Sn || > t} [
1
2 .

Lemma 2 (Ref. 5). Let the array V be symmetric. Then for all t > 0
and n \ 1,

P{||Sn || > 3t} [ C
.

k=1
P{||Vnk || > t}+4(P{||Sn || > t})2.

Lemma 3. Let {An, n \ 1} be a (nonrandom) sequence in X. Then
for all t > 0, e > 0, and n \ 1,

|P{||Sn−An || > e}−P{||S
(t)
n −An || > e}| [ P{sup

n \ 1
||Vnk || > t}

[ C
.

k=1
P{||Vnk || > t}. (3.1)

Proof. The second inequality of (3.1) is obvious. To prove the first
inequality, let t > 0, e > 0, and n \ 1 and note that
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P{||Sn−An || > e} \ P{||Sn−An || > e, sup
k \ 1
||Vnk || [ t}

=P{||S (t)n −An || > e, sup
k \ 1
||Vnk || [ t}

\ P{||S (t)n −An || > e}−P{sup
k \ 1
||Vnk || > t} (3.2)

and so

P{||Sn−An || > e}−P{||S
(t)
n −An || > e} \ −P{sup

k \ 1
||Vnk || > t}. (3.3)

Next, note that (3.2) also holds with Sn and S
(t)
n interchanged and so

P{||S (t)n −An || > e}−P{||Sn−An || > e} \ −P{sup
k \ 1
||Vnk || > t}. (3.4)

Combining (3.3) and (3.4) yields the first inequality of (3.1). i

Some symmetrization inequalities are provided by the next lemma.

Lemma 4.

(i) If the array V is infinitesimal, then for all t \ 2Ti(
1
2), n \Ni(

1
2),

and k \ 1

P{||Vnk || > t} [ 2P 3 ||V snk || >
t
2
4 .

(ii) If the array V is {An, n \ 1}-limitable, then for all n \Na(
1
2)=1

and t \ 2Ta(
1
2)

P{||Sn−An || > t} [ 2P 3 ||S sn || >
t
2
4 .

(iii) If V is a random element, A is a (nonrandom) member of X, and
t > 0, then

P{||V s|| > t} [ 2P 3 ||V−A|| > t
2
4 .
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Proof.

(i) Since V is infinitesimal, sup k \ 1 med(||Vnk ||) [ Ti(
1
2) for all n \

Ni(
1
2). Then for all t \ 2Ti(

1
2), n \Ni(

1
2), and k \ 1, by the weak

symmetrization inequality (see, e.g., Loève,(10) p. 257)

P{||Vnk || > t} [ P 3 |||Vnk ||−med(||Vnk ||)| >
t
2
4

[ 2P 3 |||Vnk ||− ||V2nk ||| >
t
2
4

[ 2P 3 ||V snk || >
t
2
4

where V2nk is an independent copy of Vnk.

(ii) This is proved in the same way as part (i).

(iii) This is evident. i

We need some additional inequalities which will be provided by the
next lemma.

Lemma 5. Let {An, n \ 1} be a (nonrandom) sequence in X.

(i) For every function j ¥ G, t > 0, and n \ 1,

P{||Sn−An || > t} [
Lj(||S

(t)
n −An ||)
j(t)

+C
.

k=1
P{||Vnk || > t}.

(ii) If the array V is infinitesimal, then for all t \ 2Ti(
1
2) and

n \Ni(
1
2)

C
.

k=1
P{||Vnk || > t} [

8P{||Sn−An || >
t
4}

1−4P{||Sn−An || >
t
4}

provided P{||Sn−An || >
t
4} [

1
4 .

(iii) If the array V is {An, n \ 1}-limitable and the function j ¥ G
satisfies the D2-condition, then (letting B=B(12) be as in (2.1))
for all e > 0, H \ e, n \Na(

1
2)=1, and

t \max 3Ta (
1
2)
6H
,
Ta (

1
64B)
H
4
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we have

sup
u \ e
j(u) P{||Sn−An || > tu}

[ 2B 1j(H) P{||Sn−An || > te}+4 sup
u \H
j(u) C

.

k=1
P{||Vnk || > tu}2 .

(3.5)

Proof.

(i) By Lemma 3 and the definition of Lj( · ), we have

P{||Sn−An || > t} [ P{||S
(t)
n −An || > t}+C

.

k=1
P{||Vnk || > t}

[
Lj(||S

(t)
n −An ||)
j(t)

+C
.

k=1
P{||Vnk || > t}.

(ii) By Lemma 4(i), Lemma 1, and Lemma 4(iii), for all t \ 2Ti(
1
2)

and n \Ni(
1
2),

C
.

k=1
P{||Vnk || > t} [ 2 C

.

k=1
P 3 ||V snk || >

t
2
4

[
4P{||S sn || >

t
2}

1−2P{||S sn || >
t
2}

[
8P{||Sn−An || >

t
4}

1−4P{||Sn−An || >
t
4}
.

(iii) For H \ e,

sup
u \ e
j(u) P{||Sn−An || > tu}

[ sup
e [ u [ 12H

j(u) P{||Sn−An || > tu}+ sup
u \ 12H

j(u) P{||Sn−An || > tu}

[ j(12H) P{||Sn−An || > te}+2 sup
u \ 12H

j(u) P 3 ||S sn || >
tu
2
4

(by Lemma 4(ii))
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[ j(12H) P{||Sn−An || > te}+2 sup
u \ 12H

j(u) C
.

k=1
P 3 ||V snk || >

tu
6
4

+8 sup
u \ 12H

j(u) 1P 3 ||S sn || >
tu
6
422

(by Lemma 2)

[ j(12H) P{||Sn−An || > te}+4 sup
u \ 12H

j(u) C
.

k=1
P 3 ||Vnk || >

tu
12
4

+32P{||Sn−An || > tH} sup
u \ 12H

j(u) P 3 ||Sn−An || >
tu
12
4

(by Lemma 4(iii))

=j(12H) P{||Sn−An || > te}+4 sup
v \H
j(12v) C

.

k=1
P{||Vnk || > tv}

+32P{||Sn−An || > tH} sup
v \H
j(12v) P{||Sn−An || > tv}

[ B 1j(H) P{||Sn−An || > te}+4 sup
v \H
j(v) C

.

k=1
P{||Vnk || > tv}2

+32BP{||Sn−An || > tH} sup
v \H
j(v) P{||Sn−An || > tv}

(by (2.1) where B=B(12))

[ B 1j(H) P{||Sn−An || > te}+4 sup
u \H
j(u) C

.

k=1
P{||Vnk || > tu}2

+32BP{||Sn−An || > tH} sup
u \ e
j(u) P{||Sn−An || > tu}

(sinceH \ e)

[ B 1j(H) P{||Sn−An || > te}+4 sup
u \H
j(u) C

.

k=1
P{||Vnk || > tu}2

+
32B
64B

sup
u \ e
j(u) P{||Sn−An || > tu}

1 since tH \ Ta 1
1
64B
22

=B 1j(H) P{||Sn−An || > te}+4 sup
u \H
j(u) C

.

k=1
P{||Vnk || > tu}2

+
1
2
sup
u \ e
j(u) P{||Sn−An || > tu}.
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Thus,

1
2 sup
u \ e
j(u) P{||Sn−An || > tu}

[ B 1j(H) P{||Sn−An || > te}+4 sup
u \H
j(u) C

.

k=1
P{||Vnk || > tu}2

proving (3.5). i

The last lemma will be used in providing a characterization of arrays
of degenerate random elements with convergent row sums in terms of a
particular quasi-norm on a class of arrays.

Lemma 6. Let S be a random element in a real separable Banach
space X and let j ¥ G be such that j(t) > 0 for all t > 0. Then S=A0 a.s.
for some A0 ¥X if and only if

inf
A ¥X

sup
t \ 0
j(t) P{||S−A|| > t}=0. (3.6)

Proof. The necessity half is obvious. To prove the sufficiency half, let
e > 0 be arbitrary. By (3.6), for all n \ 1, there exists An ¥X such that

sup
t \ 0
j(t) P{||S−An || > t} [

1
n2
.

Hence

C
.

n=1
P{||S−An || > e} [ C

.

n=1

1
j(e) n2

<.

and then by the Borel–Cantelli lemma we have S−An Q 0 a.s. Thus,
An Q S a.s. and the conclusion follows since the {An, n \ 1} are non-
random elements in X. i

4. TWO CRITERIA FOR AN ARRAY BEINGA-LIMITABLE

With the preliminaries accounted for, the first main result may be
established.
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Theorem 1. An array V is infinitesimal and {An, n \ 1}-limitable if
and only if

lim
tQ.
nQ.

C
.

k=1
P{||Vnk || > t}=0 (4.1)

and

lim
tQ.
nQ.

Lj(||S
(t)
n −An ||)
j(t)

=0 (4.2)

for every function j ¥ G satisfying the D2-condition.

Proof. Sufficiency. It follows from

sup
k \ 1
P{||Vnk || > t} [ C

.

k=1
P{||Vnk || > t}

and (4.1) that the array V is infinitesimal. Moreover, it follows from
Lemma 5(i), (4.1), and (4.2) thatV is {An, n \ 1}-limitable.

Necessity. Since V is infinitesimal and {An, n \ 1}-limitable, (4.1)
follows directly from Lemma 5(ii). Next, let j ¥ G satisfy the D2-condition.
It follows from Lemma 3 that for all t0 > 0, t > 0, and n \ 1,

P{||S (t0)n −An || > t} [ C
.

k=1
P{||Vnk || > t0}+P{||Sn−An || > t}.

For arbitrary e > 0, it then follows from (4.1) and from V being
{An, n \ 1}-limitable that for t0, t, and n sufficiently large (say t0 \ T0(e),
t \ Tg(e), and n \Ng(e)) that

P{||S(t0)n −An || > t} [ e.

Then, arguing exactly as in the proof of Lemma 5(iii), for all t0 \ T0(
1
2),

n \Ng( 12), e > 0, H \ e, and t \max{Tg( 12)/6H, T
g( 164B)/H} we have

sup
u \ e
j(u) P{||S (t0)n −An || > tu}

[ 2B 1j(H) P{||S (t0)n −An || > te}

+4 sup
u \H
j(u) C

.

k=1
P{||VnkI(||Vnk || [ t0)|| > tu}2
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where B=B(12) is as in (2.1). Let n \Ng( 12), e > 0, H \max{e, Tg( 12)/6,
Tg( 164B)}, t0 \max{T0(

1
2), H}, and t=1. Then

sup
u \ e
j(u) P{||S (t0)n −An || > u}

[ 2B 1j(H)+4 sup
u \H
j(u) C

.

k=1
P{||VnkI(||Vnk || [ t0)|| > u}2

=2B 1j(H)+4 sup
H [ u [ t0

j(u) C
.

k=1
P{||VnkI(||Vnk || [ t0)|| > u}2

[ 2B 1j(H)+4j(t0) C
.

k=1
P{||Vnk || > H}2 .

Then for arbitrary d > 0, we have recalling (4.1) that for all n and H suffi-
ciently large and all t0 \H that

Lj(||S
(t0)
n −An ||)
j(t0)

=
1
j(t0)

lim
eQ 0
sup
u \ e
j(u) P{||S (t0)n −An || > u}

[ 2B
j(H)
j(t0)

+8B C
.

k=1
P{||Vnk || \H}

[ 2B
j(H)
j(t0)

+d.

Then since j(t0) ‘. as t0 ‘.,

lim
t0 Q.
nQ.

Lj(||S
(t0)
n −An ||)
j(t0)

[ d

and (4.2) follows since d > 0 is arbitrary. i

Remark 3. Note that the D2-condition was not used in the suffi-
ciency half of Theorem 1.

Let us now introduce some notation. For an array V, a (nonrandom)
sequenceA={An, n \ 1} in X, a function j ¥ G, and t \ 0, let

rn, t(V,A, j)=sup
u \ 0
j(u) P{||Sn−An || > tu}, n \ 1.
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Theorem 2. Let V be an array which is j-suitable for some function
j ¥ G satisfying the D2-condition. Then V is A={An, n \ 1}-limitable if
and only if

lim
tQ.
nQ.

rn, t(V,A, j)=0. (4.3)

Proof. Sufficiency. The implication follows immediately from

P{||Sn−An || > t} [
rn, t(V,A, j)
j(1)

, t \ 0, n \ 1.

Necessity. Let e > 0. Since j is continuous at 0 with j(0)=0, there
exists d > 0 such that j(u) [ e whenever 0 [ u [ d. It may be assumed that
d [ 1. Then

rn, t(V,A, j)

[ sup
0 [ u [ d

j(u) P{||Sn−An || > tu}+ sup
d [ u [ 1

j(u) P{||Sn−An || > tu}

+sup
u \ 1
j(u) P{||Sn−An || > tu}. (4.4)

Clearly

sup
0 [ u [ d

j(u) P{||Sn−An || > tu} [ e. (4.5)

Moreover, sinceV is {An, n \ 1}-limitable

lim
tQ.
nQ.

sup
d [ u [ 1

j(u) P{||Sn−An || > tu} [ lim
tQ.
nQ.

j(1) P{||Sn−An || > td}=0.
(4.6)

Finally, by Lemma 5(iii) with e=H=1

lim
tQ.
nQ.

sup
u \ 1
j(u) P{||Sn−An || > tu}

[ lim
tQ.
nQ.

2B 1j(1) P{||Sn−An || > t}+4 sup
u \ 1
j(u) C

.

k=1
P{||Vnk || > tu}2

(for some B <.)

=0 (4.7)
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since V is {An, n \ 1}-limitable and j-suitable. Combining (4.4), (4.5),
(4.6), and (4.7) yields (4.3) since e > 0 is arbitrary. i

Remark 4. Note that the hypothesis that V is j-suitable was not
used in the sufficiency half of Theorem 2.

5. SPACES OFA-LIMITABLE ARRAYS

Let us now introduce the following spaces:

SB={V:V is {An, n \ 1}-limitable for some sequence {An, n \ 1} ıX}

and

WLLN={V:V is {An, n \ 1}-limitable for some sequence

{An, n \ 1} ıX with Ta(e) [ e for all e > 0}.

Remarks 5.

(i) Trivially, SB and WLLN are linear spaces with the natural
operations.

(ii) In view of Proposition 1 and Remark 2, if V ¥ SB, then Sn−An
is stochastically bounded and Na(e) can be taken to be 1 for all
e > 0 (provided Ta(e) is taken to be sufficiently large).

(iii) If V ¥WLLN, then Sn obeys the weak law of large numbers
with some centering sequence {An, n \ 1}; that is, Sn−An0

P 0.

Theorem 3. Let V be an array which is j-suitable for some function
j ¥ G satisfying the D2-condition.

(i) V ¥ SB if and only if lim
nQ.
tQ. rn, t(V,A, j)=0 for some

sequenceA={An, n \ 1} ıX.

(ii) Suppose that Ns(e) can be taken to be 1 for all e > 0. Then
V ¥ SB if and only if lim tQ. sup n \ 1 rn, t(V,A, j)=0 for some
sequenceA={An, n \ 1} ıX.

Proof.

(i) The assertion is a restatement of Theorem 2.

(ii) Sufficiency. This follows immediately from the sufficiency half of
part (i).
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Necessity. Proceeding as in the proof of the necessity half of
Theorem 2, we have that for arbitrary e > 0, there exist d > 0 and B <.
such that

sup
n \ 1
rn, t(V,A, j)

[ e+sup
n \ 1
j(1) P{||Sn−An || > td}

+2B 1j(1) sup
n \ 1
P{||Sn−An || > t}+4 sup

n \ 1
sup
u \ 1
j(u) C

.

k=1
P{||Vnk || > tu}2

and the result follows by letting tQ. since Na(e) and Ns(e) can be taken
to be 1 and since e > 0 is arbitrary. i

Theorem 4. Let V be an array which is j-suitable for some function
j ¥ G satisfying the D2-condition.

(i) If lim nQ. rn, t(V,A, j)=0 for some sequence A={An, n \ 1}
ıX and all t > 0, thenV ¥WLLN.

(ii) If V ¥WLLN and Ts(e) [ e for all e > 0, then lim nQ. rn, t(V,
A, j)=0 for some sequenceA={An, n \ 1} ıX and all t > 0.

Proof. The proof is a slight modification of that of Theorem 2 and
the details are left to the reader. i

For an arrayV and a function of j ¥ G, let us introduce the notation

lj(V)= inf
{An, n \ 1} ıX

sup
t \ 0
n \ 1

j(t) P{||Sn−An || > t}.

The next theorem provides a characterization of j-suitable arrays V

(where j ¥ G satisfies the D2-condition) being {An, n \ 1}-limitable for
some sequence {An, n \ 1} ıX by the finiteness of lj(V).

Theorem 5. Let V be an array which is j-suitable for some function
j ¥ G satisfying the D2-condition and suppose that Ns(e) can be taken to be
1 for all e > 0. ThenV ¥ SB if and only if lj(V) <..

Proof. Sufficiency. If lj(V) <., then there exists a sequence
{An, n \ 1} ıX such that

C — sup
t \ 0
n \ 1

j(t) P{||Sn−An || > t} <..
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Then

lim
tQ.
nQ.

P{||Sn−An || > t}= lim
tQ.
nQ.

j(t) P{||Sn−An || > t}
j(t)

[ lim
tQ.

C
j(t)
=0

and soV ¥ SB.

Necessity. IfV ¥ SB, then by Theorem 3(ii)

lim
tQ.

sup
u \ 0
n \ 1

j(u) P{||Sn−An || > tu}=0

for some sequence {An, n \ 1} ıX. Let t0 \ 1 be such that

sup
u \ 0
n \ 1

j(u) P{||Sn−An || > t0u} [ 1. (5.1)

Then

lj(V) [ sup
u \ 0
n \ 1

j(u) P{||Sn−An || > u}

=sup
u \ 0
n \ 1

j(t0u) P{||Sn−An || > t0u}

[ B sup
u \ 0
n \ 1

j(u) P{||Sn−An || > t0u}

(for some B <. by (2.1))

[ B (by (5.1))

<.. i

For a function j ¥ G satisfying the D2-condition, the space

SBj — {V ¥ SB :V is j-suitable withNs(e)=1 for all e > 0}

is also a linear space with the natural operations. According to Theorem 5,

SBj={V : lj(V) <. andV is j-suitable withNs(e)=1 for all e > 0}.

It is easy to see that lj( · ) is a quasi-norm on SBj; that is, forV,W ¥ SBj:
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(i) 0 [ lj(V) <. and lj({0, k \ 1, n \ 1})=0,

(ii) lj(−V)=lj(V),

(iii) lj(V+W) [ B(lj(V)+lj(W)) for some constant 1 [ B <..

Inequality (iii) is called the B-triangle inequality and the constant B can be
taken to be that of (2.1) with A=2.
If the arrayV={Vnk, k \ 1, n \ 1} is such that lj(V)=0, then for all

n \ 1

inf
A ¥X

sup
t \ 0
j(t) P{||Sn−A|| > t}=0

and it follows from Lemma 6 that Sn=An a.s. for some An ¥X. We will
now argue that this implies that V is an array of degenerate random ele-
ments. For suppose that VnK is nondegenerate for some n \ 1 and some
K \ 1. Since the sum of a finite number of independent random elements
(at least one of which is nondegenerate) is nondegenerate, we have that
;K
k=1 Vnk is nondegenerate. But then for the same reason

An=Sn=C
K

k=1
Vnk+ C

.

k=K+1
Vnk a.s.

is nondegenerate, a contradiction. We have thus shown that

V is an array of degenerate random elements

with convergent row sums if and only if lj(V)=0. (5.2)

Next, for V and W in SBj, let us declare V ’W if lj(V−W)=0.
(In particular, lj(V)=0 if and only if V ’ {0, k \ 1, n \ 1}.) Then ’ is
an equivalence relation on SBj in view of (5.2). Moreover, if V,W ¥ SBj
with V ’W, then (5.2) ensures that lj(V)=lj(W) whence the value of
lj(V) does not depend on the particular representativeV selected from an
equivalence class of arrays determined by ’.
A topology on SBj can be defined in the natural way: a basis for the

topology is the collection

{{W ¥ SBj : lj(V−W) < e} :V ¥ SBj, e > 0}.

By Lemma 3.10.1 of Bergh and Löfström,(1) p. 59, the space SBj is metriz-
able; that is, there is a nonnegative function lgj( · ) on SBj with

lgj( · ) [ l
r
j( · ) [ 2l

g
j( · )
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where r=(1+log B)−1 (Log denotes the logarithm to the base 2) such that

dj(V,W) — l
g
j(V−W)

is a metric which defines the topology on SBj. The function l
g
j( · ) is

defined by

lgj(V)=inf 3 C
n

j=1
lrj(Vj): C

n

j=1
Vj=V, n \ 14 , V ¥ SBj.

Since lj( · ) is constant on each equivalence class determined by ’, it is
easy to see that lgj( · ) likewise enjoys this property.

Theorem 6. Let j ¥ G satisfy the D2-condition and let

WLLNj={V ¥WLLN :V is j-suitable withNs(e)=1 for all e > 0}.

Then WLLNj is a closed subspace of the metric space (SBj, dj) or, equiv-
alently,

{V ¥ SBj : -e > 0 ,W ¥WLLNj such that dj(V,W) < e} ıWLLNj.

Proof. Let V ¥ SBj be such that for all e > 0, there exists W ¥

WLLNj such that dj(V,W) < e. Then V is j-suitable with Ns(e)=1 for
all e > 0 and it remains to show that V ¥WLLN. Let e > 0 be arbitrary.
LetW={Wnk, k \ 1, n \ 1} ¥WLLNj be such that

dj(V,W) < 1
e

2
j 1 e
2
22r;2. (5.3)

SinceW ¥WLLN,

lim
nQ.
P 3> C

.

k=1
Wnk−A

−

n
> > e
2
4=0 (5.4)

for some sequence {A −n, n \ 1} ıX. Since

lj(V−W) [ (2l
g
j(V−W))

1/r

=(2dj(V,W))1/r

<
e

2
j 1 e
2
2 (by (5.3)),
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there exists a sequence {A'n , n \ 1} ıX such that for all t \ 0 and n \ 1

j(t) P 3>Sn− C
.

k=1
Wnk−A

'

n
> > t4 < e

2
j 1 e
2
2 . (5.5)

Then setting An=A
−

n+A
'

n , n \ 1, we have for all large n

P{||Sn−An || > e} [ P 3>Sn− C
.

k=1
Wnk−A

'

n
> > e
2
4+P 3> C

.

k=1
Wnk−A

−

n
> > e
2
4

<
e

2
+
e

2
(by (5.4) and (5.5))

=e.

ThusV ¥WLLN. i
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12. Woyczyński, W. A. (1978). Geometry and martingales in Banach spaces. Part II: Inde-
pendent increments. In Kuelbs, J., and Ney, P. (eds.), Probability on Banach Spaces,
Advances in Probability and Related Topics, Vol. 4, Marcel Dekker, New York,
pp. 267–517.

346 Rosalsky and Volodin


	1. INTRODUCTION
	2. DEFINITIONS AND NOTATION
	3. PRELIMINARY LEMMAS
	4. TWO CRITERIA FOR AN ARRAY BEING Ascr-LIMITABLE
	5. SPACES OF Ascr-LIMITABLE ARRAYS
	ACKNOWLEDGMENT

