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Abstract

The convergence in probability of the sequence of sums
Pvn

i¼un
ðX ni � cniÞ=bn is obtained, where fun; nX1g

and fvn; nX1g are sequences of integers, fX ni; unpipvn; nX1g are random variables, fcni; unpipvn; nX1g
are constants or conditional expectations, and fbn; nX1g are constants satisfying bn ! 1 as n ! 1: The
work is proved under a Cesàro-type condition which does not assume the existence of moments of X ni: The
current work extends that of Gut (1992, Statist. Probab. Lett. 14, 49–52), Hong and Oh (1995, Statist.
Probab. Lett. 22, 52–57), Hong and Lee (1996, Bull. Inst. Math. Acad. Sinica 24, 205–209), and Sung (1998,
Statist. Probab. Lett. 38, 10–105).
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1. Introduction

The classical weak law of large numbers (WLLN) says that if fX n; nX1g is a sequence of
independent and identically distributed (i.i.d.) random variables satisfying nPðjX 1j4nÞ ¼ oð1Þ;
then

Pn
i¼1ðX i � EX 1IðjX 1jpnÞÞ=n ! 0 in probability as n ! 1: The WLLN has been extended

to the arrays of random variables or random elements (for random variables, see Hong and Oh
(1995), Hong and Lee (1996), and Sung (1998), and for random elements, see Adler et al. (1997)
and Hong et al. (2000)).
Let fX ni; unpipvn; nX1g be an array of random variables defined on a probability space

ðO;F;PÞ; where funX�1; nX1g and fvnpþ1; nX1g are two sequences of integers. Set Fnj ¼

sfX ni; unpipjg; unpjpvn; nX1; and Fn;un�1 ¼ f;;Og; nX1: When un ¼ 1; vn ¼ kn (kn ! 1 as
n ! 1Þ; nX1; WLLNs for the array have been established by Hong and Oh (1995), Hong and
Lee (1996), and Sung (1998).
In this paper, we obtain a WLLN for the more general array fX ni; unpipvn; nX1g under a

Cesàro-type condition. Our work extends that of Gut (1992), Hong and Oh (1995), Hong and Lee
(1996), and Sung (1998). Also, we obtain the convergence in probability of the sequence of
(infinite) weighted sums

P1

i¼1 aniðX i � cniÞ; where fjanij
r; 1pio1; nX1g; 0oro2; is a Toeplitz

array of constants, fX n; nX1g is a sequence of random variables which is uniformly bounded by a
random variable X with aPðjX jr4aÞ ! 0 as a ! 1; and fcni; 1pio1; nX1g is an array of
constants or conditional expectations. The result generalizes and extends that of Jamison et al.
(1965), Pruitt (1966), and Rohatgi (1971).

2. Main results

Throughout this section, let fX ni; unpipvn; nX1g be an array of random variables, and let
fkn; nX1g be a sequence of positive integers such that kn ! 1 as n ! 1:
To prove our main results, we will need the following lemma.

Lemma 1. Let fkn; nX1g and fbn; nX1g be sequences of positive constants such that kn ! 1; bn !

1; and

kn=bb
n ! 0 for some b40. (1)

Suppose that there exists a positive nondecreasing function g on ½0;1Þ satisfying

lim
a!0

gðaÞ ¼ 0;
X1
j¼1

gbð1=jÞo1, (2)

and

kn

bb
n

Xkn�1

j¼1

gbðj þ 1Þ � gbðjÞ

j
¼ Oð1Þ. (3)

Let fX ni; unpipvn; nX1g be an array of random variables such that

sup
a40

sup
nX1

1

kn

Xvn

i¼un

aPðjX nij4gðaÞÞo1 (4)
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and

lim
a!1

sup
nX1

1

kn

Xvn

i¼un

aPðjX nij4gðaÞÞ ¼ 0. (5)

Then

Xvn

i¼un

EjX nij
bIðjX nijpgðknÞÞ ¼ oðbb

nÞ.

Proof. Since g is a nondecreasing function, it follows that

1

bb
n

Xvn

i¼un

EjX nij
bIðjX nijpgðknÞÞ

¼
1

bb
n

Xvn

i¼un

EjX nij
bIðjX nijpgð1ÞÞ þ

1

bb
n

Xvn

i¼un

Xkn

j¼2

EjX nij
bIðgðj � 1ÞojX nijpgðjÞÞ,

¼: An þ Bn.

By (1), (2), and (4), we have

An ¼
1

bb
n

Xvn

i¼un

X1
j¼1

EjX nij
bIðgð1=ðj þ 1ÞÞojX nijpgð1=jÞÞ

p
1

bb
n

Xvn

i¼un

X1
j¼1

gbð1=jÞPðgð1=ðj þ 1ÞÞojX nijpgð1=jÞÞ

¼
1

bb
n

Xvn

i¼un

X1
j¼2

ðgbð1=ðj � 1ÞÞ � gbð1=jÞÞPðjX nij4gð1=jÞÞ � gbð1ÞPðjX nij4gð1ÞÞ

" #

p
1

bb
n

Xvn

i¼un

X1
j¼2

ðgbð1=ðj � 1ÞÞ � gbð1=jÞÞPðjX nij4gð1=jÞÞ

p
kn

bb
n

X1
j¼2

jðgbð1=ðj � 1ÞÞ � gbð1=jÞÞ sup
nX1

1

kn

Xvn

i¼un

1

j
PðjX nij4gð1=jÞÞ

( )

p
kn

bb
n

gbð1Þ þ
X1
j¼1

gbð1=jÞ

 !
 sup

a40
sup
nX1

1

kn

Xvn

i¼un

aPðjX nij4gðaÞÞ

( )
! 0.

The proof that limn!1 Bn ¼ 0 can be obtained by the slight modification of the last part in the
proof of Hong et al. (2000) (from the middle of p. 180 to the end of the proof) with changes:
jjVnijj ¼ jX nij and

Pkn

j¼1 ¼
Pvn

j¼un
: &

Remark 1. When un ¼ 1; vn ¼ kn; nX1; condition (5) was introduced by Hong and Oh (1995). In
this case, condition (5) implies condition (4), and so condition (4) can be omitted.

Now we state and prove one of our main results.
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Theorem 1. Let 0obp2: Under the same conditions of Lemma 1,Xvn

i¼un

ðX ni � cniÞ=bn ! 0 in probability,

where cni ¼ 0 if 0obp1 and cni ¼ EðX niIðjX nijpgðknÞÞjFn;i�1Þ if 1obp2:

Proof. Let X 0
ni ¼ X niIðjX nijpgðknÞÞ for unpipvn; nX1: By the same arguments as the proof of

Sung (1998), it suffices to show thatXvn

i¼un

ðX 0
ni � cniÞ=bn ! 0 in probability.

First, we consider the case of 0obp1: Since cni ¼ 0; it follows by the Markov’s inequality and
Lemma 1 that

P
Xvn

i¼un

ðX 0
ni � cniÞ

					
					

 ,
bn4�

!
pE

Xvn

i¼un

X 0
ni

					
					
b

=ð�bbb
nÞp

Xvn

i¼un

EjX 0
nij

b=ð�bbb
nÞ ! 0.

Now we consider the case of 1obp2: In this case, X 0
ni � cni; unpipvn; form a martingale

difference sequence. Using Burkholder’s (1966) inequality, Jensen’s inequality, and Lemma 1,
we get

P
j
Pvn

i¼un
ðX 0

ni � cniÞj

bn

4�

� �
p

1

�bbbn
E
Xvn

i¼un

ðX 0
ni � cniÞ

					
					
b

p
Cb

�bbbn

Xvn

i¼un

EjX 0
ni � cnij

b

p
Cb2

b�1

�bbbn

Xvn

i¼un

EjX 0
nij

b þ Ejcnij
b

p
Cb2

b

�bbb
n

Xvn

i¼un

EjX 0
nij

b ! 0,

where Cb is a constant depending only on b: &

Note that condition (3) can be difficult to check. A sufficient condition for (3) was given by
Hong et al. (2000) as follows:

gðknÞ

bn

¼ Oð1Þ and
Xkn

j¼1

gbðjÞ

j2
¼ O

bb
n

kn

 !
. (6)

Corollary 1. Let 0oro2 and kn ! 1 as n ! 1: Let fX ni; unpipvn; nX1g be an array of random

variables such that

sup
a40

sup
nX1

1

kn

Xvn

i¼un

aPðjX nij
r4aÞo1 (7)



ARTICLE IN PRESS

S.H. Sung et al. / Statistics & Probability Letters 72 (2005) 291–298 295
and

lim
a!1

sup
nX1

1

kn

Xvn

i¼un

aPðjX nij
r4aÞ ¼ 0. (8)

Then

Xvn

i¼un

ðX ni � cniÞ=k1=r
n ! 0 in probability,

where cni ¼ 0 if 0oro1 and cni ¼ EðX niIðjX nij
rpknÞjFn;i�1Þ if 1pro2:

Proof. Let gðtÞ ¼ t1=r and bn ¼ k1=r
n : Take b ¼ 1 if 0oro1 and b ¼ 2 if 1pro2: Then conditions

(1), (2), (4), and (5) are clearly satisfied. By Theorem 1, it remains to show that condition (3) holds.
To prove (3), it is enough to show that condition (6) holds. Clearly gðknÞ=bn ¼ Oð1Þ: Since b=r41;
it follows that

Xkn

j¼1

gbðjÞ

j2
¼
Xkn

j¼1

jðb=rÞ�2 ¼ Oðkðb=rÞ�1
n Þ.

Thus condition (6) is satisfied. &

Remark 2. When un ¼ 1; vn ¼ kn; nX1; Hong and Oh (1995) proved Corollary 1 for 1pro2: For
the case 0oro1; they used a centering sequence whereas we have no centering.

Corollary 2. Let fX ni; 1pipkn; nX1g; kn ! 1 as n ! 1; be an array of random variables. Let
fdn; nX1g be a nondecreasing sequence of positive constants such that

n

db
n

! 0 and
kn

d
b
kn

Xkn�1

j¼1

d
b
jþ1 � d

b
j

j
¼ Oð1Þ (9)

for some 0obp2: Suppose that

lim
j!1

sup
nX1

1

kn

Xkn

i¼1

jPðjX nij4djÞ ¼ 0.

Then

Xkn

i¼1

ðX ni � cniÞ=dkn
! 0 in probability,

where cni ¼ 0 if 0obp1 and cni ¼ EðX niIðjX nijpdkn
ÞjFn;i�1Þ if 1obp2:

Proof. Let gðtÞ be a nondecreasing function such that gðtÞ ¼ 0 for 0pto1 and gðnÞ ¼ dn for nX1:
Let un ¼ 1; vn ¼ kn; bn ¼ dkn

; nX1: Then conditions (1)–(5) are clearly satisfied, and so the proof
follows from Theorem 1. &

Remark 3. When dn=na " for some a41
2
; condition (9) is satisfied for b ¼ 2 by Lemma 2 of Sung

(1998). In this case, Sung (1998) proved Corollary 2.
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If fani; unpipvn; nX1g is a bounded array of constants, then Theorem 1 can be extended to
weighted sums.

Theorem 2. Let 0obp2: Let fani; unpipvn; nX1g be a bounded array of constants, i.e.,
supnX1 supunpipvn

janijo1: Under the same conditions of Lemma 1,Xvn

i¼un

aniðX ni � cniÞ=bn ! 0 in probability,

where cni ¼ 0 if 0obp1 and cni ¼ EðX niIðjX nijpgðknÞÞjFn;i�1Þ if 1obp2:

The proof is similar to that of Theorem 1 and is omitted.
The following theorem gives a result of convergence in probability for (infinite) weighted sums

of random variables.

Theorem 3. Let fX n; nX1g be a sequence of random variables which is uniformly bounded
by a random variable X such that aPðjX jr4aÞ ! 0 as a ! 1 for some 0oro2: Let

fjanij
r; 1pio1; nX1g be a Toeplitz array of constants, i.e.,

lim
n!1

ani ¼ 0 for every i (10)

and

sup
nX1

X1
i¼1

janij
roC for some constant C40. (11)

If supiX1janij ! 0 as n ! 1; thenX1
i¼1

aniðX i � cniÞ ! 0 in probability,

where cni ¼ 0 if 0oro1 and cni ¼ EðX iIðjaniX ij
rp1ÞjFi�1Þ if 1pro2ðFn ¼ sfX i; 1pipng and

F0 ¼ f;;OgÞ:

Proof. Since aPðjX jr4aÞ ! 0 as a ! 1; there exists a0 such that aPðjX jr4aÞo� if a4a0: It
follows that

sup
a40

aPðjX jr4aÞp sup
0oapa0

aPðjX jr4aÞ þ sup
a4a0

aPðjX jr4aÞpa0 þ �. (12)

Let kn ¼ 1=supiX1janij
r; un ¼ 1; vn ¼ 1;X ni ¼ k1=r

n aniX i; and bn ¼ k1=r
n : Then we have by (11) and

(12) that

sup
nX1

1

kn

Xvn

i¼un

aPðjX nij
r4aÞp sup

nX1

1

kn

Xvn

i¼un

aP jX jr4
a

knjanij
r

� �
,

¼ sup
nX1

Xvn

i¼un

janij
r a

knjanij
r P jX jr4

a

knjanij
r

� �
,

pða0 þ �Þ sup
nX1

X1
i¼1

janij
rpða0 þ �ÞC.
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So (7) is satisfied. If a4a0; then a=knjanij
r
Xa4a0 for all n and i: For a4a0; we get

sup
nX1

1

kn

Xvn

i¼un

aPðjX nij
r4aÞp sup

nX1

Xvn

i¼un

janij
r a

knjanij
r P jX jr4

a

knjanij
r

� �
,

p� sup
nX1

X1
i¼1

janij
rp�C.

So (8) is satisfied. Hence the proof follows from Corollary 1. &

Pruitt (1966) proved Theorem 3 for r ¼ 1 under the stronger condition that fX n; nX1g is a
sequence of i.i.d. random variables with EjX 1jo1: Rohatgi (1971) proved Theorem 3 for
0orp1 under the stronger condition that fX n; nX1g is a sequence of independent random
variables which is uniformly bounded by a random variable X with EjX jro1: Note that the
condition aPðjX jr4aÞ ! 0 as a ! 1 is weaker than EjX jro1: Hence Theorem 3 extends the
results of Pruitt (1966) and Rohatgi (1971).
The following corollary was proved by Jamison et al. (1965).

Corollary 3. Let fX n; nX1g be i.i.d. random variables such that

lim
a!1

aPðjX 1j4aÞ ¼ 0 and lim
a!1

EX 1IðjX 1jpaÞ ¼ m. (13)

Let fan; nX1g be a sequence of positive constants satisfying

max
1pipn

ai

Xn

i¼1

ai ! 0

,
. (14)

Then
Pn

i¼1 aiX i=
Pn

i¼1ai ! m in probability.

Proof. Let ani ¼ ai=
Pn

i¼1 ai for 1pipn; nX1: Then fani; 1pipn; nX1g is a Toeplitz array. By
Theorem 3 with r ¼ 1;Pn

i¼1 aiðX i � EX 1IðjX 1jp1=aniÞÞPn
i¼1 ai

! 0 in probability.

Since 1=aniX
Pn

i¼1 ai=max1pipn ai ! 1 as n ! 1; we have by (13) that EX 1IðjX 1jp1=aniÞ ! m
as n ! 1 uniformly in i; which implies

Pn
i¼1 aiEX 1IðjX 1jp1=aniÞ=

Pn
i¼1 ai ! m: Thus the proof is

complete. &
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Hong, D.H., Ordóñez Cabrera, M., Sung, S.H., Volodin, A.I., 2000. On the weak law for randomly indexed partial

sums for arrays of random elements in martingale type p Banach spaces. Statist. Probab. Lett. 46, 177–185.

Jamison, B., Orey, S., Pruitt, W., 1965. Convergence of weighted average of independent random variables.

Z. Wahrsch. Verw. Gebiete 4, 40–44.

Pruitt, W.E., 1966. Summability of independent random variables. J. Math. Mech. 15, 769–776.

Rohatgi, V.K., 1971. Convergence of weighted sums of independent random variables. Proc. Camb. Phil. Soc. 69,

305–307.

Sung, S.H., 1998. Weak law of large numbers for arrays. Statist. Probab. Lett. 38, 101–105.


	On the weak laws for arrays of random variables
	Introduction
	Main results
	Acknowledgements
	References


