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Abstract

The convergence in probability of the sequence of sums Zf":un (Xni — cni)/ by is obtained, where {u,,n>1}
and {v,,n>1} are sequences of integers, {X,;, u, <i<v,,n>1} are random variables, {c,;, u, <i<v,,n>=1}
are constants or conditional expectations, and {b,,n>1} are constants satisfying b, — oo as n — oco. The
work is proved under a Cesaro-type condition which does not assume the existence of moments of X ;. The
current work extends that of Gut (1992, Statist. Probab. Lett. 14, 49-52), Hong and Oh (1995, Statist.
Probab. Lett. 22, 52-57), Hong and Lee (1996, Bull. Inst. Math. Acad. Sinica 24, 205-209), and Sung (1998,
Statist. Probab. Lett. 38, 10-105).
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1. Introduction

The classical weak law of large numbers (WLLN) says that if {X,,n>1} is a sequence of
independent and identically distributed (i.i.d.) random variables satisfying nP(|X|>n) = o(1),
then > " | (X; — EXI(|X1|<n))/n — 0 in probability as n — oo. The WLLN has been extended
to the arrays of random variables or random elements (for random variables, see Hong and Oh
(1995), Hong and Lee (1996), and Sung (1998), and for random elements, see Adler et al. (1997)
and Hong et al. (2000)).

Let {X,;,u,<i<v,,n=1} be an array of random variables defined on a probability space
(Q, 7, P), where {u,> — oo,n>1} and {v, < + oco,n>1} are two sequences of integers. Set 7 ,; =
A X i, un <i<j},u,<j<vp,n=1, and 7,,, 1 ={0,Q},n>1. When u, =1,v, =k, (k, - oo as
n — o0), n=1, WLLNSs for the array have been established by Hong and Oh (1995), Hong and
Lee (1996), and Sung (1998).

In this paper, we obtain a WLLN for the more general array {X,;,u,<i<uv,,n>1} under a
Cesaro-type condition. Our work extends that of Gut (1992), Hong and Oh (1995), Hong and Lee
(1996), and Sung (1998). Also, we obtain the convergence in probability of the sequence of
(infinite) weighted sums > >, @u(X; — ¢ni), wWhere {lay|", 1 <i<oo,n>1}, 0<r<2, is a Toeplitz
array of constants, {X,,n>1} is a sequence of random variables which is uniformly bounded by a
random variable X with aP(|X|">a) - 0 as a — oo, and {c¢,;;, 1 <i<oo,n>=1} is an array of
constants or conditional expectations. The result generalizes and extends that of Jamison et al.
(1965), Pruitt (1966), and Rohatgi (1971).

2. Main results

Throughout this section, let {X,;, u, <i<v,,n=1} be an array of random variables, and let
{k,,n=1} be a sequence of positive integers such that k, — oo as n — oo.
To prove our main results, we will need the following lemma.

Lemma 1. Let {k,,n=1} and {b,,n>1} be sequences of positive constants such that k, — 0o, b, —
oo, and

kn/bg — 0 for some }>0. (1)

Suppose that there exists a positive nondecreasing function g on [0, 00) satisfying
o0
li = b1yj 2
lim g(a) = 0, ; g’(1/j)<o0, )

and

by W2 GG D) — PG
b Yy ; = 0(1). 3)

J=1
Let { X, u, <i<v,,n=1} be an array of random variables such that

Un

> aP(I Xl > g(a)) < oo (4)

i=u,

1
Sup sup ——
a>0 n>1 kn
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and

Un

lim sup -— L aP(X > gla)) = 0. (5)

a— 00 4
n=1 n i—,

Then
vﬂ

> EIXul 10X il <g(ky)) = o(B).

i=uy,

Proof. Since ¢ is a nondecreasing function, it follows that

5 Z E1X il 11X il g (k)

n i= =Uy
l’ll l’)l
— Z ELXul 11Xl <g(1) + 5 Z Z ENXul’I(gG — 1) <1Xul<g(),
bn i=u, nt u, j=2
=: A4, + B,.

By (1), (2), and (4), we have

=37 Z Z EIXulP 1g(1/G + D) <Xl <g(1/))
n i=u, j=

Un

< LSS NP G+ D)<l <001/

n i=u, j=1

T Z[Z (" (1/G = 1) = ¢" (A /DPAX ol >9(1 /) = ﬂ(l)P(|Xm|>g(1))]

i=uy, [ j=2

< % Z Z(gm/(; — 1) = " (1)) P X il > g(1/)))
n i=u, j=2
kn . : / N /
bﬂ Zj(g/f(l/(/ —1)— gﬁ(l/J)) sul?{ki Z jl.P(|Xni| >g(1/J))}
— nz n =y,
% (gﬁ(l) + Z gﬁ(l/j)) -su;g surl>{ki Z aP(| X il >g(a))} -0
; = a>0 n> n =y,

The proof that lim, ., B, = 0 can be obtained by the slight modification of the last part in the
proof of Hong et al. (2000) (from the middle of p. 180 to the end of the proof) with changes:
[V ill = | X il and Z Zjbiun O

Remark 1. When u, = 1,v, = k,,,n=>1, condition (5) was introduced by Hong and Oh (1995). In
this case, condition (5) implies condition (4), and so condition (4) can be omitted.

Now we state and prove one of our main results.
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Theorem 1. Let 0< <2, Under the same conditions of Lemma 1,

Z (X i — cni)/by = 0 in probability,

i=u,
where cp =0 lf0<ﬁ<1 and ¢,; = E(Xnil(|Xni|<g(kn))|g7n,i—l) lf 1 <ﬁ<2
Proof. Let X/, = X,/ 1(|X,i|<g(ky)) for u,<i<wv,,n>1. By the same arguments as the proof of

ni

Sung (1998), it suffices to show that

> (X, = ¢u)/by — 0 in probability.

i=uy

First, we consider the case of 0<f<1. Since ¢,; = 0, it follows by the Markov’s inequality and

Lemma 1 that
p< / b, >8) <E

Now we consider the case of 1<f<2. In this case, X; — ¢, u,<i<v,, form a martingale
difference sequence. Using Burkholder’s (1966) inequality, Jensen’s inequality, and Lemma 1,
Zw — Cni)

we get
| Z m cni) |
bn Sﬁbﬁ

6MZHX — cull

n i=u,

Un

D (X = cu)

i=uy

/(gl‘bﬁ)< Z E\X | /(PbF) — 0.

i=u,

> X,

i=up

B

Un

<G UZ E|X,,|" + Elcul’
Bb’B prd ni

C 2f
’3 Z E|X,|F - 0,

nlu,,

where Cjy is a constant depending only on . [J

Note that condition (3) can be difficult to check. A sufficient condition for (3) was given by
Hong et al. (2000) as follows:

glkn) bl
;.= O and Z <—) (6)

I’l

Corollary 1. Let O<r<2 and k, — oo asn — o0o. Let { X, u, <i<v,,n= 1} be an array of random
variables such that

Un

sup sup — B Z aP(| X ;| >a)<oo (7

a>0 n=1 "n ;— ”
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and
I &
lim sup — aP(|X,;|">a) = 0. 8
A, SUP :Z (Xl >a) )
Then
Z (Xni — Cm-)/k,l/r — 0 in probability,

where ¢,; = 0 if 0<r<1 and cy; = E(X il (| X il <k )T niz1) if 1<r<2.
Proof. Let g(f) = ¢'/" and b, = k,ll/’. Take f=1ifO<r<1 and = 2 if 1 <r<2. Then conditions
(1), (2), (4), and (5) are clearly satisfied. By Theorem 1, it remains to show that condition (3) holds.

To prove (3), it is enough to show that condition (6) holds. Clearly g(k,)/b, = O(1). Since f/r>1,
it follows that

kn  Bs kn
9°() AB/n- -
3 U =3 02 = oI,
=1 J =1

Thus condition (6) is satisfied. [J

Remark 2. When u,, = 1,v, = k,,n>=1, Hong and Oh (1995) proved Corollary 1 for 1<r<2. For
the case 0<r<1, they used a centering sequence whereas we have no centering.

Corollary 2. Let { X, 1<i<k,,n=1}, k, — 0o as n — oo, be an array of random variables. Let
{d,,n=1} be a nondecreasing sequence of positive constants such that

n kp o dl - d
— >0 and 2Ly L -0 )
d* d ,:Zl J

for some 0< <2. Suppose that

gt
lim sup -— > JP(X il >dj) =0.

i=1

k”
Z (X i — cni)/dy, — 0 in probability,
i=1

where ¢, = 0 if 0<p <1 and cyi = E(X il (| X il <dp ) F niz1) if 1<p<2.

Proof. Let g(¢) be a nondecreasing function such that g(¢#) = 0 for 0<7r< 1 and g(n) = d, forn>1.
Let u, = 1,0, = ky, b, = di,,n=>1. Then conditions (1)—(5) are clearly satisfied, and so the proof
follows from Theorem 1. [

Remark 3. When d,/n* 1 for some cc>%, condition (9) is satisfied for f = 2 by Lemma 2 of Sung
(1998). In this case, Sung (1998) proved Corollary 2.
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If {an, u, <i<v,,n>=1} is a bounded array of constants, then Theorem 1 can be extended to
weighted sums.

Theorem 2. Let 0<f<2. Let {an,u,<i<v,,n=1} be a bounded array of constants, i.e.,
SUP,, > 1 SUP,, <<y, [@nil <0o. Under the same conditions of Lemma 1,

Z ani( X i — ¢ni) /by — 0 in probability,

i=uy,
where ¢, = 0 if 0<p <1 and cyi = E(X il (| X il <gkn))|F niz1) if 1 <p<2.

The proof is similar to that of Theorem 1 and is omitted.
The following theorem gives a result of convergence in probability for (infinite) weighted sums
of random variables.

Theorem 3. Let {X,,n=1} be a sequence of random variables which is uniformly bounded
by a random variable X such that aP(|X|">a) —> 0 as a— oo for some 0<r<2. Let
{lau|", 1<i<oo,n=1} be a Toeplitz array of constants, i.e.,

lim a,; = 0 for every i (10)
and
o0
sup Z |ani|"< C for some constant C>0. (11)

nzl i=1

If sup;~layl — 0 as n — oo, then

o0

Z ani(X; — ¢pi) = 0 in probability,

i=1
where c,;; =0 if 0<r<1 and ¢, = E(Xd(|a Xi|"<)|F i) if 1<r<2(F, = o{X;,1<i<n} and
Fo=1{9,2}).

Proof. Since aP(|X| >a) — 0 as a — oo, there exists ag such that aP(|X|" >a)<e if a>ay. It
follows that

sup aP(|X|">a)< sup aP(|X| >a)+ sup aP(|X| >a)<ay + ¢. (12)
a>0 O<a<ay a>a
Let k, = 1/sup;slanl", u, = 1,0, = 00, Xy = ki/"an,-Xi, and b, = k,ll/". Then we have by (11) and
(12) that

1 Un 1 Un a
sup — aP(| X il >a)< sup — aP(|X|r> 7>,
n}ll) kn ; ( b ) 11211) kn ; knlani|r

U)l
a a
= sup ) Iamlr%P<|X|r> )
n=1 ;= kn|ani|, kn|ani|r ’

o0
<(ap +&)sup Y layl <(ao + )C.

nzl =1
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So (7) is satisfied. If a> ay, then a/k,|a,;|">a>ay for all n and i. For a>ay, we get

a
sup -— LS arx >0 < sup Z il <|X|’> )
k | nt| kn|ani|

n=1 n i—t,

<egsup Z lani|" <eC.

n=1 i=1
So (8) is satisfied. Hence the proof follows from Corollary 1. [

Pruitt (1966) proved Theorem 3 for r = 1 under the stronger condition that {X,,n>1}is a
sequence of i.i.d. random variables with E|X;|<oo. Rohatgi (1971) proved Theorem 3 for
0<r<1 under the stronger condition that {X,,n>1} is a sequence of independent random
variables which is uniformly bounded by a random variable X with E|X|"<oo. Note that the
condition aP(|X|">a) — 0 as a — oo is weaker than E|X|"<oo. Hence Theorem 3 extends the
results of Pruitt (1966) and Rohatgi (1971).

The following corollary was proved by Jamison et al. (1965).

Corollary 3. Let {X,,n>=1} be i.i.d. random variables such that

lim aP(|X{|>a)=0 and lim EXI(|X{|<a)=pu. (13)

Let {a,,n>=1} be a sequence of positive constants satisfying

n
1121;2(” ai/; a; — 0. (14)

Then > a;X;/> i a; — | in probability.

Proof. Let ay = a;/> _ a; for 1<i<n,n>1. Then {ay, | <i<n,n>1} is a Toeplitz array. By
Theorem 3 with r = 1,
i ai(X; — EX(I(1X1|<1/ay))
D it di
Since 1/a,; =3, a;/max;<i<,a; — 00 as n — oo, we have by (13) that EX I(|1X|<1/ay) — p

as n — oo uniformly in 7, which implies Y| @ EX I(|X1|<1/an)/> ', a; — p. Thus the proof is
complete. [

— 0 in probability.
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